1. Нужно создать resource script file (*.RC) с помощью простого текстового файла (например блокнота), и вписать всего одну строку:
1 RCDATA "MyPic.jpg"
Единичка – это просто номер ресурса, RCDATA - определяет, что мы имеем дело с user-defined resource. Последнее – имя файла с JPG рисунком.
2. Компилируем его в .RES файл, при помощи BRCC32.EXE. В MS-DOS набираем:
BRCC32 MyPic.RC
Это должно создать файл MyPic.RES.
3. Добавляем директиву компилятор в исходный код нашей программы. Она должна следовать за директивой формы, как показано здесь:
{$R *.DFM}
{$R MyPic.RES}
4. Добавляем следующую процедуру в программу:
Код:
Посмотрите на второй параметр процедуры CreateFromID объекта TresourceStream. Это просто индекс ресурса. Вы можете включить более, чем один jpeg в своей программе просто добавляя новую строчку для каждого jpeg (с другим индексом) в .RC файл.
В данной статье рассмотрены принципы, помогающие компилятору Delphi генерировать более оптимальный с точки зрения скорости код. Если Вы не хотите вникать в подробности, в конце статьи есть «свод правил», которые рекомендуется соблюдать при написании программ.
Компилятор Delphi относится к разряду оптимизирующих. Но насколько качественно проводится оптимизация? Как «помочь» компилятору создать более быстрый код? Давайте разберемся с этим на экспериментах.
Оптимизация константных выражений
Пример 1:
С точки зрения оптимизации код можно упростить еще на этапе компиляции до
Но написанный выше листинг преобразуется в
С одной стороны компилятор не «сообразил», что значение переменной «a» можно преобразовать в константу и сложить с другой константой (которая, заметим, подставлена именно как константа) на этапе компиляции, с другой стороны был применен весьма хитрый трюк с LEA (об этом ниже). Тем не менее, код
в любом случае быстрее и короче.
Пример 2:
Скомпилированный код будет выглядеть
А ведь значение, присвоенной переменной «а» являлось константой и наш пример можно было бы переписать как:
Пример 3:
После компиляции получаем:
Т.е. компилятор преобразовал код так, как он был написан, а ведь можно было бы просто записать:
Оптимизация алгебраических выражений
Пример 4:
После компиляции эти переменные будут удалены, причем с предупреждением
Пример 5:
Код скомпилируется как есть! Таким образом мы обманули компилятор псевдо использованием переменных. Delphi не исправляет нашей «кривости», поэтому эта задача ложится исключительно на плечи программиста.
Пример 6:
Данный код можно оптимизировать до
И этого Delphi за нас не сделает.
Пример 7:
В данном примере первую строчку можно безболезненно удалить, что Delphi делать умеет.
Пример 8:
В данном случае можно избавится от одной операции умножения, присвоив значение выражения a*b временной переменной. Анализ ассемблерного листинга показывает, что компилятор именно так и поступает. Тем не менее, поменяв второе подвыражение на ((b*a)>0), компилятор принимает выражения за разные и генерирует умножение для обоих случаев, не смотря на то, что результат одинаков.
Оптимизация арифметических операций
Сложение и вычитание
Применение инструкции LEA вместо ADD позволяет производить сумму 3х операндов (двух переменных и одной константы) за один такт. Трюк заключается в том представление ближних указателей эквивалентно их фактическому значению, поэтому результат, возвращенный LEA равен сумме ее операндов. При возможности Delphi производит такую замену.
Деление
Операция деления требует гораздо больше тактов процессора, нежели умножение, поэтому замена деления на умножение может значительно ускорить работу. Существуют формулы, позволяющие выполнять такое преобразование. Тем не менее, Delphi не использует такую оптимизацию. Деление на степень двойки можно заменять сдвигом вправо на n бит, но даже в этом случае получаем следующий код:
Здесь учитывается особенность самой операции div – округление в большую сторону. Поэтому, если можно пренебрегать округлением, используйте c:=a shr 1 вместо с:=a div 2.
Умножение
Умножение на степень двойки можно заменять сдвигами битов. Delphi заменяет умножение сдвигами при умножении на 4,8,16 итд. При умножении на 2 производится суммированием переменной с собой.
Умножать на 3,5,6,7,8,10 и т. д. можно и без операции умножения – расписав выражение по формуле (a shl n)+a, где n – показатель степени двойки. Например, при умножении на 3 n=1. Delphi при возможности прибегает к этому трюку. Заметим, операнд LEA умеет умножать регистр на 2,4,8, что также при возможности используется компилятором. Например, умножение на 3 преобразуется в инструкцию
Оптимизация case of
Анализ скомпилированного кода показывает, что Delphi проводит утрамбовку дерева. Т.е. значения case сортируются и выбор нужного элемента производится при помощи двоичного поиска.
В случае, если элементы case of выстраиваются в арифметической прогрессии, компилятор формирует таблицу переходов. Т.е. создается массив указателей с индексами элементов, поэтому выбор нужно элемента выполняется за одну итерацию независимо от количества элементов.
Оптимизация циклов
Разворачивание циклов – не производится. Разворачивание циклов весьма спорный момент в оптимизации, поэтому принять грамотное решение может только человек. Delphi не производит разворачивания ни больших, ни маленьких циклов.
Слияние циклов – не производится. Если два цикла, следующие друг за другом имеют одинаковые границы итерационной переменной, разумно оба цикла объединить в один.
Вынесение инвариантного кода за пределы цикла – не выносится. Наиболее распространенный недочет – условие цикла записывается как:
Delphi будет при каждой итерации вызывать метод count, вычитать из результата 1 и потом уже сверять. Настоятельно рекомендуется переписывать подобный код как
Весь код VCL написан с нарушением этого правила. Очевидно, что проще подобного рода оптимизацию встроить в компилятор, нежели переписывать VCL :)
Замена циклов с предусловием на циклы с постусловием – производится. Циклы с постусловием имеют главное преимущество над другими видами циклов (с предусловием и с условием в середине) – они содержат всего одно ветвление. Delphi производит такую замену.
Замена инкремента на декремент – не производится. Более того, даже декрементный цикл компилируется в неоптимальный код, т.к. не используется флаг ZF. Вместо этого происходит сравнивание значения регистра с 0.
Удаление ветвлений – не производится.
Вывод:
1. Не используйте переменные для временного хранения констант или обязательно объявляйте «магические» числа как const, либо подставляйте в код непосредственные значения
2. Неиспользуемыми объявлениями и присвоениями можно безболезненно пренебрегать – Delphi умеет их вычищать.
3. Внимательно следите за использованием переменных, в частности лишним присвоениям их значений друг другу. Такого рода оптимизации Delphi делать не умеет.
4. Используйте свернутые математические выражения. (например, (3*a - a) /2 упрощается до a). Delphi не умеет упрощать математические выражения. (Да и что говорить, даже MathCAD не всегда грамотно умеет делать такие преобразования).
5. Не используйте конструкции типа a:=10*sin(45*pi/180); Delphi не вычислит эту константу на этапе компиляции, напротив, будет послушно вызывать sin и pi по ходу выполнения программы! В случае, если угол является переменной, по крайней мере pi можно заменить константой 3,1415...
6. Delphi прекрасно справляется с выражениями, полностью составленных из констант – они вычисляются на этапе компиляции.
7. Внимательно следите за условиями и их границами. Компилятор Delphi не умеет обнаруживать заведомо ложных условий. Также он не умеет удалять заведомо лишние условия. Например, (a>0) and (a<15616) and (a<>0)
8. Если в условии несколько раз проверяется одно и тоже выражение, следите, чтобы оно было выражено во всех конструкциях одинаково. В противном случае скомпилированный код будет не оптимален. Например, if ((a*b)>0) and ((a*b)<1024) then... При перестановке во втором случае b*a смысл выражения не изменится, но код будет иметь уже на одну операцию умножения, а две. Можно временно присвоить проверяемое выражение временной переменной, а затем уже проверять полученное значение.
9. Сообщение «Combining signed and unsigned types – widened both operands» сообщает не только о потенциальной ошибке – также вследствие преобразования мы теряем производительность. Например, z – объявлена как ineteger. условие if z>$abcd6123 then z:= $abcd6123; несмотря на его правильность вызовет данное предупреждение. Сгенерированный код будет, выполнять преобразования величин до 64-х бит, и дальнейшее уже сравнение 64-х битных операндов. Если изменить тип z на cardinal, мы избавимся от предупреждения и получим 3 строки кода, вместо 8 !
10. Delphi умеет оптимизировать сложение, умножение и частично деление. При делении на степень двойки, если не важно округление до большего, рекомендуется пользоваться shr 1 вместо div 2.
11. В case of при возможности используйте элементы, расположенные в арифметической прогрессии. Тем не менее, даже при невыполнении данного условия мы получим качественный код после утрамбовки дерева.
12. Выносите инвариантный код за тело цикла. Наиболее частая ошибка – for i:=1 to length(str) do... Дело в том, что при каждой итерации будет вызываться функция length, что пагубно скажется на производительности. Рекомендуется длину строки заранее присвоить переменной. Также не включайте в тело цикла код, заведомо не зависящий от изменения итерационной переменной.
Сравнивая Delphi с компиляторами Visual C++, WATCOM, Borland C++ (тестирование данных компиляторов приведено в [1]) приходим к выводу, что Delphi по своим оптимизирующим свойствам аналогичен Borland C++ (а кто сомневался? ;) ). Учитывая, что Borland C++ по итогам сравнения оказался последним, делаем несложный вывод. Весьма печален и тот факт, что большинство кода VCL написано с точки зрения «красоты» кода, а не его оптимальности с точки зрения скорости. Например, не соблюдается правило 12.
Такие типы данных, как int, float, char и long, являются неотъемлемой частью C/C++ и вам не нужно писать никакого кода, чтобы сообщить компилятору о том, что означают эти слова. C/C++ позволяет вам также объ-являть свои собственные, специальные типы данных. В следующем разделе вы узнаете, как объявлять структуры, которые можно отнести к специальным типам данных.
Как вы уже знаете, переменная в C/C++ объявляется следующим образом:
В приведенном операторе iMyVariable объявлена как целая переменная. А вот объявление переменной типа char:
Напишите следующий исходный код:
В коде, который вы написали, имеются два оператора #include:
Файл iostream.h включен в код, поскольку в main(void) используется cout. Файл string.h включается потому, что в main(void) используется функция strcpy() (объявленная в файле string.h). Затем вы объявляете структуру:
Обратите внимание на синтаксис объявления структуры. Оно начинается с ключевого слова struct, за которым следует имя типа-структуры. В этой программе типу структуры присвоено имя MYSTRUCTURE. Затем следует собственно определение структуры, заключенное в фигурные скобки. Не забудьте поставить точку с запятой после закрывающей фигурной скобки. Теперь посмотрите на код внутри фигурных скобок:
Это означает, что MYSTRUCTURE состоит из строки с именем sName и целого с именем iAge, sName и iAge называются элементами данных структуры; Вы объявили их "Внутри" cтруктуры MYSTRUCTURE. Код в main(void) объявляет переменную с именем MyStructure типа MYSTRUCTURE:
Вспомните, что в объявляли переменную iNum1 следующим образом:
Когда вы объявляете MyStructure , которая будет структурой типа MYSTRUCTURE, рассматривайте переменную MyStructure аналогично переменной iNum1. MyStructure - это имя переменной, а ее типом является MYSTRUCTURE точно так же, как типом переменной iNum1 является int. (Обратите внимание, что по традиции имя структуры составлено из символов нижнего регистра или в нем смешаны символы нижнего и верхнего регистров, как, например, в имени MyStructure, но в имени типа структуры используются только символы верхнего регистра, как, например, в MYSTRUCTURE.)
Следующий оператор в main(void) копирует строку 'Andy' в элемент данных MyStructure.sName:
В этом операторе обращение к элементу данных sName записано как MyStructure.sName Следующий оператор присваивает значение 13 элементу данных iAge cтруктуры MyStructure: MyStructure.iAge - 13; Затем выполняется ряд операторов вывода cout:
Сложив все вместе, мы видим, что программа MyStruct выводит сообщение My name is Andy and I am 13 years old. (Меня зовут Andy и мне 13 лет)
Вопрос создания непрямоугольных окон часто интересует начинающих программистов и время от времени обсуждается на форумах разработчиков в среде Delphi. А вообще, нужно ли это кому-нибудь? Ответ - да! Это уже было нужно таким известным фирмам, как Symantec (Norton Utilities, Norton CrashGuard), Microsoft (Приложение "
Часы" в Windows NT4 может принимать круглую форму, Deluxe CD Player из MS Plus! 98 имеет вид прямоугольника со скругленными краями). У Borland Jbuilder 2 в окне начальной загрузки стрела крана "выскочила" за пределы прямоугольника. Программы для видеокарт TV Capture фирмы AverMedia имитируют пульт управления. Окно переводчика Magic Goody принимает вид гуся, разгуливающего по экрану.
Список можно продолжить, а вывод такой: окно "хитрой" формы – это "изюминка" оформления Вашей программы, нечто запоминающееся, дополнительный плюс в борьбе за потенциального покупателя. Главное в этом – не переборщить. Вряд ли будет удобно работать с текстовым редактором в треугольном окне. Окна произвольной формы неплохо смотрятся при начальной загрузке (Splash) и, возможно, в качестве окна "О программе … ".
Как это делается? Средствами Delphi – достаточно просто. Приведенные ниже примеры можно также перевести в C++ Builder или Visual C++.
При создании окна непрямоугольной формы используются API функции
Переопределение функции WMNCHitTest позволит перетаскивать окно, захватив его мышкой.
До сих пор в примерах мы рассматривали регионы с абсолютными значениями линейных величин. Пример непрямоугольного окна, которое масштабирует свою форму в зависимости от его размера. Искодный код, приведенный ниже, создает окно в виде бабочки, причем бабочка исполльзует максимально высоту и ширину исходной формы.
Если грамотно разложить фигуру на элементарные составляющие, то Вам вполне по силам создать окно абсолютно любой формы. Это похоже на детскую игру "конструктор", только Ваши "кубики" намного разнообразнее.
Для завершения проекта необходимо создать фоновую картинку, которая подчеркнет границы нового окна. И обязательно установить свойство формы Scaled = False, иначе фоновая картинка и форма могут "разъехаться" при использовании нестандартных видеорежимов или стилей оформления Windows.
В заключение следует сказать, что существуют готовые компоненты и библиотеки компонент для решения подобных задач, например, CoolForm, TPlasmaForm. Однако при использовании компонент от сторонних производителей могут возникнуть проблемы лицензионности их использования и проблемы перехода на новую версию компилятора. А приведенные в данной статье примеры компилируются без изменений в исходном коде на Borland Delphi 3.0 - 7.0 и, вероятно, будут совместимы с последующими версиями.
Для программирования расширенных хранимых процедур Microsoft предоставляет ODS (Open Data Service) API набор макросов и функций, используемых для построения серверных приложений позволяющих расширить функциональность MS SQL Server 2000.
Расширенные хранимые процедуры - это обычные функции написанные на С/C++ с применением ODS API и WIN32 API, оформленные в виде библиотеки динамической компоновки (dll) и призванные, как я уже говорил, расширять функциональность SQL сервера. ODS API предоставляет разработчику богатый набор функций позволяющих передавать данные клиенту, полученные от любых внешних источников данных (data source) в виде обычных наборов записей (record set). Так же, extended stored procedure может возвращать значения через переданный ей параметр (OUTPUT parametr).
Как работают расширенные хранимые процедуры.
* Когда клиентское приложение вызывает расширенную хранимую процедуру, запрос передаётся в TDS формате через сетевую библиотеку Net-Libraries и Open Data Service ядру MS SQL SERVER.
* SQL Sever находит dll библиотеку ассоциированную с именем расширенной хранимой процедуры и загружает её в свой контекст, если она не была загружена туда ранее, и вызывает расширенную хранимую процедуру, реализованную как функцию внутри dll.
* Расширенная хранимая процедура выполняет на сервере необходимые ей действия и передаёт набор результатов клиентскому приложению, используя сервис предоставляемый ODS API.
Особенности расширенных хранимых процедур.
* Расширенные хранимые процедуры - это функции выполняющиеся в адресном пространстве MS SQL Server и в контексте безопасности учётной записи под которой запущена служба MS SQL Server;
* После того, как dll библиотека с расширенными хранимыми процедурами была загружена в память, она остаётся там до тех пор, пока SQL Server не будет остановлен, или пока администратор не выгрузит её принудительно, используя команду :
DBCC DLL_name (FREE).
* Расширенная хранимая процедура запускается на выполнение так же, как и обычная хранимая процедура:
EXECUTE xp_extendedProcName @param1, @param2 OUTPUT
@param1 входной параметр
@param2 входной/выходной параметр
Внимание!
Так как расширенные хранимые процедуры выполняются в адресном пространстве процесса службы MS SQL Server, любые критические ошибки, возникающие в их работе, могут вывести из строя ядро сервера, поэтому рекомендуется тщательно протестировать Вашу DLL перед установкой на рабочий сервер.
Создание расширенных хранимых процедур.
Расширенная хранимая процедура эта функция имеющая следующий прототип:
Параметр pSrvProc указатель на SRVPROC структуру, которая является описателем (handle) каждого конкретного клиентского подключения. Поля этой структуры недокументированны и содеражат информацию, которую библиотека ODS использует для управления коммуникацией и данными между серверным приложением (Open Data Services server application) и клиентом. В любом случае, Вам не потребуется обращаться к этой структуре и тем более нельзя модифицоравать её. Этот параметр требуется указывать при вызове любой функции ODS API, поэтому в дальнейшем я небуду останавливаться на его описании.
Использование префикса xp_ необязательно, однако существует соглашение начинать имя расширенной хранимой процедуры именно так, чтобы подчеркнуть отличие от обычной хранимой процедуры, имена которых, как Вы знаете, принято начинать с префикса sp_.
Так же следует помнить, что имена расширенных хранимых процедур чувствительны к регистру. Не забывайте об этом, когда будете вызвать расширенную хранимую процедуру, иначе вместо ожидаемого результата, Вы получите сообщение об ошибке.
Если Вам необходимо написать код инициализации/деинициализации dll, используйте для этого стандартную функцию DllMain(). Если у Вас нет такой необходимости, и вы не хотите писать DLLMain(), то компилятор соберёт свою версию функции DLLMain(), которая ничего не делает, а просто возвращает TRUE. Все функции, вызываемые из dll (т.е. расширенные хранимые процедуры) должны быть объявлены, как экспортируемые. Если Вы пишете на MS Visual C++ используйте директиву __declspec(dllexport). Если Ваш компилятор не поддерживает эту директиву, опишите экспортируемую функцию в секции EXPORTS в DEF файле.
Итак, для создания проекта, нам понадобятся следующие файлы:
* Srv.h заголовочный файл, содержит описание функций и макросов ODS API;
* Opends60.lib файл импорта библиотеки Opends60.dll, которая и реализует весь сервис предоставляемый ODS API.
Microsoft настоятельно рекомендует, чтобы все DLL библиотеки реализующие расширенные хранимые процедуры экспортировали функцию:
Когда MS SQL Server загружает DLL c extended stored procedure, он первым делом вызывает эту функцию, чтобы получить информацию о версии используемой библиотеки.
Для написания своей первой extended stored procedure, Вам понадобится установить на свой компьютер:
- MS SQL Server 2000 любой редакции (у меня стоит Personal Edition). В процесе инсталляции обязательно выберите опцию source sample
- MS Visual C++ (я использовал версию 7.0 ), но точно знаю подойдёт и 6.0
Установка SQL Server -a нужна для тестирования и отладки Вашей DLL. Возможна и отладка по сети, но я этого никогда не делал, и поэтому установил всё на свой локальный диск. В поставку Microsoft Visual C++ 7.0 редакции Interprise Edition входит мастер Extended Stored Procedure DLL Wizard. В принципе, ничего сверх естественного он не делает, а только генерирует заготовку шаблон расширенной хранимой процедуры. Если Вам нравятся мастера, можете использовать его. Я же предпочитаю делать всё ручками, и поэтому не буду рассматривать этот случай.
Теперь к делу:
- Запустите Visual C++ и создайте новый проект - Win32 Dynamic Link Library.
- Включите в проект заголовочный файл - #include <srv.h>;
- Зайдите в меню Tools => Options и добавьте пути поиска include и library файлов. Если , при установке MS SQL Server, Вы ничего не меняли, то задайте:
- C:Program FilesMicrosoft SQL Server80ToolsDevToolsInclude для заголовочных файлов;
- C:Program FilesMicrosoft SQL Server80ToolsDevToolsLib для библиотечных файлов.
- Укажите имя библиотечного файла opends60.lib в опциях линкера.
На этом подготовительный этап закончен, можно приступать к написанию своей первой extended stored procedure.
Постановка задачи.
Прежде чем приступать к программированию, необходимо чётко представлять с чего начать, какой должен быть конечный результат, и каким способом его добиться. Итак, вот нам техническое задание:
Разработать расширенную хранимую процедуру для MS SQL Server 2000, которая получает полный список пользователей зарегистрированных в домене, и возвращает его клиенту в виде стандартного набора записей (record set). В качестве первого входного параметра функция получает имя сервера содержащего базу данных каталога (Active Directory), т.е имя контролера домена. Если этот параметр равен NULL, тогда необходимо передать клиенту список локальных групп. Второй параметр будет использоваться extended stored procedure для возварата значения результата успешной/неуспешной работы (OUTPUT параметр). Если, расширенная хранимая процедура выполнена успешно, тогда необходимо передать количество записей возвращённых в клиентский record set , если в процессе работы не удалось получить требуемую информацию, значение второго параметра необходимо установить в -1, как признак неуспешного завершения.
.
А вот шаблон расширенной хранимой процедуры, который нам предстоит наполнить содержанием:
Работа с входными параметрами
В этой главе я не хочу рассеивать Ваше внимание на посторонних вещах, а хочу сосредоточить его на работе с переданными в расширенную хранимую процедуру параметрами. Поэтуму мы несколько упростим наше техническое задание и разработаем тольку ту его часть, которая работает с входными параметрами. Но сначал не много теории
Первое действие, которое должна выполнить наша exteneded stored procedure , - получить параметры, которые были переданы ей при вызове. Следуя приведённому выше алгоритму нам необходимо выполнить следующие действия:
- Определить кол-во переданных параметров;
- Убедится, что переданные параметры имеют верный тип данных;
- Убедиться, что указанный OUTPUT параметр имеет достаточную длину, для сохранения в нём значения возвращаемого нашей extended stored procedure.
- Получить переданные параметры;
- Установить значения выходного параметра как результат успешного/неуспешного завершения работы extended stored procedure .
Теперь рассмотрим подробно каждый пункт:
Определение количества переданных в расширенную хранимую процедуру параметров
Для получения количества переданных параметров необходимо использовать функцию:
.
При успешном завершении функция возвращает количество переданных в расширенную хранимую процедуру параметров. Если extended stored procedure была вызвана без параметров - srv_rpcparams ввернёт -1. Параметры могут быть переданы по имени или по позиции (unnamed). В любом случае, нельзя смешивать эти два способа. Попытка передачи в функцию входных параметров по имени и по позиции одновременно - приведёт к возникновению ошибки, и srv_rpcparams вернёт 0 .
[pagebreak]
Определение типа данных и длины переданых параметров
Для получения информации о типе и длине переданных параметров Microsoft рекомендует использовать функцию srv_paramifo. Эта универсальная функция заменяет вызовы srv_paramtype, srv_paramlen, srv_parammaxlen, которые теперь считаются устаревшими. Вот её прототип:
.
.
.
.
.
.
.
.
.
.
pByte - указатель на переменную получающую информацию о типе входного параметра;
pbType задаёт порядковый номер параметра. Номер первого параметра начинается с 1.
pcbMaxLen - указатель на переменную, в которую функция заносит максимальное значение длины параметра. Это значение обусловлено конкретным типом данных переданного параметра, его мы и будем использовать, чтобы убедиться втом, что OUTPUT параметр имеет достаточную длину для сохранения передаваемых данных.
pcbActualLen указатель на реальную длину параметра переданного в расширенную хранимую процедуру при вызове. Если передаваемый параметр имеет нулевую длину, а флаг pfNull устанавлен в FALSE то (* pcbActualLen) ==0.
pbData - указатель на буфер, память для которого должна быть выделена перед вызовом srv_paraminfo. В этом буфере функция размещает полученные от extended stored procedure входные параметры. Размер буфера в байтах равен значению pcbMaxLen. Если этот параметр установлен в NULL, данные в буфер не записываются, но функция корректно возвращает значения *pbType, *pcbMaxLen, *pcbActualLen, *pfNull. Поэтому вызывать srv_paraminfo нужно дважды: сначала с pbData=NULL, потом, выделив необходимый размер памяти под буфер равный pcbActualLen, вызвать srv_paraminfo второй раз, передав в pbData указатель на выделенный блок памяти.
pfNull указатель на NULL-флаг. srv_paraminfo устанавливает его в TRUE, если значение входного параметра равно NULL.
Проверка, является ли второй параметр OUTPUT параметром.
Функция srv_paramstatus() предназначена для определения статуса переданного параметра:
.
.
.
.
.
n - номер параметра переданного в расширенную хранимую процедуру при вызове. Напомню: параметры всегда нумеруются с 1.
Для возврата значения, srv_paramstatus использует нулевой бит. Если он установлен в 1 переданный параметр является OUTPUT параметром, если в 0 обычным параметром, переданным по значению. Если, exteneded stored procedure была вызвана без параметров, функция вернёт -1.
Установка значения выходного параметра.
Выходному параметру, переданному в расширеную хранимую можно передать значение используя функцию srv_paramsetoutput. Эта новая функция заменяет вызов функции srv_paramset, которая теперь считается устаревашай, т.к. не поддерживает новые типы данных введённые в ODS API и данные нулевой длины.
.
.
.
.
.
.
.
.
n - порядковый номер параметра, которому будет присвоено новое значение. Это должен быть OUTPUT параметр.
pbData указатель на буфер с данными, которые будут посланы клиенту для установки значения выходного параметра.
cbLen длина буфера посылаемых данных. Если тип данных переданного OUTPUT параметра определяет данные постоянной длины и не разрешает хранение значения NULL (например SRVBIT или SRVINT1), то функция игнорирует параметр cbLen. Значение cbLen=0 указывает на данные нулевой длины, при этом парметр fNull должен быть установлен в FALSE.
fNull установите этот его в TRUE, если возвращаемому параметру необходимо присвоить значение NULL, при этом значение cbLen должно быть равно 0, иначе функция завершится с ошибкой. Во всех остальных случаях fNull=FALSE.
В случае успешного завершения функция возвращает SUCCEED. Если возвращаемое значение равно FAIL, значит вызов был неудачным. Всё просто и понятно
Теперь мы достаточно знаем, для того чтобы написать свою первую расширенную хранимую процедуру, которая будет возвращать значение через переданный ей параметр.Пусть, по сложившейся традиции, это будет строка Hello world! Отладочну версию примера можно скачать здесь.
. Не рассмотренными остались функции srv_sendmsg и srv_senddone. Функция srv_sendmsg используется для посылки сообщений клиенту. Вот её прототип:
msgtype определяет тип посылаемого клиенту сообщения. Константа SRV_MSG_INFO обозначает информационное сообщение, а SRV_MSG_ERROR сообщение об ошибке;
msgnum номер сообщения;
class - степень тяжести возникшей ошибки. Информационные сообщения имеют значение степени тяжести меньшее или равное 10;
state номер состояния ошибки для текущего сообщения. Этот параметр предоставляет информацию о контексте возникшей ошибки. Допустимые значения лежат в диапазоне от 0 до 127;
rpcname в настоящее время не используется;
rpcnamelen - в настоящее время не используется;
linenum здесь можно указать номер строки исходного кода. По этому значению, в последствие будет легко установить в каком месте возникла ошибка. Если Вы не хотите использовать эту возможность, тогда установите linenum в 0;
message указатель на строку посылаемую клиенту;
msglen определяет длину в байтах строки сообщения. Если это строка заканчивается нулевым символом, то значение этого параметра можно установить равным SRV_NULLTERM.
Возвращаемыме значения:
- в случае успеха SUCCEED
- при неудаче FAIL.
В процессе работы расширенная хранимая процедура должна регулярно сообщать клиентскому приложению свой статус, т.е. посылать сообщения о выполненных действиях. Для этого и предназначена функция srv_senddone:
status - статус флаг. Значение этого параметра можно задавать использую логические операторы AND и OR для комбинирования констант приведённых в таблице:
Status flag Описание
SRV_DONE_FINAL Текущий набор результатов является окончательным;
SRV_DONE_MORE Текущий набор результатов не является окончательным следует ожидать очердную порцию данных;
SRV_DONE_COUNT Параметр count содержит верное значение
SRV_DONE_ERROR Используется для уведомления о возникновении ошибок и немедленном завершении.
into зарезервирован, необходимо установить в 0.
count количество результирующих наборов данных посылаемых клиенту. Если флаг status установлен в SRV_DONE_COUNT, то count должен содержать правильное количество посылаемый клиенту наборв записей.
Возвращаемыме значения:
- в случае успеха SUCCEED
- при неудаче FAIL.
Установка расширенных хранимых процедур на MS SQL Server 2000
1.Скопируйте dll библиотеку с расширенной хранимой процедурой в каталог binn на машине с установленным MS SQL Server. У меня этот путь следующий: C:Program FilesMicrosoft SQL ServerMSSQLBinn;
2.Зарегистрирйте расширенную хранимую процедуру на серверt выполнив следующий скрипт:
Заключение
На этом первая часть моей статьи закончена. Теперь я уверен Вы готовы справиться с нашим техническим заданием на все 100%. В следующей статье Вы узнаете:
- Типы данных определённые в ODS API;
- Особенности отладки расширенных хранимых процдур;
- Как формировать recordset-ы и передавать их клиентскому приложению;
- Чстично мы рассмотрим функции Active Directory Network Manegment API необходимые для получения списка доменных пользователей;
- Создадим готовый проект (реализуем наше техническое задание)
Надеюсь - до скорой встречи!