Добро пожаловать,
|
|
|
|
|
|
Поиск
|
За годы существования интернета такие понятия "вес" или "популярность" ссылки, технология Google PageRank, прочно укрепились среди пользователей интернета. В особенности среди вебмастеров и владельцев сайтов. Но часто возникает путаница между этими двумя терминами, а ведь для поисковой машины это не одно и тоже. Попытаюсь внести ясность в данный вопрос.
Что такое "вес" ссылки?
Теоретически это выглядит так: поисковый робот решает, что если другие сайты ссылаются на ваш сайт, то значит его (ваш сайт) нужно повысить в рейтинге. Т.е. при прочих равных условиях рейтинг будет выше у того сайта, на который ссылается большее число сайтов (желательно еще и с собственным "большим весом"). Ведь, исходя из элементарной логики, вебмастера ставят ссылки на дружественные сайты, которые заслуживают на внимание посетителей.
PageRank и "вес" ссылки - не одно и тоже
Да, эти два термина кое в чем между собой отличаются. PR - это скорее одна из составляющих "веса" ссылки. Поскольку PR больше сфокусирована на количестве ссылок (как прямых, так и обратных на сайт), то под термином "вес ссылки" скрывается качественная составляющая этих ссылок. Тем не менее, множество пользователей интернета неправильно понимают эти два термина, а зачастую и просто воспринимают их как синонимы.
На сегодняшний день все главные поисковые машины уделяют популярности ссылок большое внимание. В первую очередь это затрагивает алгоритмы, по которым составляются рейтинги проиндексированных сайтов. А что же полезного можно извлечь из этого для раскрутки собственного сайта? Оказывается, что существует 2 основных типа ссылок, которые наиболее важны в поисковой оптимизации:
1. Ссылки с других сайтов, которые содержат тот же набор ключевых слов, что и ваш ресурс
2. Ссылки с релевантных (с похожей тематикой) рубрик в популярных каталогах
А вот ссылки с каталогов типа "Free-for-all" (FFA) не дают весомых ссылок, поэтому нет необходимости тратить деньги и время на размещение в них. Уж лучше разместить сайт в десятке наиболее известных каталогов (таких, как например Яндекс. Каталог), чем в сотне малоизвестных. А еще, как показывает практика, размещение сайта в каталоге вместе с сайтами неродственных категорий (как и в непопулярных каталогах) дает только временный рост PR.
Алгоритмы поисковых машин постоянно меняются, как и эффективность методик раскрутки. Хочу заметить, что в последнее время наметилась общемировая тенденция в seo - повышать рейтинг только тех ресурсов, на которые ссылаются сайты с большим собственным рейтингом. Может это связано с ростом количества сайтов, а может проблема в чем-то другом. Возможно, что места под солнцем становиться все меньше, а желающих - все больше.
Как работает механизм "рейтинг ссылки"
Хочу привести вам пример того, каким образом работают ссылки на популяризацию сайта.
Предположим, что у дяди Васи есть пиццерия. Естественно, она у него имеет и свой сайт в интернете (люди заходят и заказывают пиццу). Далее представим, что на этом сайте дядя Вася решил разместить ссылочку на сайт свого соседа по дому дяди Вани. А вот он занимается продажей мужской одежды, у него сайт с низкой посещаемостью, вот и решил он помочь ему в раскрутке.
Итак, на сайте дяди Васи появилась ссылка на сайт продаже мужской одежды дяди Вани. Пусть она будет выглядеть как "лучший магазин мужской одежды". Если посмотреть на название ссылки, то все ок - ключевые слова тут как тут. Только вот эффект для дяди Вани от этого будет минимальным: ведь пицца и мужская одежда - это совсем не одно и то же.
Лучшим вариантом для дяди Вани было бы разместить ссылочку на сайте с похожей тематикой. Пусть лучше это был бы сайт тети Клавы о продаже женской одежды, сайт дяди Миши о продаже мужской обуви или любой другой, но уже тематически связанный с одеждой / обувью.
А вот просто идеальным было бы иметь для дяди Вани ссылочку в "Каталоге магазинов одежды Сан Саныча", в котором содержаться ссылки на наиболее популярные магазины одежды. Вот именно это и есть тот случай, когда поисковый робот непременно повысит рейтинг вашего сайта.
Нужно ли ставить обратные ссылки?
Вокруг этой тематики уже не один год ведутся споры, в которых было сломано немало копий. Но ситуация яснее не стала: достаточно как приверженцев, так и противников наличия обратных ссылок. А все началось с тех пор, когда вебмастера решили, что взаимный обмен ссылками - это самый простой способ привлечения посетителей (хотя это и не всегда верно). Сейчас же большинство вебмастеров обмениваются ссылками по принципу "ты-ставишь-ссылку-на-мой-сайт-я-ставлю-ссылку-на-твой". Но есть и противники такой методики, которые ее считают неэффективной для повышения рейтинга сайта.
Так кто же прав? Да неправы обе стороны одновременно. Я считаю, что нет необходимости ставить обратную ссылку, но если все же хочется, то можно и поставить. Необходимо помнить, что являются полезными лишь ссылки, которые указывают НА ваш сайт. А те ссылки, которые ведут ОТ вашего сайта, полезны лишь в том случае, если тот сайт является родственный по тематике. Ведь посетитель вашего сайт заинтересован, как правило, в посещении и других сайтов с похожей тематикой.
Необходимо ли заботиться о "популярности" ссылки?
Не только необходимо, а и жизненно важно для вашего сайта. Тем не менее, необходимо помнить, что (вопреки распространенному мнению) вес ссылки является только частью работы алгоритма поисковой машины. Но тут особенно выделяется Google, которая больше остальных поисковиков уделяет внимание качеству и количеству ссылающихся сайтов. А вот насколько реально это повышает рейтинг сайта и каким образом - это спорный вопрос, точного ответа на который не знает никто (кроме разработчиков поискового алгоритма).
Хочу также заметить, что не последнюю роль в рейтинге сайта играет и то, какие слова содержатся в ссылке на него. Как показывает практика, несколько ссылок с высокой релевантностью и удачным описанием - это едва ли не единственный быстрый и простой путь к повышению рейтинга сайта.
Но тут главное не переусердствовать. Не нужно сразу же бросаться рассылать сотни писем владельцам сайтов с предложением разместить на вас ссылочку. Думаю, что большинство вебмастеров не будут в восторге от излишней настойчивости, если вообще не примут ваши письма за спам. Необходимо понять, что каждая ссылка на "вес золота" - только благодаря ей можно получить посетителей больше, чем со всех поисковиков, вместе взятых.
Способ получить ссылки ничего не делая
Хочу с вами поделиться одним способом получения ссылок на свой сайт. Пусть он и более затратный по времени, но зато очень эффективный. Необходимо просто создать лучший (ну или один из лучших) сайтов в своей тематической нише. Для этого будет вполне достаточно, чтобы он был грамотно и красиво сделан, содержал множество статей (желательно еще и уникальных) и постоянно бы обновлялся (в идеале - каждый день). Пройдет некоторое время и сайты с похожей тематикой начнут сами ставить ссылки на ваш ресурс.
Пусть кто-то добавит ваш сайт в "рекомендованные сайты", кто-то в "друзья" или "каталог ссылок", но ведь главное, что ссылка будет. Могут также взять статью с вашего сайта, главное, чтобы ссылочку на источник поставили :)
Да, может быть этот метод в чем-то и утопичен. Но уж лучше сразу потратить месяц-другой на создание хорошего ресурса, чем потом просить поставить ссылку на ваш сайт. Хотя, не буду спорить, может этот метод и не самый лучший.
Поэтому советую вам не пожалеть времени и подумать над тем, как создать супер-сайт. Вот тогда вам уже не придется беспокоиться о каких-то "рейтингах" ссылки, обратных ссылках и непонятной аббревиатуре PR!
|
|
|
В данной статье я бы хотел рассмотреть и сравнить между собой несколько способов раскрутки сайтов. Некоторые способы уже известны многим как быстрый путь к увеличению посещаемости сайта. Посмотрим так ли это на самом деле.
Достижение высоких позиций невозможно только редактируя meta-теги.
В свое время я прочел очень интересную книгу Стефана Ковея "7 привычек успешного человека". Мне в этой книге особенно понравился раздел "Персональная этика". В нем автор упоминает о том, как некоторые люди изо всех сил пытаются найти "быстрый и простой способ достичь успеха в жизни не работая и не совершенствуя свои профессиональные навыки".
Далее автор подводит итог: "Персональная этика - вещь иллюзорная и обманчивая. Вот поэтому пытаться достичь каких-либо значимых целей так просто и быстро так же утопично, как найти Эйфелеву башню на карте Мадрида".
Я думаю, что сказанное выше можно смело применить и к поисковой оптимизации: простых путей нет. Вот поэтому я считаю мифом, что раскрутить сайт можно только путем редактирования meta-тегов.
Почему meta-теги бессильны?
Все дело в том, что толком неизвестно насколько важными являются meta-теги для релевантности сайта. Да и вообще используют ли информацию из них поисковые машины.
Иначе обстоит дело с поиском внутри самого сайта. Вот здесь информация из meta-тегов как раз и помогает найти пользователю страничку на сайте с необходимой информацией. Или, по крайней мере, сузить количество возможных страниц до минимума.
К сожалению, разница между внутренним поиском и поиском с помощью поисковой машины (напр. той же Google) очень велика. Например, с помощью внутреннего поиска можно без проблем найти минимальное количество страничек, которые будут максимально соответствовать поисковому запросу. К тому же содержание сайта (контент) и meta-теги только помогут пользователю добраться до нужной ему информации.
С другой стороны, все главные поисковые машины интернета имеют свои базы данных, которые содержат информацию о всех интернет страничках, о которых они только знают. Они-то не всегда доверяют информации из meta-тегов, так как она запросто может отличаться от истинного содержания сайта. К примеру, вы как владелец сайта, желаете видеть свой сайт на верху результатов поиска по многим ключевым словам (фразам), но поисковик все равно поместит туда наиболее релевантные по данным ключевым словам сайты.
Вот по этой причине только изменять информацию в meta-тегах не приведет к росту рейтинга сайта и увеличению трафика.
И о контенте замолвим мы слово...
Бесспорно, вы можете наполнять свой сайт статьями любого содержания и тематики и надеяться на быстрый эффект. Но вот только написание хороших статей (т.е контента) требует времени и часто довольно много. Можно, конечно, потратить годы на написание статей, что в конечном итоге приведет к появлению довольно весомого архива полезной информации. Вот только у меня возникаю сомнения, что кто-то сможет писать 100 статей в неделю, да еще и интересных и полезных в информационном плане для посетителя. Тут нужно либо нахально воровать контент с других сайтов, либо пользоваться программами для его генерации, либо становиться роботом с множеством рук!
А как же ссылки?
Да, без сомнений, ссылки - это очень важный инструмент, который помогает вашему сайту хотя бы просто быть замеченным (проиндексированным) поисковой машиной. Вот только делается это не так и быстро, ввиду довольно большой инертности поисковиков. Да ведь играет еще и "вес" ссылающегося на вас сайта, а в данном случае лучше получит одну ссылки с сайта с PR=6-7, чем с сотни с PR=2-3. Но пока ваш сайт еще не раскручен, то крупные сайты вряд-ли поставят на ваш сайт ссылки. Зачем это им?
Так что лучше пока забудьте о популярности ссылки и вместо этого подумайте о привлечении на сайт целевой аудитории и как она узнает о существовании вашего сайта. Тут все проще пареной репы, как говорится. У вас есть сайт и вы занимаетесь бизнесом, который [лучше] [уникальнее] [качественнее] чем аналогичный у ваших конкурентов. Вам, естественно, нужно его заставить приносить прибыль. Не обязательно в вас должно быть много денег для рекламы вашего сайта.
Хорошая реклама в (пусть и не в самом популярной) газете, журнале или даже телепрограмме уже поможет обратить внимание на ваш ресурс. Ведь, чем популярнее сайт, тем о нем должны больше говорить. Можно даже использовать PPC (Paid per click, сервис показа баннеров с вашей рекламой с оплатой за клики), который поможет привлечь на ваш сайт заинтересованных посетителей.
Но, как бы вы не рекламировали свой сайт, не рассчитывайте на бум в течении суток.
А теперь снова вернемся к книге Стефана Ковея. Конечно, можно научиться быстро редактировать meta-теги и зарегистрировать сайт в тысячах поисковых машин, поставить свою ссылку на миллионах бесполезных сайтов. Тем не менее, если вы не потратите время на написание хорошего и уникального контента, который будет понятен и интересен посетителю, написан простыми словами без использования сленга, у вас никогда не будет долговременных положительных результатов.
Как достичь долговременных результатов
Одним из способов быстрой раскрутки есть оптимизация сайта под малоиспользуемые ключевые слов. Ваш ресурс-то будет высоко в поисковых рейтингах, да вот толку от этого маловато.
Но так как мы уже решили, что эффективная оптимизация - процесс довольно долгий, то следующие 5 советов помогут вам с пользой это время использовать.
1) Тщательно исследуйте нужные вам ключевые слова с помощью таких сервисов, как Wordtracker или KeywordDiscovery. Пусть эти сервисы и платные, но, как я считаю, чтобы заработать деньги, их нужно сначала потратить. Рано или поздно все к этому приходят. А вот как раз платные сервисы по анализу ключевых слов - совершенный инструмент раскрутки сайта.
2) Не перегружайте свой сайт графикой. Тут есть два недостатка: до сих пор толком неизвестно, как поисковые роботы обрабатывают графику; да и мало у кого из посетителей хватит терпения долго ждать загрузки вашей веб-странички.
3) Используйте понятный посетителю язык, на котором написана информация на сайте. Пусть посетителю будет понятно, что вы желаете ему рассказать. Не забывайте также оптимизировать текст под те ключевые слова, по которым вы желаете достичь высоких позиций в поисковиках.
4) Не лишним будет убедиться, что текст в теге "title" и в описании ссылки полностью сходится с контентом вашего сайта.
5) Будьте терпеливы и настойчивы. Как правило, нужно около 6-9 месяцев, чтобы получить стабильный трафик на ваш сайт с популярных поисковиков. Что поделать, так уж устроены поисковые алгоритмы - им нужно некоторое время, чтобы присмотреться к новым ресурсам. И тут не следует расстраиваться, лучше потратить время на наполнение сайта хорошим контентом.
И помните, что ваши труды по оптимизации - это работа на будущее. Как и все в этой жизни, если вы тратите время и деньги правильно и для конкретной цели, то ожидаемые результаты не заставят себя ждать.
|
|
|
Если вы решили всерьез заняться продвижением вашего сайта в сети интернет, то без механизмов, которые бы отслеживали его посещаемость, вам не обойтись. Ведь именно благодаря им вы можете узнать, сколько к вам пришло посетителей, их географию (из какой страны), как много страниц они просмотрели, какие из этих страниц наиболее популярны.
Также есть очень важные параметры - заходы поисковых (индексирующих) ботов на ваш сайт и реферальные ссылки - откуда посетители зашли на ваш сайт - это может быть как поисковая машина, так и другой сайт.
В этой статье рассмотрим способы, как получить информацию о посетителях вашего сайта.
Тут есть три основных варианта:
1) самостоятельно анализировать log-файлы своего сайта (дает максимально точную информацию, но не все хостеры дают к ним доступ, про бесплатный хостинг и говорить не приходится). Отличной программой, которой сам давно пользуюсь и вам рекомендую, является WebLog Expert (http://www.weblogexpert.com/) Программа не бесплатная, а триал, но при желании всегда можно найти к ней "лекарство". Среди возможностей программы - строит цветные графики и диаграммы для отображения информации о всех данных статистики. Есть возможность вывода отчета об анализе в виде html, pdf или cvs (для импорта в Excel). Работать с программой очень просто - указал пусть к лог-файлу (можно и не распаковывать его, программа понимает архивы gz, zip, и tar.gz), потом нажимаем кнопку "analize" и смотрим отчет.
2) если у вас платный хостинг, то можно использовать встроенные в CPanel или DirectAdmin (у всех по-разному) скрипты типа Webalizer или AwStats. Как с ними работать - об этом должно быть написано в "Вопросах и ответах" (FAQ, ЧАВО) вашего хостинг-провайдера. Многие предпочитают использовать эти скрипты, чтобы не возиться с программами лог-анализаторами или не замусоривать свой сайт кнопками бесплатных сервисов статистики.
3) использовать специальные скрипты, как правило написанные на php, устанавливаются в директорию вашего сайта, используют для хранения информации базу данных MySQL. Самый известный представитель подобного рода скриптов - это CNStats (site). Больше чем уверен, что в мире существует немало его аналогов, но этот скрипт имеет русский интерфейс, что, согласитесь, немаловажно для нас. Среди недостатков - опять же платный, но есть и бесплатные версии с ограниченной функциональностью. БД быстро разрастается, особенно на посещаемом сайте - придется постоянно следить за размером и периодически чистить.
4) бесплатные сервисы статистики - их даже на просторах рунета огромное множество. Рассмотрим лишь самые известные и с качественным сервисом.
SpyLog - spylog.ru
После регистрации и установки счётчика мы получаем возможность анализировать следующие показатели сайта: хиты (сегодня, неделя, месяц), хосты, ссылающиеся страницы, популярные страницы ресурса, география посетителей по странам, хосты, операционные системы, браузеры, дисплеи. В этом списке отсутствует такой важный отчёт как «поисковые запросы» - это один из самых главных показателей эффективности оптимизации сайта и его индексации в поисковых машинах.
Top Mail.ru - top.mail.ru
Предоставляет достаточно полную статистику по сайту в т.ч. по поисковым машинам. Всего – 12 отчётов:
* Позиции в рейтинге
* Динамика визитов
* Время визитов
* Страницы
* Ссылки
* Поисковики
* Каталоги
* Браузеры
* Настройки
* География
* Сравнение аудиторий
* Мой top
Работает счётчик достаточно хорошо, иногда, даже лучше, чем вышеупомянутый SpyLog. Его хорошая работа во многом обуславливается тем, что имеется возможность разделить код счётчика на две части. Первую часть (которая считает посетителей) поставить в начало страницы, а вторую (отображающую сам счётчик) можно разместить в любом месте страницы.
Мой top позволяет определить некий круг сайтов и отслеживать их посещаемость, общих посетителей и рейтинг относительно друг друга, что очень приятно. С помощью данного топа можно отслеживать посещаемость ближайших конкурентов ресурса, причём, они об этом могут даже не знать. А вот для того, чтобы закрыть вашу статистику от других, можете поставить ее на пароль. Насчет стабильности работы Top Mail.ru ходят легенды - не знаю, как сейчас (в последнее время не использую этот сервис), но 2-3 месяца назад были у него частые глюки - статистика была недоступна, обнулялась (да, именно так - на счетчике было три нуля в столбик :)), один раз даже была обратная сортировка рейтинга - на первых местах оказались ресурсы с нулевой посещаемостью, а гранды - на последних.
Liveinternet.ru - liveinternet.ru
Пожалуй, самый качественный и информативный сервер сбора статистики (хотя больше известен своими online-дневниками). Дает любую нужную вам информацию - и посещаемость, и географию посетителей, источники трафика (поисковики, рефералы, букмарки). За небольшую плату (где-то 3$ в месяц) можно установить невидимый счетчик, т.е. кнопки liveinternet.ru не будет на вашем сайте, а статистика будет считаться. Также есть возможность закрыть статистику на пароль.
Catalog.i.ua - catalog.i.ua
Сравнительно новый сервер сбора статистики и каталог одновременно. Появился в ноябре 2006 года, но уже успел зарекомендовать себя как стабильный и точный сервис. Информацию о посетителях выдает как в виде графиков, таблиц, так и есть возможность импорта данных в cvs - для дальнейшего анализа в Excel. Отличительной чертой от подобных сервисов является возможность просмотра не только самой рефссылки, но и поисковой фразы, если был заход из поисковика.
Подведу итог вышесказанному. Какой вид анализа и сбора статистики вам выбрать - решайте сами. В чем могут быть ограничения - это бесплатный хостинг, на котором у вас не будет доступа к лог-файлам и возможность выполнения php-скпритов. Главное, если вы используете бесплатные сервисы сбора статистики, то не переусердствуйте - не нужно ставить их более 3-х штук - ведь это дополнительное время, которое потребуется на загрузку графического счетчика и ява-скрипта.
|
|
|
Эта статья посвящена всем вебмастерам, которые занимаются не только созданием сайтов, но и их продвижением в сети интернет. Под продвижением подразумевается получение посетителей на сайт (так называемого трафика).
На эту тему уже написано большое количество статей как русскоязычных оптимизаторов, так и зарубежных. Но до сих пор так и не выработано единого способа раскрутки, который бы 100% действовал для всех сайтов. Ведь у каждого сайта не только разная тематика, но и на него ведут разные ссылки опять-таки с разных сайтов, в немалой мере влияет название домена, html-код веб-страницы и даже грамотность текста.
В последнее время комплекс мероприятий по раскрутке сайтов называется seo (search engine optimization - оптимизация под поисковые машины). Почему именно под поисковые машины - потому что они дают целевой трафик и ими пользуется 60-80% (по разным оценкам) пользователей интернета. В мире очень много поисковых машин, толком даже никто не знает точного их количества, но главные известны - для рунета это Яндекс и Рамблер (недавно возник поисковик Вебальта, но пока от него заходит лишь индексирующий бот, а не посетители), для мирового инета - это Гугл (Google), Yahoo! и MSN. Последний, кстати, разработка компании Майкрософт, скорее всего и был бы неизвестным поисковиком, если бы не маркетологи компании, которые интегрировали его в ОС Windows - вот такой хитрый ход
Теперь о самой раскрутке. В первую очередь следует ориентироваться на два поисковика - Яндекс и Гугл (плюс Яху, если сайт англоязычный). Как показывает практика seo, только от этих поисковых машин можно получить какой-нибудь приличный трафик, который уже можно сконвертировать в вечнозеленые денежные знаки. Поэтому на форумах и блогах о поисковых машинах и поисковой оптимизации следует следить за новостями и методикой раскрутки именно для этих машин.
Спросите любого вебмастера, который уже не первый год занимается сайтами и он вам скажет, что создать сайт - это самое простое, а вот раскрутить его и получить стабильный трафик - это труд не одной недели и даже не одного месяца. Это самый настоящий труд, а не виртуальный, как может многим показаться - сидишь себе дома, серфишь по инету и ходишь в банкомат снимать деньги. Так думают только новички интернет-коммерции, те же, кто в этом бизнесе уже много лет скажут, что зарабатывать в инете гараздо труднее, чем в рельной жизни.
Проблема раскрутки может быть не такой острой, если на раскрутку вы можете выделить определенное количество финансов, но еще не все можно купить. Так, можно купить ссылки, но они могут быть не совсем тематическими или по ним не будет переходов на ваш сайт, можно заказать раскрутку через САР (системы автоматической раскрутки - я смотрю ваш сайт, вы - мой), получить первые места в топах, но иметь заказав на сайте. А все потому, что нет целевого, заинтресованного посетителя, которого может дать или поисковик или контекстная реклама (по поводу последней - можно долго спорить, но все же лучше САР и баннеров).
Но главное - не впадать в депрессию, тут действует единый принцип, на котором устроен мир - раз у кого-то получилось, получится и у меня. Главное не пасовать и сидеть сложа руки, расстраиваясь, что на ваш мега-сайт вот уже несколько месяцев нет посетителей. Для примера можно пройтись по нескольким сайтам, на которые вы сами попадали через поисковики при поиске софта или реферата - этим сайтам уже по 3 и более лет, на них уже собрано тысячи статей и обзоров программ.
Думаете, что человек взял да набрал все эти тысячи статей за ночь или какую софтину написал, чтобы она за него их сочиняла? Ну в первом случае все ограничено возможностями человека, а во втором - ну кому был бы интересен не текст, а бессмысленный набор слов? Все дело в постоянном добавлении новых статей, разделов, рубрик - вот со временем и вырастают такие монстры, не страдающие от нехватки трафика.
Естественно, что раскрутка домашней странички, информационного проекта и интернет-магазина - это разные виды раскруток, разные тактики и методы. Так, для домашних страничек важен ее главный герой, для информационного проекта (онлайн-журнал, газета) важно уделять внимание оптимизации текста, соблюдать частоту употребления ключевых слов, а для интернет-магазина нужно больше мультимедийной рекламы (баннеры, флеш, промоакции, покупка рекламных блоков, партнерские программы) чтобы сделать магазин узнаваемым.
Ясное дело, что при раскрутке любого ресурса нельзя ограничиться только одним, или двумя способами, большое значение имеет комплексный подход. Применение любого способа “в отрыве” от остальных даст слишком слабый, либо кратковременный результат. Ни первое ни второе неприемлемо для вашего сайта.
Результаты мероприятий по раскрутке требуется как-то измерять. Обычно это делается с помощью систем статистики, или счётчиков. Речь о них пойдёт в следующей статье.
|
|
|
Этимология слова "очевидно" - весьма проста и доступна. "Оче" - "видно" - видно очами, или говря современным языком, то, что очевидно, мы можем увидеть глазами или сознанием, совершенно не напрягая при этом ни первое, ни второе. Возвращаясь к теме статьи - очевидным проявлением раскрученности сайта, является как раз видимость оного сайта в Сети, иными словами "легкая находимость" в бездонном болоте Интернета. Сайт можно легко найти - значит он раскручен. Это очевидно.
Под этим самым, легко найти, подразумевается очень широкий спектр своиств: высокие позициии сайта в поисковых системах и каталогах, множество ссылающихся баннеров на популярных сайтах и пр. и пр. и пр.
Но зачем я рассказываю вам то, что вы и так знаете? Ничего особенного, просто маленькое прояснение ситуации, прежде чем я открою вам глаза на то, как неочевидное становится главенствующим, когда мы смотрим на раскрутку сайта не как на что-то абстрактное, а как на нормальный компонент рекламной политики компании, в который вложены деньги. И который, опять-таки, нормально и без суеты должен эти денюжки отработать и принести нормальную русскую прибыль, обычно исчисляюмую сотнями процентов.
Итак, вы предприниматель, и вы хотите иметь хорошо раскрученный ресурс, представляющий вашу фирму в сети. И целью данного ресурса, является ни больше, не меньше, а привлечение новых клиентов на ваши товары и услуги. Клиенты - это деньги, а деньги - это хорошо. Цели поставлены - начинаем достигать. Все неочевидное постараюсь изложить в порядке возрастания неочевидности.
Раскрутка начинается с создания
И сразу же первый неочевидный аспект - сайт который нравится вам и вашей секретарше может быть совершенно непригоден для раскрутки. Не буду здесь детализировать основные ошибки при создании сайта - сеть просто наводнена подобными перечнями, да и ваш покорный слуга уже не раз писал о несомненной пользе для раскрутки, фреймовых структур, двухсоткилобайтных заставок, и прочих недоразумений горе-сайтостроителей. Просто дам один совет - заказывайте создание сайта там же, где вы планируете заказывать его раскрутку - сэкономите дважды. Первый раз, когда получите скидку за комплексный заказ. Второй раз на том, что не прийдется все переделывать заново (то что переделывать обязательно прийдется, вам подтвердит любой, кто уже имел с этим дело).
Баннеры и Эрмигурт
Баннеры, баннеры- Я здесь предвзят - каюсь - я не люблю баннеры. Равно как не люблю рекламу "Эрмигурта". Я не смотрю на баннеры, я по ним не кликаю, Эрмигурт я не покупаю принципиально, хотя йогурты люблю. Мои знакомые не смотрят на баннеры и не кликают по ним. Когда я работаю через диалап, то частенько отключаю графику вообще. Но- Я не могу отрицать эффективность баннерной рекламы в приложеннии к раскрутке сайта и при определенных условиях.
Условие - баннеры наиболее эффективны, когда они размещены на ресурсе, тематически родственном вашему. Пожалуй, это единственный случай когда я рекомендовал бы финансировать баннерную рекламу. Пусть даже подобное размещение баннеров будет дороже (иногда это вообще невозможно, например когда все родственные ресурсы - это сайты ваших конкурентов) нежели в баннерных сетях. И как правило, это означает индивидуальные переговоры, относительно условий размещения (положение на странице, стоимость) ваших рекламных баннеров, с администрацией каждого сайта в отдельности, в противоположность автоматизированному выбросу в баннерные сети.
Хотя есть неочевидная полезность и баннерных сетей - переходов из оных сетей кот наплакал (по некоторым тематикам имеются исключения), ссылки, ведущие на ваш сайт, могут дать заметный прирост индекса цитирования в некоторых поисковиках. В общем, баннерные сети - хороший дополнительный ускоритель для молодых ресурсов. Но не более того.
Top 10 - "хорошо" или "отлично"?
Моя любимая тема. То что вы всегда хотели узнать, но боялись об этом спросить. А если бы даже и спросили- Ну вы понимаете - рынок есть рынок.
"Мы поможем Вашему сайту попасть в первую десятку ведущих поисковых машин-" "Так как мы используем только честные методы раскрутки, мы можем гарантировать только попадание на одну из первых трех страниц-" "Раскрутка всего за 30 долларов-" Надо ли мне писать о том, Матрица вас имеет? Или вы уже сами это ощущаете?
Как вы уже догадались, речь пойдет о поисковых рейтингах или назовите их как угодно, но суть здесь в том, что за исключением, пожалуй, только постоянного контингента на информационных, развлекательных и прочих часто обновляемых ресурсах ресурсах, наибольшую часть посетителей вашего сайта (и что особенно важно - целевых посетителей) составят именно люди, пришедшие по ссылке из поисковых систем. Когда я пишу это, я имею ввиду, что ваш сайт - это просто некий сайт, рекламирующий услуги и деятельность вашей фирмы.
Эти люди - это ваши клиенты. Это "активные" клиенты. Клиенты, которые сами ищут то, что можете предложить им вы. Я люблю таких клиентов. Вам не надо их в чем-то убеждать, вы можете им просто предложить то, что у вас есть. И если условия их устраивают, они это купят.
Итак, вы решили потратиться и заполучить-таки заветное место в первой десятке по паре-тройке словосочетаний, скажем в Яндексе. И сразу же: Яндекс (Гугль, Рамблер) не приветствует, когда деньги, по праву принадлежащие ему, уплывают куда-то в сторону - и постоянно, мягко, но настойчиво предлагает свою рекламную систему Яндекс.Директ. Но ответьте мне, только честно, часто вы пользуютесь ссылками, выдаваемыми Директом? Вот и я тоже. То ли, это особенности национального менталитета - не смотреть на то, что "подсовывают", а только на то, что найдено самим. То ли, визуально это как-то криво расположено- Факт состоит в том, что за деньги, потраченные на Директ вы получите рекламу- ровно на эти деньги. Как это ни печально, но всенародно-любимый эффект халявы здесь отсутствует.
"Мы гарантируем вам попадание в первую-" - давайте посмотрим, можно ли это гарантировать вообще? Есть Директ от создателей Яндекса. Надежно. Гарантированно. Но за него надо платить постоянно. И есть некая promo-фирма, предлагающая, заплатить один раз и через пару месяцев (это средний срок раскрутки, после которого начинается массовый приток посетителей из поисковых машин) воссиять на небесводе Рунета. Так могут ли они гарантировать это? Возможно ли в принципе гарнтировать что-либо подобное, имея в виду, что алгоритмы ранжирования сайтов тем же Яндексом - тайна за семью печатями. Ответ здесь где-то посередине между ДА и НЕТ. ДА - потому что кто-то в этих топах определенно находится. НЕТ - потому, что есть элемент тайны и везения. И ВОЗМОЖНО - потому, что- просто потому, что это возможно. Все это вопрос времени, денег и целесообразности. Именно целесообразность и эффективность интернет-рекламы - вот самая очевидная неочевидность. И я перехожу к самому неочевидному аспекту, коим вышеупомянутая целесообразность и является.
Как вы думаете, как быстро окупятся средства вложенные на попадание вашего сайта(ов) в первую десятку поисковых машин?
Какие это средства?
Хорошо, прийдется вам поверить мне на слово - гарантированное попадание в первые строки списка, выдаваемого поисковой машиной в ответ на словосочетания, соответствующие роду деятельности вашей компании (а я настаиваю на том, что это самый эффективный вид интернет-рекламы) обойдется вам в несколько тысяч долларов ($3.000 - $10.000 в зависимости от типа деятельности, представленности конкурентов в Сети и т.п.) и пару-тройку месяцев (две-три недели если оооооччень повезет) ожидания до получения нужного эффекта. Я вижу ваши круглые глаза, но "лекарство такого уровня, такого класса-". Это просто реальные деньги, которые весьма близки к себестоимости подобного проекта. Как правило это предполагает создание нескольких сайтов и огромный объем работы по их раскрутке.
Вы готовы платить подобные деньги?
Возможно, вы рассуждаете так: "Ага, я продаю машины. Слово машина в прошлом месяце запрашивали в Яндексе (статистика общедоступна), ну скажем, 25.000 раз. Следовательно, попадание на первую страницу в поисковой машине даст мне, примерно 5.000 посетителей. Первая десятка обеспечит 15.000..". Стоп!
Я хочу купить машину. Мои действия:
* иду на свой-любимый-поисковик.ru
* набираю "машина"
* просматриваю сайты из выданного списка по-порядку, начиная с первого (здесь я намеренно взял упрощенный пример)
* если я достаточно терпелив, то просматриваю, скажем, первые тридцать сайтов.
* я нашел то, что нужно - звоню - еду - покупаю машину
* не найдя желаемое, возвращаюсь к п. 2 и набираю "купить машину" (если я в Интернете недавно) или что-то типа "продажа машин" (если хоть какой-то опыт работы с поисковиками имею).
* Повторяю просмотр.
И ВНИМАНИЕ! - ЕСЛИ Я УЖЕ НА ПЕРВОМ САЙТЕ ИЗ СПИСКА НАХОЖУ ТО ЧТО МНЕ НУЖНО, ТО ДАЛЬШЕ Я НИЧЕГО СМОТРЕТЬ И ИСКАТЬ НЕ БУДУ.
Возможно, пример с машинами не самый удачный (хотя почему бы мне и не наткнуться на первом же сайте на рельную распродажу автомобилей по бросовым ценам) Но, надеюсь, что основную идею я все-таки донес. Если нет, то еще раз но другими словами.
ВАШ САЙТ БУДЕТ ГАРАНТИРОВАННО ПРОСМОТРЕН ТОЛЬКО ЕСЛИ ОН НАХОДИТСЯ НА ПЕРВОМ МЕСТЕ В СПИСКЕ.
Иными словами - идеальным вариантом является, когда ваш сайт будет первым и последним на котором побывает ваш клиент. У поисковых машин, кстати идеальная ситуация подобная - они стремятся обеспечить релевантность запросу такого же уровня - первый просмотренный сайт должен являться и последним.
Ваш сайт может быть не просмотрен потенциальным клинтом, несмотря на то, что он высоко ранжируется поисковой системой и даже если он входит в первую тройку-пятерку списка. И это пожалуй самый неочевидный момент в теме раскрутки сайта.
И если за то, что ваш сайт будет "последним среди просмотренных" и самым нужным ответственен контент вашего ресурса. То за попадание на первое место (которое гарантирует просмотр потенциальным целевым клиентом) собственно и отвечает фирма, взявшаяся за раскрутку сайта.
Можно ли гарантировать первое место? Возможно все - вопрос времени, денег и целесообразности.
В заключение. Когда я хочу помотреть свежие обзоры "железа" я иду на www.ixbt.com - и никакие поисковики, индексы цитирования на это не влияют - это просто пример идеально раскрученного ресурса. Правда совсем из другой оперы, но все же.
Хороший сайт нуждается не в раскрутке, а в мощном и быстром сервере ;)
|
|
|
Поисковые серверы, в последнее время, при регистрации Вашего сервера, сайта или страницы, используют информацию, хранящуюся в специальных тэгах META, которые помещаются в секцию HEAD. Большинство начинающих вебмастеров и веб-дизайнеров не придают особого внимания этим тэгам, и зря. Сайт, который не посещается, подобен макулатуре, безжалостно выбрасываемой в мусорную корзину. Увеличивайте посещаемость, пользуйтесь подручными средствами!
Во-первых, стоит вкратце остановиться на самих тэгах и их значении с точки зрения видимости и легкой "находимости" вашего сайта.
META HTTP-EQUIV="Expires" CONTENT="Mon, 20 Sep 1999 00:00:01 GMT"
Используется для того, чтобы в нужное время браузер при просмотре документа брал не версию, хранящуюся в кэше, а свежую версию прямо с Вашего сайта.
META HTTP-EQUIV="Content-Type" CONTENT="text/html; CHARSET=Windows-1251"
Используется для того, чтобы браузер мог правильно отобразить содержимое страницы и для определения поисковой машиной языка, на котором написана страница (наилучший пример - AltaVista)
META HTTP-EQUIV="Refresh" CONTENT="x; URL=http://foo.bar/blatz.html"
Используется для того, чтобы в случае смены адреса страницы браузер пользователя автоматически переключался на новый адрес.
META name="author" content="codeguru"
Используется для указания имени автора. В большинстве случаев, поисковые системы позволяют найти нужный сайт и по имени автора (или найти самого автора :-).
META name="copyright" content="© 2006 kolyar"
Полезно также указать и авторские права название фирмы почти наверняка будет проиндексировано поисковой машиной.
META http-equiv="PICS-Label" content=' (PICS-1.1 "http://www.gcf.org/v2.5" labels on "1994.11.05T08:15-0500" until "1995.12.31T23:59-0000" for "http://w3.org/PICS/Overview.html" ratings (suds 0.5 density 0 color/hue 1)) '
Еще одна интересная штучка отсечение нежелательных пользователей от указанной страницы (например, детей от секс-серверов), при помощи введения рейтинга - т.н. "красной лампочки". Некоторые браузеры позволяют "повесить замок" на содержимое определенных сайтов, запрещая их просмотр. Имеется несколько признанных рейтинговых систем, распознаваемых браузерами. Сам браузер, естественно, можно подстроить под использование рейтинга, а профиль пользователя браузера защитить паролем. Как правило, текст в этот тэг вставляется в строгом соответствии с текстом, имеющемся на рейтинговом сервере.
META name="keywords" content="corporate,guidelines,cataloging"
Список терминов и ключевых слов это именно то, что является самым главным при индексировании Вашего сайта поисковой машиной!
META name="description" content="Corporate Web Page"
Краткое описание Вашего сайта, используемое поисковым сервером для индексирования, и, как правило, вставляемое в текст страницы найденных совпадений в качестве описания Вашего сайта.
Все тэги META не видны при просмотре документа, и заметно увеличивают его размер, но, с другой стороны, без них не обойтись. (Представьте себе такую интересную задачу составить каталог книг в библиотеке, при условии того, что во всех книгах отсутствуют страницы с содержанием и аннотацией. Представляете? Так вот, тэги META и есть те самые страницы, на которых напечатано содержание).
Поэтому плавно перейдем ко второму (основному) разделу, а как же правильно записать эти тэги, чтобы Ваш сайт было легко отыскать при помощи поисковых систем. Надеюсь, что к этому времени Вы уже освоите синтаксис этих тэгов :-).
Длина содержимого тэгов META "desctiptions", не должна превышать 200 символов, а "keywords" 1000 символов. Это связано с тем, что поисковые серверы, как правило, используют именно такие величины при индексировании информации о Вашем сайте. Ограничения на длину этих тэгов нет. Однако, раздувать их до бесконечности смысла не имеет - все равно поисковые машины не воспримут всей информации! Можно получить и отрицательный результат некоторые поисковые машины отбросят часть описания, превышающего установленные нормы, в результате чего в каталог попадет не вся желаемая информация, или сервер просто отвергнет регистрацию Вашего сайта, или будет проиндексировано только название.
Нужно включить все наиболее часто используемые термины в описание (description) для увеличения посещаемости сайта
Вы, конечно же, можете включить в описание и термины, не имеющие отношения к Вашему сайту, однако в Сети такое поведение считается некорректным (появился даже термин спэмдексинг!). В список ключевых слов можно вставлять и фразы. В этом случае у Вашего сайта появляется шанс попасть в самое начало списка, выданного поисковым сервером, в случае совпадения фразы с той, что вводит пользователь. Задумайтесь над фразой - может быть, она прибавит посещений Вашему сайту!
Для увеличения рейтинга сайта и попадания его в верхнюю часть списка необходимо повторять от 3 до 7 раз (!) каждый термин, включаемый в описание.
Однако же, перебарщивать не стоит некоторые поисковые машины могут просто не проиндексировать Ваш сайт или отбросить при индексировании слишком часто повторяющийся термин (хрен редьки не слаще!) Повторение ключевых слов в фразах (попытка обмана поисковой машины :-), вероятнее всего приведет к отрицательному результату, описанному выше. Частота появления терминов в списке META никоим образом не согласуется с появлением терминов в тексте страницы. Поисковые машины работают, как правило, с тэгами META, а в случае их отсутствия уже с содержимым страницы.
Используйте синонимы - как можно большее их количество в описаниях и списке терминов.
Это не спэмдексинг, а трезвое осознание правильности выбранного пути :-).
Не используйте в описаниях и в списке терминов отвлеченные понятия и слова, не относящиеся к содержимому сайта, или слабо связанные друг с другом.
Поисковые машины пишут умники, хорошо разбирающиеся в искусственном интеллекте, и, скорее всего, Ваш сайт, украшенный гирляндой взаимонезависимых слов, будет успешно вычеркнут из индексного списка поискового сервера, причем, возможно, даже без участия его владельца.
Итак вперед, за орденами! Увеличивайте количество посещений сайта при помощи грамотно составленных тэгов META.
|
|
|
Итак, вы создали список ключевых слов, которые будете использовать для поисковиков. Теперь пришло время узнать, как правильно разместить эти слова для того, чтобы получить максимальную оценку от поисковой системы. Эта статья посвящена всем вебмастерам, которые занимаются не только созданием сайтов, но и их продвижением в сети интернет.
Создайте "входные страницы" (дорвеи) для вашего сайта, используя всевозможные комбинации ключевых слов на странице. В идеале, необходимо создать каждую отдельную страницу для конкретного ключевого слова и для конкретной поисковой машины, так как каждая поисковая система использует свой алгоритм оценки релевантности. Сразу должен сказать, что дорвеи - это хорошая идея, но на практике их разработка может занять массу времени. С тех пор, как поисковые системы стали регулярно менять алгоритмы оценки страниц, вебмастерам приходится постоянно работать над созданием новых дорвеев, обеспечивающих высокий рейтинг в поисковой системе. Более того, если вы работаете над большим количеством ключевых слов, вам придется создавать сотни дорвеев! И вскоре, вы столкнетесь с тем, что их создание будет отнимать больше времени, чем обычная работа над сайтом.
Метод, который я хочу предложить работает. Изначально, не беспокойтесь о разных алгоритмах в поисковых системах. Создайте разные дорвеи, пропишите их в поисковые системы, и отслеживайте траффик. Регулярно создавайте дорвеи и проверяйте статистику посещений, до тех пор, пока не определите рейтинг ваших страниц в поисковиках (почти все поисковые системы дают эту возможность). Когда вы определили нахождение страниц в рейтинге, создайте новый дорвей - в котором неоднократно повторяется конкретное ключевое слово в смеси с другими ключевыми словами. Зарегистрируйте этот дорвей в поисковиках и следите за его рейтингом. Как только вы определили поисковики, которые низко оценивают этот дорвей, создайте новые дорвеи для конкретной поисковой системы, основываясь на рейтинге предыдущих дорвеев. Продолжайте оптимизировать его до тех пор, пока не достигните должного результата.
Пойдем дальше. Я надеюсь, вы вкурсе, что такое meta tags, tittle tags, meta-description tags, meta-keywordstags, the heading tags, и alt tags. Если вы не знаете, что это такое, бросайте читать эту статью и отправляйтесь в магазин за руководством по созданию HTML-страниц.
Предположим, у вас сайт туристической фирмы и вам необходимо использовать ключевые слова "Путешествие в Австралию". Приступим к созданию нашего дорвея.
Самый важный тэг в создании дорвея. Всегда вписывайте основное ключевое слово вначало, повторяя его в середине и в конце тэгов .Но НИКОГДА не вписывайте ключевое слово (или два ключевых слова) два раза подряд - поисковые системы воспримут это как спам. Также, содержимое тэгов является заголовком в результатах поиска поисковой системы, т.е.вы должны создать абсолютно читаемый заголовок. Вот пример: "Путешествие в Австралию - открой для себя как можно совершить путешествие в Австралию всего за ***$". Здесь мы создали заголовок, в котором ключевые слова используются в начале и повторяются в середине. Также, чередуйте заглавные и прописные буквы в слове "путешествие". Создайте подобные дорвеи, используя варианты: "путешествие в австралию", "Путешествие в Австралию", "путешествие в Австралию" и т.п.
Содержимое страницы. ALT-тэг Переходим к содержимому страницы. Начните свою страницу с изображения рисунка, имеющего прямое отношение к теме вашего сайта. Поместите его вверху страницы. В ALT тэге рисунка впишите "Путешествие в Австралию". Можете дополнить тэг другими словами, но начните обязательно с основных. Теперь создайте заголовок. Используйте размер H1 для заголовка. Снова, впишите основные ключевые слова в заголовок. Также как и в ALT-тэг, вы можете добавить другие слова, но после основных. Переходим к тексту страницы. От текста, расположенного в начале страницы зависит практически все. Содержанием текста вы должны направить посетителя к вашей основной странице сайта. Вставьте ссылку на основную страницу сайта на видном месте, чтобы посетитель мог не напрягаясь уйти по ней. Не вставляйте лишних ссылок и лишних баннеров - не давайте посетителю уйти.
Придерживайтесь следующих правил:
1) Первое, что необходимо помнить: некоторые поисковые системы не читают Meta-тэги, и используют первые слова на странице в качестве ключевых. Поэтому первые строки должны быть качественно составлены и удобочитаемы для посетителя.
2) Составьте предложения так, чтобы в них обязательно присутствовали ключевые слова - по одному разу в предложении. При этом ваши предложения должны иметь грамматический смысл, а не представлять из себя набор фраз. Посетитель должен получить приятное впечатление при чтении текста.
3) Не делайте ваши параграфы слишком длинными. Каждый должен быть от силы из 3-4 предложений. Посетители веб-страниц просто не будут читать большие громоздкие тексты.
4) Попытайтесь сделать так, чтобы текстовые ссылки включали в себя ключевые слова. Зачастую поисковики высоко ранжируют такие страницы.
5) Если это возможно, делайте ссылки на страницы которые имеют ключевое слово в имени файла. Поисковые системы учитывают это.
6) Нет конкретного ограничения на количество слов в странице - но постарайтесь создать ваш дорвей с 500-600 словами.
Созданную страницу назовите ключевыми словами, разделенными дефисом:travel-to-australia.html Это даст вам высокую оценку поисковиками (например Nothern Light), которые обращают внимание на присутствие ключевого слова в URL.
Теперь вам нужно правильно прописать дорвеи в поисковых системах. Многие вебмастера, загрузив дорвеи на сервер начинают регистрировать их один за другим в поисковых системах. Это распространенная ошибка. Поисковые системы низко оценивают страницу, с которой есть несколько ссылок, но нет ссылок на нее, а бывает так, что такие страницы оцениваются как дорвеи и тогда поисковая машина заносит URL в черный список - блэклист.
Что вам еще нужно сделать, так это сделать ссылку на дорвей с вашей основной страницы, но сделать это так, чтобы ссылка существовала только для поисковой машины - но не для посетителя. Однако не делайте текстовые ссылки под цвет фона - 99% поисковиков занесут вас в блэклист за такие проделки. Вот здесь я вам открою свой маленький секрет Создайте небольшую картинку под цвет вашего фона. Назовите рисунок именем дорвея - travel-to-australia.gif Вставьте рисунок в конец основной страницы и сделайте с него ссылку на дорвей. В ALT-тэг рисунка также вставьте ключевые слова . Не забудьте установить border=0 для рисунка.
Создайте подобные дорвеи для других ключевых слов, скопируйте тот же рисунок на основной странице еще раз, изменив его имя, ALT-тэг и ссылку. Повторяйте этот процесс для каждого ключевого слова или фразы. Таким образом, когда будет создано достаточное количество дорвеев, вы можете прописать вашу основную страницу сайта в поисковые системы. Не прописывайте все страницы сайта - пропишите только основную страницу. Несмотря на то, что на обнаружение всех страниц сайта уйдет больше времени, я настоятельно рекомендую поступить именно так: спайдер, пройдясь по ссылкам и обнаружив тем самым дорвеи и не узнав их, придаст более высокое ранжирование им!
|
|
|
Дата: 03.01.2025
Модуль:
Категория: Хостинг
Ресселинг веб-хостинга является разновидностью веб-хостинга, в котором владелец счета имеет право и возможность использовать полный объем жесткого диска и пропускной способности выделенных ему каналов, чтобы организовать веб-сайты от имени третьих сторон.
Обычно веб-хостинг получает реселлер как разработчик, системный интегратор или студия веб-дизайна. Они берут хостинг как бы оптом и им он обходится дешевле, а уже своим клиентам они продают его дороже или по себестоимости, если речь идет о клиентах студии веб-дизайна.
Помимо этого реселлерами хостинга становятся предприниматели, которые хотят создать новую компанию. Вообще большинство хостинговых компаний для реселлеров создают свой собственный план и предоставляют нужный им набор услуг.
Реселлерам также предоставляется панель управления и полный доступ к ней. С ее помощью они могут создавать свои собственные учетные записи и администрировать сервер.
Реселлер хостинга не требует обширных знаний технических аспектов веб-хостинга. В этом случае обычно достаточно оператора центра обработки данных, который отвечает за поддержание сетевой инфраструктуры и аппаратного обеспечения. Еще нужен системный администратор, который настроит программное обеспечение и будет следить за работоспособностью сервера.
Реселлер отвечает за взаимодействие собственной клиентской базы, но любые сбои оборудования и проблемы с каналами как правило направляется провайдеру, у которого реселлер приобрел хостинг.
Через контрольную панель реселлеры могут создавать и управлять своими клиентами в соответствии с их потребностью через простой интерфейс. Они также могут использовать программное обеспечение. Тот же MordenBill является одним из популярных программ для автоматизации создания счета и расчетов с покупателями.
Вот лишь основные возможности панели управления реселлера хостинга:
* WHM/cPanel (Unix) (Вскоре должна выйти версия под ОС Windows)
* Plesk (Windows/Unix)
* DirectAdmin (Unix)
* Webmin (Unix)
* Ensim Pro (Windows/Unix)
* Helm (Windows)
* Hosting Controller (Windows)
|
|
|
Дата: 03.01.2025
Модуль:
Категория: Хостинг
Доменное имя - это имя, по которому посетители интернета будут находить ваш сайт в интернете. Оно отличает один сайт от другого. Вы можете рекламировать свой бизнес, выбрав доменное имя более тщательно.
Доменные имена являются постоянными и сохраняются на вас до тех пор, пока вы будет оплачивать его делегацию (продление). Как правило, компании используют название своей компании или торговой марки в качестве доменного имени.
World Wide Web - название, которое получила огромная сеть, которую мы называем интернетом. Она содержит миллионы сайтов. Новые и новые сайты добавляются ежедневно. Все больше и больше людей используют интернет для своего бизнеса и труда. И этот прекрасный средний бизнес действительно стал глобальным.
Продукты можно заказать в домах и служебных помещениях с помощью интернета. Бизнес перспективы увеличились за последние годы. Это придало новое измерение современному бизнесу. В будущем ожидается, что предприятие будет сделано только в онлайновом режиме. Уже сейчас онлайновые транзакции являются наиболее предпочтительным видом бизнеса для большого процента потребителей в развитых странах.
Таким образом, мы можем с уверенностью считать, что современные бизнесмены не смогут обойтись без онлайновых транзакций.
Всем известно о важности визитной карточки компании. Доменные имена превратились в современные визитки. Визитные карточки имеют свои ограничения, в то время как сайты обладает потенциалом для получения многочисленных клиентов.
Она способствует развитию бизнеса и может привлечь новых клиентов. Домены должны быть в состоянии отобразить имидж компании. Доменное имя должно быть также использовано для поиска пользователей, чтобы они могли легко найти вашу компанию. Это делает вашу продукцию доступной для миллионов пользователей во всем мире. Современный бизнес стал очень конкурентным и доменное имя укрепляет перспективы компании.
Следующий шагом после выбора домена заключается в том, чтобы зарегистрировать его. Доменное имя зарегистрировать очень просто. Вы можете обратиться к хостинговой компании чтобы она зарегистрировала имя для вас. Процесс регистрации займет всего несколько минут.
Компьютеры находят доменные имена в интернете по IP-адресам. Но человеку трудно запомнить IP-адреса, поэтому доменные имена имеют буквенные названия, а специальные сервисы в интернете преобразуют их в IP-адрес.
Доменные имена являются более удобными и легко запоминающимися, что позволяет потенциальным клиентам найти ваш сайт в интернете. Доменные имена, как правило, состоят из простых слов или фраз. Крайне важно выбирать слова, выражения, которые имеют отношение к вашей компании, насколько это возможно. Кроме того, целесообразно выбирать короткие имена, которые легко запомнить.
|
|
|
Дата: 03.01.2025
Модуль:
Категория: Хостинг
Если вам необходимо найти компанию, которая предлагают хостинг, то ее можно очень просто найти в интернете через любимую вами поисковую машину. При выборе конкретной компании вам следует обратить внимание на следующие очень важные моменты:
1) Техническая поддержка должна быть круглосуточной (24/7/365), включая праздники и выходные и должна предоставляться по телефону, сервису мгновенных интернет сообщений через пейджеры (icq, qip, miranda) и электронной почте. Время ответа не должно превышать 1 часа.
2) Хорошие показатели доступности сервера в сети (uptime, аптайм). Если вы занимаетесь продажей чего-либо на вашем сайте, то во время простоя сайта у вас не будет покупателей и еще сложиться негативное мнение как о ненадежном магазине. Выбирайте uptime не менее 99%. Причем важно узнать его величину от независимых служб мониторинга и за несколько отчетных периодов. Ведь что толку, если в мае сайт имел аптайм 99,9%, а в марте и апреле - всего 80%.
3) Быстрый интернет канал, к которому подключен ваш хостер. Здесь важно выбирать географическое расположение хостера в зависимости от аудитории вашего сайта. К примеру, сайт на английском языке лучше размещать в США, поскольку основная часть англоязычной аудитории будет идти оттуда, да и пропускная способность каналов и стоимость трафика в США значительно лучше, чем, к примеру, у отечественных хостеров.
4) Если ваш сайт относится в сфере e-commerce (интернет или электронная коммерция), то необходимо позаботиться о возможности доступа по SSL для совершения безопасных транзакций. Естественно, хостинг должен поддерживать выполнение скриптов на определенном языке программирования (php, perl, cgi, asp или java).
5) Многие хорошие хостеры вернут вам деньги, если вам не понравятся их услуги. Это довольно распространенная на западе практика (называется там money-back guarantee), которая повышает доверие к компании как поставщику услуг. Это будет гарантией тому, что в случае некачественных услуг хостинга вы не останетесь без посетителей и своих денег.
6) Дисковое пространство для вашего сайта должно быть с запасом. Так, если для сайта-визитки фирмы хватит и 10 Мб диска, то для новостного сайта или крупного интернет магазина может быть мало и 1 Гб.
7) Трафик. Для большинства сайтов количество трафика столь невелико, что даже если они используют вместе не 100, а 110 Мб трафика в месяц, то это не разорит хостера. Вот для этого и предлагают тарифные планы с безлимитным трафиком. А вот если у вас посещаемый сайт с графикой, файлами, то величина трафика может измеряться десятками и сотнями гигабайт.
В таких случаях за него придется платить и лучше сразу брать хостинг с оплатой трафика, тогда вы будете приблизительно знать, во что он вам обойдется. А то перерасходуете лимит, возьмут и отключат сайт или придет счет на круглую сумму. Да, через некоторое время сайт вновь заработает, но его простой уж точно не пойдет на пользу.
8) Безопасность. Если у вас должен быть защищенный (зашифрованный) канал, то вам придется оплатить дополнительные расходы на получение сертификата сервера. Если вы собираетесь обрабатывать персональные данные или кредитной карты на вашем веб-сайте, вам потребуется наличие сертификата безопасности.
Цифровые сертификаты используется для защиты любого сообщения с клиентами, которое содержит личную информацию. Также вы должны иметь установленный цифровой сертификат на вашем веб-сервере, чтобы вы могли воспользоваться кредитной картой заказов в безопасном режиме.
9) Доступ по FTP (file transfer protocol, протокол передачи файлов). Без него сейчас не обойтись и он предоставляется всеми хостерами. Если вы планируете создать несколько FTP-аккаунтов (например, для совместной разработки сайта), то узнайте, сколько их входит в ваш тарифный план.
10) Программное обеспечение. Узнайте, какое программное обеспечение или встроенные скрипты предлагает ваш хостер. Не все хостинговые компании предлагаем одинаковый набор программного обеспечения. У некоторых есть несколько бесплатных инструментов, которые помогут вам работать с сайтом легко и эффективно.
Есть множество скриптов, которые помогут вам организовать поиск на сайте, завести и управлять электронной почтой, создать форум, доску объявлений или чат, сделать резервное копирование и восстановление всего сайта или только одной базы данных.
Вообще поиску компании для веб-хостинга следует уделить достаточно времени. Помните, что вы значительная часть успеха вашего веб-сайта будет связана с этой компанией. А одним из главных расходов, которые вам нужно будет оплачивать при серьезных проектах, будет оплата услуг хостинга. Поэтому лучше сразу выбирать компанию с надежной репутацией.
|
|
|
Все протоколы обмена маршрутной информацией стека TCP/IP относятся к классу адаптивных протоколов, которые в свою очередь делятся на две группы, каждая из которых связана с одним из следующих типов алгоритмов:
* дистанционно-векторный алгоритм (Distance Vector Algorithms, DVA),
* алгоритм состояния связей (Link State Algorithms, LSA).
В алгоритмах дистанционно-векторного типа каждый маршрутизатор периодически и широковещательно рассылает по сети вектор расстояний от себя до всех известных ему сетей. Под расстоянием обычно понимается число промежуточных маршрутизаторов через которые пакет должен пройти прежде, чем попадет в соответствующую сеть. Может использоваться и другая метрика, учитывающая не только число перевалочных пунктов, но и время прохождения пакетов по связи между соседними маршрутизаторами.
Получив вектор от соседнего маршрутизатора, каждый маршрутизатор добавляет к нему информацию об известных ему других сетях, о которых он узнал непосредственно (если они подключены к его портам) или из аналогичных объявлений других маршрутизаторов, а затем снова рассылает новое значение вектора по сети. В конце-концов, каждый маршрутизатор узнает информацию об имеющихся в интерсети сетях и о расстоянии до них через соседние маршрутизаторы.
Дистанционно-векторные алгоритмы хорошо работают только в небольших сетях. В больших сетях они засоряют линии связи интенсивным широковещательным трафиком, к тому же изменения конфигурации могут отрабатываться по этому алгоритму не всегда корректно, так как маршрутизаторы не имеют точного представления о топологии связей в сети, а располагают только обобщенной информацией - вектором дистанций, к тому же полученной через посредников. Работа маршрутизатора в соответствии с дистанционно-векторным протоколом напоминает работу моста, так как точной топологической картины сети такой маршрутизатор не имеет.
Наиболее распространенным протоколом, основанным на дистанционно-векторном алгоритме, является протокол RIP.
Алгоритмы состояния связей обеспечивают каждый маршрутизатор информацией, достаточной для построения точного графа связей сети. Все маршрутизаторы работают на основании одинаковых графов, что делает процесс маршрутизации более устойчивым к изменениям конфигурации. Широковещательная рассылка используется здесь только при изменениях состояния связей, что происходит в надежных сетях не так часто.
Для того, чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами со своими ближайшими соседями. Этот трафик также широковещательный, но он циркулирует только между соседями и поэтому не так засоряет сеть.
Протоколом, основанным на алгоритме состояния связей, в стеке TCP/IP является протокол OSPF.
Дистанционно-векторный протокол RIP
Протокол RIP (Routing Information Protocol) представляет собой один из старейших протоколов обмена маршрутной информацией, однако он до сих пор чрезвычайно распространен в вычислительных сетях. Помимо версии RIP для сетей TCP/IP, существует также версия RIP для сетей IPX/SPX компании Novell.
В этом протоколе все сети имеют номера (способ образования номера зависит от используемого в сети протокола сетевого уровня), а все маршрутизаторы - идентификаторы. Протокол RIP широко использует понятие "вектор расстояний". Вектор расстояний представляет собой набор пар чисел, являющихся номерами сетей и расстояниями до них в хопах.
Вектора расстояний итерационно распространяются маршрутизаторами по сети, и через несколько шагов каждый маршрутизатор имеет данные о достижимых для него сетях и о расстояниях до них. Если связь с какой-либо сетью обрывается, то маршрутизатор отмечает этот факт тем, что присваивает элементу вектора, соответствующему расстоянию до этой сети, максимально возможное значение, которое имеет специальный смысл - "связи нет". Таким значением в протоколе RIP является число 16.
При необходимости отправить пакет в сеть D маршрутизатор просматривает свою базу данных маршрутов и выбирает порт, имеющий наименьшее расстояния до сети назначения (в данном случае порт, связывающий его с маршрутизатором 3).
Для адаптации к изменению состояния связей и оборудования с каждой записью таблицы маршрутизации связан таймер. Если за время тайм-аута не придет новое сообщение, подтверждающее этот маршрут, то он удаляется из маршрутной таблицы.
При использовании протокола RIP работает эвристический алгоритм динамического программирования Беллмана-Форда, и решение, найденное с его помощью является не оптимальным, а близким к оптимальному. Преимуществом протокола RIP является его вычислительная простота, а недостатками - увеличение трафика при периодической рассылке широковещательных пакетов и неоптимальность найденного маршрута.
При обрыве связи с сетью 1 маршрутизатор М1 отмечает, что расстояние до этой сети приняло значение 16. Однако получив через некоторое время от маршрутизатора М2 маршрутное сообщение о том, что от него до сети 1 расстояние составляет 2 хопа, маршрутизатор М1 наращивает это расстояние на 1 и отмечает, что сеть 1 достижима через маршрутизатор 2. В результате пакет, предназначенный для сети 1, будет циркулировать между маршрутизаторами М1 и М2 до тех пор, пока не истечет время хранения записи о сети 1 в маршрутизаторе 2, и он не передаст эту информацию маршрутизатору М1.
Для исключения подобных ситуаций маршрутная информация об известной маршрутизатору сети не передается тому маршрутизатору, от которого она пришла.
Существуют и другие, более сложные случаи нестабильного поведения сетей, использующих протокол RIP, при изменениях в состоянии связей или маршрутизаторов сети.
Комбинирование различных протоколов обмена. Протоколы EGP и BGP сети Internet
Большинство протоколов маршрутизации, применяемых в современных сетях с коммутацией пакетов, ведут свое происхождение от сети Internet и ее предшественницы - сети ARPANET. Для того, чтобы понять их назначение и особенности, полезно сначала познакомится со структурой сети Internet, которая наложила отпечаток на терминологию и типы протоколов.
Internet изначально строилась как сеть, объединяющая большое количество существующих систем. С самого начала в ее структуре выделяли магистральную сеть (core backbone network), а сети, присоединенные к магистрали, рассматривались как автономные системы (autonomous systems). Магистральная сеть и каждая из автономных систем имели свое собственное административное управление и собственные протоколы маршрутизации. Далее маршрутизаторы будут называться шлюзами для следования традиционной терминологии Internet.
Шлюзы, которые используются для образования подсетей внутри автономной системы, называются внутренними шлюзами (interior gateways), а шлюзы, с помощью которых автономные системы присоединяются к магистрали сети, называются внешними шлюзами (exterior gateways). Непосредственно друг с другом автономные системы не соединяются. Соответственно, протоколы маршрутизации, используемые внутри автономных систем, называются протоколами внутренних шлюзов (interior gateway protocol, IGP), а протоколы, определяющие обмен маршрутной информацией между внешними шлюзами и шлюзами магистральной сети - протоколами внешних шлюзов (exterior gateway protocol, EGP). Внутри магистральной сети также может использоваться любой собственный внутренний протокол IGP.
Смысл разделения всей сети Internet на автономные системы в ее многоуровневом представлении, что необходимо для любой крупной системы, способной к расширению в больших масштабах. Внутренние шлюзы могут использовать для внутренней маршрутизации достаточно подробные графы связей между собой, чтобы выбрать наиболее рациональный маршрут. Однако, если информация такой степени детализации будет храниться во всех маршрутизаторах сети, то топологические базы данных так разрастутся, что потребуют наличия памяти гигантских размеров, а время принятия решений о маршрутизации непременно возрастет.
Поэтому детальная топологическая информация остается внутри автономной системы, а автономную систему как единое целое для остальной части Internet представляют внешние шлюзы, которые сообщают о внутреннем составе автономной системы минимально необходимые сведения - количество IP-сетей, их адреса и внутреннее расстояние до этих сетей от данного внешнего шлюза.
При инициализации внешний шлюз узнает уникальный идентификатор обслуживаемой им автономной системы, а также таблицу достижимости (reachability table), которая позволяет ему взаимодействовать с другими внешними шлюзами через магистральную сеть.
Затем внешний шлюз начинает взаимодействовать по протоколу EGP с другими внешними шлюзами и обмениваться с ними маршрутной информацией, состав которой описан выше. В результате, при отправке пакета из одной автономной системы в другую, внешний шлюз данной системы на основании маршрутной информации, полученной от всех внешних шлюзов, с которыми он общается по протоколу EGP, выбирает наиболее подходящий внешний шлюз и отправляет ему пакет.
В протоколе EGP определены три основные функции:
* установление соседских отношений,
* подтверждение достижимости соседа,
* обновление маршрутной информации.
Каждая функция работает на основе обмена сообщениями запрос-ответ.
Так как каждая автономная система работает под контролем своего административного штата, то перед началом обмена маршрутной информацией внешние шлюзы должны согласиться на такой обмен. Сначала один из шлюзов посылает запрос на установление соседских отношений (acquisition request) другому шлюзу. Если тот согласен на это, то он отвечает сообщением подтверждение установления соседских отношений (acquisition confirm), а если нет - то сообщением отказ от установления соседских отношений (acquisition refuse), которое содержит также причину отказа.
После установления соседских отношений шлюзы начинают периодически проверять состояние достижимости друг друга. Это делается либо с помощью специальных сообщений (привет (hello) и Я-услышал-тебя (I-heard-you)), либо встраиванием подтверждающей информации непосредственно в заголовок обычного маршрутного сообщения.
Обмен маршрутной информацией начинается с посылки одним из шлюзов другому сообщения запрос данных (poll request) о номерах сетей, обслуживаемых другим шлюзом и расстояниях до них от него. Ответом на это сообщение служит сообщение обновленная маршрутная информация (routing ). Если же запрос оказался некорректным, то в ответ на него отсылается сообщение об ошибке.
Все сообщения протокола EGP передаются в поле данных IP-пакетов. Сообщения EGP имеют заголовок фиксированного формата.
Поля Тип и Код совместно определяют тип сообщения, а поле Статус - информацию, зависящую от типа сообщения. Поле Номер автономной системы - это номер, назначенный той автономной системе, к которой присоединен данный внешний шлюз. Поле Номер последовательности служит для синхронизации процесса запросов и ответов.
[pagebreak]
Поле IP-адрес исходной сети в сообщениях запроса и обновления маршрутной информации обозначает сеть, соединяющую два внешних шлюза.
Сообщение об обновленной маршрутной информации содержит список адресов сетей, которые достижимы в данной автономной системе. Этот список упорядочен по внутренним шлюзам, которые подключены к исходной сети и через которые достижимы данные сети, а для каждого шлюза он упорядочен по расстоянию до каждой достижимой сети от исходной сети, а не от данного внутреннего шлюза. Для примера внешний шлюз R2 в своем сообщении указывает, что сеть 4 достижима с помощью шлюза R3 и расстояние ее равно 2, а сеть 2 достижима через шлюз R2 и ее расстояние равно 1 (а не 0, как если бы шлюз измерял ее расстояние от себя, как в протоколе RIP).
Протокол EGP имеет достаточно много ограничений, связанных с тем, что он рассматривает магистральную сеть как одну неделимую магистраль.
Развитием протокола EGP является протокол BGP (Border Gateway Protocol), имеющий много общего с EGP и используемый наряду с ним в магистрали сети Internet.
Протокол состояния связей OSPF
Протокол OSPF (Open Shortest Path Firs) является достаточно современной реализацией алгоритма состояния связей (он принят в 1991 году) и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях.
Протокол OSPF вычисляет маршруты в IP-сетях, сохраняя при этом другие протоколы обмена маршрутной информацией.
Непосредственно связанные (то есть достижимые без использования промежуточных маршрутизаторов) маршрутизаторы называются "соседями". Каждый маршрутизатор хранит информацию о том, в каком состоянии по его мнению находится сосед. Маршрутизатор полагается на соседние маршрутизаторы и передает им пакеты данных только в том случае, если он уверен, что они полностью работоспособны. Для выяснения состояния связей маршрутизаторы-соседи достаточно часто обмениваются короткими сообщениями HELLO.
Для распространения по сети данных о состоянии связей маршрутизаторы обмениваются сообщениями другого типа. Эти сообщения называются router links advertisement - объявление о связях маршрутизатора (точнее, о состоянии связей). OSPF-маршрутизаторы обмениваются не только своими, но и чужими объявлениями о связях, получая в конце-концов информацию о состоянии всех связей сети. Эта информация и образует граф связей сети, который, естественно, один и тот же для всех маршрутизаторов сети.
Кроме информации о соседях, маршрутизатор в своем объявлении перечисляет IP-подсети, с которыми он связан непосредственно, поэтому после получения информации о графе связей сети, вычисление маршрута до каждой сети производится непосредственно по этому графу по алгоритму Дэйкстры. Более точно, маршрутизатор вычисляет путь не до конкретной сети, а до маршрутизатора, к которому эта сеть подключена. Каждый маршрутизатор имеет уникальный идентификатор, который передается в объявлении о состояниях связей. Такой подход дает возможность не тратить IP-адреса на связи типа "точка-точка" между маршрутизаторами, к которым не подключены рабочие станции.
Маршрутизатор вычисляет оптимальный маршрут до каждой адресуемой сети, но запоминает только первый промежуточный маршрутизатор из каждого маршрута. Таким образом, результатом вычислений оптимальных маршрутов является список строк, в которых указывается номер сети и идентификатор маршрутизатора, которому нужно переслать пакет для этой сети. Указанный список маршрутов и является маршрутной таблицей, но вычислен он на основании полной информации о графе связей сети, а не частичной информации, как в протоколе RIP.
Описанный подход приводит к результату, который не может быть достигнут при использовании протокола RIP или других дистанционно-векторных алгоритмов. RIP предполагает, что все подсети определенной IP-сети имеют один и тот же размер, то есть, что все они могут потенциально иметь одинаковое число IP-узлов, адреса которых не перекрываются. Более того, классическая реализация RIP требует, чтобы выделенные линии "точка-точка" имели IP-адрес, что приводит к дополнительным затратам IP-адресов.
В OSPF такие требования отсутствуют: сети могут иметь различное число хостов и могут перекрываться. Под перекрытием понимается наличие нескольких маршрутов к одной и той же сети. В этом случае адрес сети в пришедшем пакете может совпасть с адресом сети, присвоенным нескольким портам.
Если адрес принадлежит нескольким подсетям в базе данных маршрутов, то продвигающий пакет маршрутизатор использует наиболее специфический маршрут, то есть адрес подсети, имеющей более длинную маску.
Например, если рабочая группа ответвляется от главной сети, то она имеет адрес главной сети наряду с более специфическим адресом, определяемым маской подсети. При выборе маршрута к хосту в подсети этой рабочей группы маршрутизатор найдет два пути, один для главной сети и один для рабочей группы. Так как последний более специфичен, то он и будет выбран. Этот механизм является обобщением понятия "маршрут по умолчанию", используемого во многих сетях.
Использование подсетей с различным количеством хостов является вполне естественным. Например, если в здании или кампусе на каждом этаже имеются локальные сети, и на некоторых этажах компьютеров больше, чем на других, то администратор может выбрать размеры подсетей, отражающие ожидаемые требования каждого этажа, а не соответствующие размеру наибольшей подсети.
В протоколе OSPF подсети делятся на три категории:
* "хост-сеть", представляющая собой подсеть из одного адреса,
* "тупиковая сеть", которая представляет собой подсеть, подключенную только к одному маршрутизатору,
* "транзитная сеть", которая представляет собой подсеть, подключенную к более чем одному маршрутизатору.
Транзитная сеть является для протокола OSPF особым случаем. В транзитной сети несколько маршрутизаторов являются взаимно и одновременно достижимыми. В широковещательных локальных сетях, таких как Ethernet или Token Ring, маршрутизатор может послать одно сообщение, которое получат все его соседи. Это уменьшает нагрузку на маршрутизатор, когда он посылает сообщения для определения существования связи или обновленные объявления о соседях.
Однако, если каждый маршрутизатор будет перечислять всех своих соседей в своих объявлениях о соседях, то объявления займут много места в памяти маршрутизатора. При определении пути по адресам транзитной подсети может обнаружиться много избыточных маршрутов к различным маршрутизаторам. На вычисление, проверку и отбраковку этих маршрутов уйдет много времени.
Когда маршрутизатор начинает работать в первый раз (то есть инсталлируется), он пытается синхронизировать свою базу данных со всеми маршрутизаторами транзитной локальной сети, которые по определению имеют идентичные базы данных. Для упрощения и оптимизации этого процесса в протоколе OSPF используется понятие "выделенного" маршрутизатора, который выполняет две функции.
Во-первых, выделенный маршрутизатор и его резервный "напарник" являются единственными маршрутизаторами, с которыми новый маршрутизатор будет синхронизировать свою базу. Синхронизировав базу с выделенным маршрутизатором, новый маршрутизатор будет синхронизирован со всеми маршрутизаторами данной локальной сети.
Во-вторых, выделенный маршрутизатор делает объявление о сетевых связях, перечисляя своих соседей по подсети. Другие маршрутизаторы просто объявляют о своей связи с выделенным маршрутизатором. Это делает объявления о связях (которых много) более краткими, размером с объявление о связях отдельной сети.
Для начала работы маршрутизатора OSPF нужен минимум информации - IP-конфигурация (IP-адреса и маски подсетей), некоторая информация по умолчанию (default) и команда на включение. Для многих сетей информация по умолчанию весьма похожа. В то же время протокол OSPF предусматривает высокую степень программируемости.
Интерфейс OSPF (порт маршрутизатора, поддерживающего протокол OSPF) является обобщением подсети IP. Подобно подсети IP, интерфейс OSPF имеет IP-адрес и маску подсети. Если один порт OSPF поддерживает более, чем одну подсеть, протокол OSPF рассматривает эти подсети так, как если бы они были на разных физических интерфейсах, и вычисляет маршруты соответственно.
Интерфейсы, к которым подключены локальные сети, называются широковещательными (broadcast) интерфейсами, так как они могут использовать широковещательные возможности локальных сетей для обмена сигнальной информацией между маршрутизаторами. Интерфейсы, к которым подключены глобальные сети, не поддерживающие широковещание, но обеспечивающие доступ ко многим узлам через одну точку входа, например сети Х.25 или frame relay, называются нешироковещательными интерфейсами с множественным доступом или NBMA (non-broadcast multi-access).
Они рассматриваются аналогично широковещательным интерфейсам за исключением того, что широковещательная рассылка эмулируется путем посылки сообщения каждому соседу. Так как обнаружение соседей не является автоматическим, как в широковещательных сетях, NBMA-соседи должны задаваться при конфигурировании вручную. Как на широковещательных, так и на NBMA-интерфейсах могут быть заданы приоритеты маршрутизаторов для того, чтобы они могли выбрать выделенный маршрутизатор.
Интерфейсы "точка-точка", подобные PPP, несколько отличаются от традиционной IP-модели. Хотя они и могут иметь IP-адреса и подмаски, но необходимости в этом нет.
В простых сетях достаточно определить, что пункт назначения достижим и найти маршрут, который будет удовлетворительным. В сложных сетях обычно имеется несколько возможных маршрутов. Иногда хотелось бы иметь возможности по установлению дополнительных критериев для выбора пути: например, наименьшая задержка, максимальная пропускная способность или наименьшая стоимость (в сетях с оплатой за пакет). По этим причинам протокол OSPF позволяет сетевому администратору назначать каждому интерфейсу определенное число, называемое метрикой, чтобы оказать нужное влияние на выбор маршрута.
Число, используемое в качестве метрики пути, может быть назначено произвольным образом по желанию администратора. Но по умолчанию в качестве метрики используется время передачи бита в 10-ти наносекундных единицах (10 Мб/с Ethernet'у назначается значение 10, а линии 56 Кб/с - число 1785). Вычисляемая протоколом OSPF метрика пути представляет собой сумму метрик всех проходимых в пути связей; это очень грубая оценка задержки пути. Если маршрутизатор обнаруживает более, чем один путь к удаленной подсети, то он использует путь с наименьшей стоимостью пути.
В протоколе OSPF используется несколько временных параметров, и среди них наиболее важными являются интервал сообщения HELLO и интервал отказа маршрутизатора (router dead interval).
HELLO - это сообщение, которым обмениваются соседние, то есть непосредственно связанные маршрутизаторы подсети, с целью установить состояние линии связи и состояние маршрутизатора-соседа. В сообщении HELLO маршрутизатор передает свои рабочие параметры и говорит о том, кого он рассматривает в качестве своих ближайших соседей. Маршрутизаторы с разными рабочими параметрами игнорируют сообщения HELLO друг друга, поэтому неверно сконфигурированные маршрутизаторы не будут влиять на работу сети.
Каждый маршрутизатор шлет сообщение HELLO каждому своему соседу по крайней мере один раз на протяжении интервала HELLO. Если интервал отказа маршрутизатора истекает без получения сообщения HELLO от соседа, то считается, что сосед неработоспособен, и распространяется новое объявление о сетевых связях, чтобы в сети произошел пересчет маршрутов.
Пример маршрутизации по алгоритму OSPF
Представим себе один день из жизни транзитной локальной сети. Пусть у нас имеется сеть Ethernet, в которой есть три маршрутизатора - Джон, Фред и Роб (имена членов рабочей группы Internet, разработавшей протокол OSPF). Эти маршрутизаторы связаны с сетями в других городах с помощью выделенных линий.
Пусть произошло восстановление сетевого питания после сбоя. Маршрутизаторы и компьютеры перезагружаются и начинают работать по сети Ethernet. После того, как маршрутизаторы обнаруживают, что порты Ethernet работают нормально, они начинают генерировать сообщения HELLO, которые говорят о их присутствии в сети и их конфигурации. Однако маршрутизация пакетов начинает осуществляться не сразу - сначала маршрутизаторы должны синхронизировать свои маршрутные базы.
На протяжении интервала отказа маршрутизаторы продолжают посылать сообщения HELLO. Когда какой-либо маршрутизатор посылает такое сообщение, другие его получают и отмечают, что в локальной сети есть другой маршрутизатор. Когда они посылают следующее HELLO, они перечисляют там и своего нового соседа.
Когда период отказа маршрутизатора истекает, то маршрутизатор с наивысшим приоритетом и наибольшим идентификатором объявляет себя выделенным (а следующий за ним по приоритету маршрутизатор объявляет себя резервным выделенным маршрутизатором) и начинает синхронизировать свою базу данных с другими маршрутизаторами.
[pagebreak]
С этого момента времени база данных маршрутных объявлений каждого маршрутизатора может содержать информацию, полученную от маршрутизаторов других локальных сетей или из выделенных линий. Роб, например, вероятно получил информацию от Мило и Робина об их сетях, и он может передавать туда пакеты данных. Они содержат информацию о собственных связях маршрутизатора и объявления о связях сети.
Базы данных теперь синхронизированы с выделенным маршрутизатором, которым является Джон. Джон суммирует свою базу данных с каждой базой данных своих соседей - базами Фреда, Роба и Джеффа - индивидуально. В каждой синхронизирующейся паре объявления, найденные только в какой-либо одной базе, копируются в другую. Выделенный маршрутизатор, Джон, распространяет новые объявления среди других маршрутизаторов своей локальной сети.
Например, объявления Мило и Робина передаются Джону Робом, а Джон в свою очередь передает их Фреду и Джеффри. Обмен информацией между базами продолжается некоторое время, и пока он не завершится, маршрутизаторы не будут считать себя работоспособными. После этого они себя таковыми считают, потому что имеют всю доступную информацию о сети.
Посмотрим теперь, как Робин вычисляет маршрут через сеть. Две из связей, присоединенных к его портам, представляют линии T-1, а одна - линию 56 Кб/c. Робин сначала обнаруживает двух соседей - Роба с метрикой 65 и Мило с метрикой 1785. Из объявления о связях Роба Робин обнаружил наилучший путь к Мило со стоимостью 130, поэтому он отверг непосредственный путь к Мило, поскольку он связан с большей задержкой, так как проходит через линии с меньшей пропускной способностью. Робин также обнаруживает транзитную локальную сеть с выделенным маршрутизатором Джоном. Из объявлений о связях Джона Робин узнает о пути к Фреду и, наконец, узнает о пути к маршрутизаторам Келли и Джеффу и к их тупиковым сетям.
После того, как маршрутизаторы полностью входят в рабочий режим, интенсивность обмена сообщениями резко падает. Обычно они посылают сообщение HELLO по своим подсетям каждые 10 секунд и делают объявления о состоянии связей каждые 30 минут (если обнаруживаются изменения в состоянии связей, то объявление передается, естественно, немедленно). Обновленные объявления о связях служат гарантией того, что маршрутизатор работает в сети. Старые объявления удаляются из базы через определенное время.
Представим, однако, что какая-либо выделенная линия сети отказала. Присоединенные к ней маршрутизаторы распространяют свои объявления, в которых они уже не упоминают друг друга. Эта информация распространяется по сети, включая маршрутизаторы транзитной локальной сети. Каждый маршрутизатор в сети пересчитывает свои маршруты, находя, может быть, новые пути для восстановления утраченного взаимодействия.
Сравнение протоколов RIP и OSPF по затратам на широковещательный трафик
В сетях, где используется протокол RIP, накладные расходы на обмен маршрутной информацией строго фиксированы. Если в сети имеется определенное число маршрутизаторов, то трафик, создаваемый передаваемой маршрутной информацией, описываются формулой (1):
(1) F = (число объявляемых маршрутов/25) x 528 (байтов в сообщении) x
(число копий в единицу времени) x 8 (битов в байте)
В сети с протоколом OSPF загрузка при неизменном состоянии линий связи создается сообщениями HELLO и обновленными объявлениями о состоянии связей, что описывается формулой (2):
(2) F = { [ 20 + 24 + 20 + (4 x число соседей)] x
(число копий HELLO в единицу времени) }x 8 +
[(число объявлений x средний размер объявления) x
(число копий объявлений в единицу времени)] x 8,
где 20 - размер заголовка IP-пакета,
24 - заголовок пакета OSPF,
20 - размер заголовка сообщения HELLO,
4 - данные на каждого соседа.
Интенсивность посылки сообщений HELLO - каждые 10 секунд, объявлений о состоянии связей - каждые полчаса. По связям "точка-точка" или по широковещательным локальным сетям в единицу времени посылается только одна копия сообщения, по NBMA сетям типа frame relay каждому соседу посылается своя копия сообщения. В сети frame relay с 10 соседними маршрутизаторами и 100 маршрутами в сети (подразумевается, что каждый маршрут представляет собой отдельное OSPF-обобщение о сетевых связях и что RIP распространяет информацию о всех этих маршрутах) трафик маршрутной информации определяется соотношениями (3) и (4):
(3) RIP: (100 маршрутов / 25 маршрутов в объявлении) x 528 x
(10 копий / 30 сек) = 5 632 б/с
(4) OSPF: {[20 + 24 + 20 + (4 x 10) x (10 копий / 10 сек)] +
[100 маршрутов x (32 + 24 + 20) + (10 копий / 30 x 60 сек]} x 8 = 1 170 б/с
Как видно из полученных результатов, для нашего гипотетического примера трафик, создаваемый протоколом RIP, почти в пять раз интенсивней трафика, создаваемого протоколом OSPF.
Использование других протоколов маршрутизации
Случай использования в сети только протокола маршрутизации OSPF представляется маловероятным. Если сеть присоединена к Internet'у, то могут использоваться такие протоколы, как EGP (Exterior Gateway protocol), BGP (Border Gateway Protocol, протокол пограничного маршрутизатора), старый протокол маршрутизации RIP или собственные протоколы производителей.
Когда в сети начинает применяться протокол OSPF, то существующие протоколы маршрутизации могут продолжать использоваться до тех пор, пока не будут полностью заменены. В некоторых случаях необходимо будет объявлять о статических маршрутах, сконфигурированных вручную.
В OSPF существует понятие автономных систем маршрутизаторов (autonomous systems), которые представляют собой домены маршрутизации, находящиеся под общим административным управлением и использующие единый протокол маршрутизации. OSPF называет маршрутизатор, который соединяет автономную систему с другой автономной системой, использующей другой протокол маршрутизации, пограничным маршрутизатором автономной системы (autonomous system boundary router, ASBR).
В OSPF маршруты (именно маршруты, то есть номера сетей и расстояния до них во внешней метрике, а не топологическая информация) из одной автономной системы импортируются в другую автономную систему и распространяются с использованием специальных внешних объявлений о связях.
Внешние маршруты обрабатываются за два этапа. Маршрутизатор выбирает среди внешних маршрутов маршрут с наименьшей внешней метрикой. Если таковых оказывается больше, чем 2, то выбирается путь с меньшей стоимостью внутреннего пути до ASBR.
Область OSPF - это набор смежных интерфейсов (территориальных линий или каналов локальных сетей). Введение понятия "область" служит двум целям - управлению информацией и определению доменов маршрутизации.
Для понимания принципа управления информацией рассмотрим сеть, имеющую следующую структуру: центральная локальная сеть связана с помощью 50 маршрутизаторов с большим количеством соседей через сети X.25 или frame relay. Эти соседи представляют собой большое количество небольших удаленных подразделений, например, отделов продаж или филиалов банка.
Из-за большого размера сети каждый маршрутизатор должен хранить огромное количество маршрутной информации, которая должна передаваться по каждой из линий, и каждое из этих обстоятельств удорожает сеть. Так как топология сети проста, то большая часть этой информации и создаваемого ею трафика не имеют смысла.
Для каждого из удаленных филиалов нет необходимости иметь детальную маршрутную информацию о всех других удаленных офисах, в особенности, если они взаимодействуют в основном с центральными компьютерами, связанными с центральными маршрутизаторами. Аналогично, центральным маршрутизаторам нет необходимости иметь детальную информацию о топологии связей с удаленными офисами, соединенными с другими центральными маршрутизаторами.
В то же время центральные маршрутизаторы нуждаются в информации, необходимой для передачи пакетов следующему центральному маршрутизатору. Администратор мог бы без труда разделить эту сеть на более мелкие домены маршрутизации для того, чтобы ограничить объемы хранения и передачи по линиям связи не являющейся необходимой информации. Обобщение маршрутной информации является главной целью введения областей в OSPF.
В протоколе OSPF определяется также пограничный маршрутизатор области (ABR, area border router). ABR - это маршрутизатор с интерфейсами в двух или более областях, одна из которых является специальной областью, называемой магистральной (backbone area). Каждая область работает с отдельной базой маршрутной информации и независимо вычисляет маршруты по алгоритму OSPF.
Пограничные маршрутизаторы передают данные о топологии области в соседние области в обобщенной форме - в виде вычисленных маршрутов с их весами. Поэтому в сети, разбитой на области, уже не действует утверждение о том, что все маршрутизаторы оперируют с идентичными топологическими базами данных.
Маршрутизатор ABR берет информацию о маршрутах OSPF, вычисленную в одной области, и транслирует ее в другую область путем включения этой информации в обобщенное суммарное объявление (summary) для базы данных другой области. Суммарная информация описывает каждую подсеть области и дает для нее метрику. Суммарная информация может быть использована тремя способами: для объявления об отдельном маршруте, для обобщения нескольких маршрутов или же служить маршрутом по умолчанию.
Дальнейшее уменьшение требований к ресурсам маршрутизаторов происходит в том случае, когда область представляет собой тупиковую область (stub area). Этот атрибут администратор сети может применить к любой области, за исключением магистральной. ABR в тупиковой области не распространяет внешние объявления или суммарные объявления из других областей. Вместо этого он делает одно суммарное объявление, которое будет удовлетворять любой IP-адрес, имеющий номер сети, отличный от номеров сетей тупиковой области. Это объявление называется маршрутом по умолчанию.
Маршрутизаторы тупиковой области имеют информацию, необходимую только для вычисления маршрутов между собой плюс указания о том, что все остальные маршруты должны проходить через ABR. Такой подход позволяет уменьшить в нашей гипотетической сети количество маршрутной информации в удаленных офисах без уменьшения способности маршрутизаторов корректно передавать пакеты.
|
|
|
Протокол обмена управляющими сообщениями ICMP (Internet Control Message Protocol) позволяет маршрутизатору сообщить конечному узлу об ошибках, с которыми машрутизатор столкнулся при передаче какого-либо IP-пакета от данного конечного узла.
Управляющие сообщения ICMP не могут направляться промежуточному маршрутизатору, который участвовал в передаче пакета, с которым возникли проблемы, так как для такой посылки нет адресной информации - пакет несет в себе только адрес источника и адрес назначения, не фиксируя адреса промежуточных маршрутизаторов.
Протокол ICMP - это протокол сообщения об ошибках, а не протокол коррекции ошибок. Конечный узел может предпринять некоторые действия для того, чтобы ошибка больше не возникала, но эти действия протоколом ICMP не регламентируются.
Каждое сообщение протокола ICMP передается по сети внутри пакета IP. Пакеты IP с сообщениями ICMP маршрутизируются точно так же, как и любые другие пакеты, без приоритетов, поэтому они также могут теряться. Кроме того, в загруженной сети они могут вызывать дополнительную загрузку маршрутизаторов. Для того, чтобы не вызывать лавины сообщения об ошибках, потери пакетов IP, переносящие сообщения ICMP об ошибках, не могут порождать новые сообщения ICMP.
Формат сообщений протокола ICMP
Существует несколько типов сообщений ICMP. Каждый тип сообщения имеет свой формат, при этом все они начинаются с общих трех полей: 8-битного целого числа, обозначающего тип сообщения (TYPE), 8-битного поля кода (CODE), который конкретизирует назначение сообщения, и 16-битного поля контрольной суммы (CHECKSUM). Кроме того, сообщение ICMP всегда содержит заголовок и первые 64 бита данных пакета IP, который вызвал ошибку.
Это делается для того, чтобы узел-отправитель смог более точно проанализировать причину ошибки, так как все протоколы прикладного уровня стека TCP/IP содержат наиболее важную информацию для анализа в первых 64 битах своих сообщений.
Поле типа может иметь следующие значения:
Значение | Тип сообщения
0_________Эхо-ответ (Echo Replay)
3_________Узел назначения недостижим (Destination Unreachable)
4_________Подавление источника (Source Quench)
5_________Перенаправление маршрута (Redirect)
8_________Эхо-запрос (Echo Request)
11________Истечение времени дейтаграммы (Time Exceeded for a Datagram)
12________Проблема с параметром пакета (Parameter Problem on a Datagram)
13________Запрос отметки времени (Timestamp Request)
14________Ответ отметки времени (Timestamp Replay)
17________Запрос маски (Address Mask Request)
18________Ответ маски (Address Mask Replay)
Как видно из используемых типов сообщений, протокол ICMP представляет собой некоторое объединение протоколов, решающих свои узкие задачи.
Эхо-протокол
Протокол ICMP предоставляет сетевым администраторам средства для тестирования достижимости узлов сети. Эти средства представляют собой очень простой эхо-протокол, включающий обмен двумя типами сообщений: эхо-запрос и эхо-ответ. Компьютер или маршрутизатор посылают по интерсети эхо-запрос, в котором указывают IP-адрес узла, достижимость которого нужно проверить. Узел, который получает эхо-запрос, формирует и отправляет эхо-ответ и возвращает сообщение узлу - отправителю запроса.
В запросе могут содержаться некоторые данные, которые должны быть возвращены в ответе. Так как эхо-запрос и эхо-ответ передаются по сети внутри IP-пакетов, то их успешная доставка означает нормальное функционирование всей транспортной системы интерсети.
Во многих операционных системах используется утилита ping, которая предназначена для тестирования достижимости узлов. Эта утилита обычно посылает серию эхо-запросов к тестируемому узлу и предоставляет пользователю статистику об утерянных эхо-ответах и среднем времени реакции сети на запросы.
Сообщения о недостижимости узла назначения
Когда маршрутизатор не может передать или доставить IP-пакет, он отсылает узлу, отправившему этот пакет, сообщение "Узел назначения недостижим" (тип сообщения - 3). Это сообщение содержит в поле кода значение, уточняющее причину, по которой пакет не был доставлен. Причина кодируется следующим образом:
Код - | - Причина
0________Сеть недостижима
1________Узел недостижим
2________Протокол недостижим
3________Порт недостижим
4________Требуется фрагментация, а бит DF установлен
5________Ошибка в маршруте, заданном источником
6________Сеть назначения неизвестна
7________Узел назначения неизвестен
8________Узел-источник изолирован
9________Взаимодействие с сетью назначения административно запрещено
10_______Взаимодействие с узлом назначения административно запрещено
11_______Сеть недостижима для заданного класса сервиса
12_______Узел недостижим для заданного класса сервиса
Маршрутизатор, обнаруживший по какой-либо причине, что он не может передать IP-пакет далее по сети, должен отправить ICMP-сообщение узлу-источнику, и только потом отбросить пакет. Кроме причины ошибки, ICMP-сообщение включает также заголовок недоставленного пакета и его первые 64 бита поля данных.
Узел или сеть назначения могут быть недостижимы из-за временной неработоспособности аппаратуры, из-за того, что отправитель указал неверный адрес назначения, а также из-за того, что маршрутизатор не имеет данных о маршруте к сети назначения.
Недостижимость протокола и порта означают отсутствие реализации какого-либо протокола прикладного уровня в узле назначения или же отсутствие открытого порта протоколов UDP или TCP в узле назначения.
Ошибка фрагментации возникает тогда, когда отправитель послал в сеть пакет с признаком DF, запрещающим фрагментацию, а маршрутизатор столкнулся с необходимостью передачи этого пакета в сеть со значением MTU меньшим, чем размер пакета.
Перенаправление маршрута
Маршрутные таблицы у компьютеров обычно являются статическими, так как конфигурируются администратором сети, а у маршрутизаторов - динамическими, формируемыми автоматически с помощью протоколов обмена маршрутной информации. Поэтому с течением времени при изменении топологии сети маршрутные таблицы компьютеров могут устаревать. Кроме того, эти таблицы обычно содержат минимум информации, например, только адреса нескольких маршрутизаторов.
Для корректировки поведения компьютеров маршрутизатор может использовать сообщение протокола ICMP, называемое "Перенаправление маршрута" (Redirect).
Это сообщение посылается в том случае, когда маршрутизатор видит, что компьютер отправляет пакет некоторой сети назначения нерациональным образом, то есть не тому маршрутизатору локальной сети, от которого начинается более короткий маршрут к сети назначения.
Механизм перенаправления протокола ICMP позволяет компьютерам содержать в конфигурационном файле только IP-адреса его локальных маршрутизаторов. С помощью сообщений о перенаправлении маршрутизаторы будут сообщать компьютеру всю необходимую ему информацию о том, какому маршрутизатору следует отправлять пакеты для той или иной сети назначения. То есть маршрутизаторы передадут компьютеру нужную ему часть их таблиц маршрутизации.
В сообщении "Перенаправление маршрута" маршрутизатор помещает IP-адрес маршрутизатора, которым нужно пользоваться в дальнейшем, и заголовок исходного пакета с первыми 64 битами его поля данных. Из заголовка пакета узел узнает, для какой сети необходимо пользоваться указанным маршрутизатором.
|
|
|
Типы адресов: физический (MAC-адрес), сетевой (IP-адрес) и символьный (DNS-имя).
Каждый компьютер в сети TCP/IP имеет адреса трех уровней:
* Локальный адрес узла, определяемый технологией, с помощью которой построена отдельная сеть, в которую входит данный узел. Для узлов, входящих в локальные сети - это МАС-адрес сетевого адаптера или порта маршрутизатора, например, 11-А0-17-3D-BC-01. Эти адреса назначаются производителями оборудования и являются уникальными адресами, так как управляются централизовано. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байтов: старшие 3 байта - идентификатор фирмы производителя, а младшие 3 байта назначаются уникальным образом самим производителем. Для узлов, входящих в глобальные сети, такие как Х.25 или frame relay, локальный адрес назначается администратором глобальной сети.
* IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Network Information Center, NIC), если сеть должна работать как составная часть Internet. Обычно провайдеры услуг Internet получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами.
Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла - гибкое, и граница между этими полями может устанавливаться весьма произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.
* Символьный идентификатор-имя, например, SERV1.IBM.COM. Этот адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена. Такой адрес, называемый также DNS-именем, используется на прикладном уровне, например, в протоколах FTP или telnet.
Три основных класса IP-адресов
IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значения каждого байта в десятичной форме, и разделенных точками, например:
128.10.2.30 - традиционная десятичная форма представления адреса,
10000000 00001010 00000010 00011110 - двоичная форма представления этого же адреса.
Адрес состоит из двух логических частей - номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая к номеру узла, определяется значениями первых битов адреса:
* Если адрес начинается с 0, то сеть относят к классу А, и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) В сетях класса А количество узлов должно быть больше 216 , но не превышать 224.
* Если первые два бита адреса равны 10, то сеть относится к классу В и является сетью средних размеров с числом узлов 28 - 216. В сетях класса В под адрес сети и под адрес узла отводится по 16 битов, то есть по 2 байта.
* Если адрес начинается с последовательности 110, то это сеть класса С с числом узлов не больше 28. Под адрес сети отводится 24 бита, а под адрес узла - 8 битов.
* Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес - multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.
* Если адрес начинается с последовательности 11110, то это адрес класса Е, он зарезервирован для будущих применений.
В таблице приведены диапазоны номеров сетей, соответствующих каждому классу сетей.
Класс | Наименьший адрес | Наибольший адрес
A _________01.0.0 ___________126.0.0.0
B _________128.0.0.0_________191.255.0.0
C _________192.0.1.0._________223.255.255.0
D _________224.0.0.0__________239.255.255.255
E _________240.0.0.0 _________247.255.255.255
Уже упоминавшаяся форма группового IP-адреса - multicast - означает, что данный пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Узлы сами идентифицируют себя, то есть определяют, к какой из групп они относятся. Один и тот же узел может входить в несколько групп. Такие сообщения в отличие от широковещательных называются мультивещательными. Групповой адрес не делится на поля номера сети и узла и обрабатывается маршрутизатором особым образом.
В протоколе IP нет понятия широковещательности в том смысле, в котором оно используется в протоколах канального уровня локальных сетей, когда данные должны быть доставлены абсолютно всем узлам. Как ограниченный широковещательный IP-адрес, так и широковещательный IP-адрес имеют пределы распространения в интерсети - они ограничены либо сетью, к которой принадлежит узел - источник пакета, либо сетью, номер которой указан в адресе назначения. Поэтому деление сети с помощью маршрутизаторов на части локализует широковещательный шторм пределами одной из составляющих общую сеть частей просто потому, что нет способа адресовать пакет одновременно всем узлам всех сетей составной сети.
Отображение физических адресов на IP-адреса: протоколы ARP и RARP
В протоколе IP-адрес узла, то есть адрес компьютера или порта маршрутизатора, назначается произвольно администратором сети и прямо не связан с его локальным адресом, как это сделано, например, в протоколе IPX. Подход, используемый в IP, удобно использовать в крупных сетях и по причине его независимости от формата локального адреса, и по причине стабильности, так как в противном случае, при смене на компьютере сетевого адаптера это изменение должны бы были учитывать все адресаты всемирной сети Internet (в том случае, конечно, если сеть подключена к Internet'у).
Локальный адрес используется в протоколе IP только в пределах локальной сети при обмене данными между маршрутизатором и узлом этой сети. Маршрутизатор, получив пакет для узла одной из сетей, непосредственно подключенных к его портам, должен для передачи пакета сформировать кадр в соответствии с требованиями принятой в этой сети технологии и указать в нем локальный адрес узла, например его МАС-адрес. В пришедшем пакете этот адрес не указан, поэтому перед маршрутизатором встает задача поиска его по известному IP-адресу, который указан в пакете в качестве адреса назначения. С аналогичной задачей сталкивается и конечный узел, когда он хочет отправить пакет в удаленную сеть через маршрутизатор, подключенный к той же локальной сети, что и данный узел.
Для определения локального адреса по IP-адресу используется протокол разрешения адреса Address Resolution Protocol, ARP. Протокол ARP работает различным образом в зависимости от того, какой протокол канального уровня работает в данной сети - протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещательного доступа одновременно ко всем узлам сети, или же протокол глобальной сети (X.25, frame relay), как правило не поддерживающий широковещательный доступ. Существует также протокол, решающий обратную задачу - нахождение IP-адреса по известному локальному адресу. Он называется реверсивный ARP - RARP (Reverse Address Resolution Protocol) и используется при старте бездисковых станций, не знающих в начальный момент своего IP-адреса, но знающих адрес своего сетевого адаптера.
В локальных сетях протокол ARP использует широковещательные кадры протокола канального уровня для поиска в сети узла с заданным IP-адресом.
Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно. Все узлы локальной сети получают ARP запрос и сравнивают указанный там IP-адрес с собственным. В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP запросе отправитель указывает свой локальный адрес. ARP-запросы и ответы используют один и тот же формат пакета. Так как локальные адреса могут в различных типах сетей иметь различную длину, то формат пакета протокола ARP зависит от типа сети.
В поле типа сети для сетей Ethernet указывается значение 1. Поле типа протокола позволяет использовать пакеты ARP не только для протокола IP, но и для других сетевых протоколов.
Длина локального адреса для протокола Ethernet равна 6 байтам, а длина IP-адреса - 4 байтам. В поле операции для ARP запросов указывается значение 1 для протокола ARP и 2 для протокола RARP.
Узел, отправляющий ARP-запрос, заполняет в пакете все поля, кроме поля искомого локального адреса (для RARP-запроса не указывается искомый IP-адрес). Значение этого поля заполняется узлом, опознавшим свой IP-адрес.
В глобальных сетях администратору сети чаще всего приходится вручную формировать ARP-таблицы, в которых он задает, например, соответствие IP-адреса адресу узла сети X.25, который имеет смысл локального адреса. В последнее время наметилась тенденция автоматизации работы протокола ARP и в глобальных сетях. Для этой цели среди всех маршрутизаторов, подключенных к какой-либо глобальной сети, выделяется специальный маршрутизатор, который ведет ARP-таблицу для всех остальных узлов и маршрутизаторов этой сети.
При таком централизованном подходе для всех узлов и маршрутизаторов вручную нужно задать только IP-адрес и локальный адрес выделенного маршрутизатора. Затем каждый узел и маршрутизатор регистрирует свои адреса в выделенном маршрутизаторе, а при необходимости установления соответствия между IP-адресом и локальным адресом узел обращается к выделенному маршрутизатору с запросом и автоматически получает ответ без участия администратора.
[pagebreak]
Отображение символьных адресов на IP-адреса: служба DNS
DNS (Domain Name System) - это распределенная база данных, поддерживающая иерархическую систему имен для идентификации узлов в сети Internet. Служба DNS предназначена для автоматического поиска IP-адреса по известному символьному имени узла. Спецификация DNS определяется стандартами RFC 1034 и 1035. DNS требует статической конфигурации своих таблиц, отображающих имена компьютеров в IP-адрес.
Протокол DNS является служебным протоколом прикладного уровня. Этот протокол несимметричен - в нем определены DNS-серверы и DNS-клиенты. DNS-серверы хранят часть распределенной базы данных о соответствии символьных имен и IP-адресов. Эта база данных распределена по административным доменам сети Internet. Клиенты сервера DNS знают IP-адрес сервера DNS своего административного домена и по протоколу IP передают запрос, в котором сообщают известное символьное имя и просят вернуть соответствующий ему IP-адрес.
Если данные о запрошенном соответствии хранятся в базе данного DNS-сервера, то он сразу посылает ответ клиенту, если же нет - то он посылает запрос DNS-серверу другого домена, который может сам обработать запрос, либо передать его другому DNS-серверу. Все DNS-серверы соединены иерархически, в соответствии с иерархией доменов сети Internet. Клиент опрашивает эти серверы имен, пока не найдет нужные отображения. Этот процесс ускоряется из-за того, что серверы имен постоянно кэшируют информацию, предоставляемую по запросам. Клиентские компьютеры могут использовать в своей работе IP-адреса нескольких DNS-серверов, для повышения надежности своей работы.
База данных DNS имеет структуру дерева, называемого доменным пространством имен, в котором каждый домен (узел дерева) имеет имя и может содержать поддомены. Имя домена идентифицирует его положение в этой базе данных по отношению к родительскому домену, причем точки в имени отделяют части, соответствующие узлам домена.
Корень базы данных DNS управляется центром Internet Network Information Center. Домены верхнего уровня назначаются для каждой страны, а также на организационной основе. Имена этих доменов должны следовать международному стандарту ISO 3166. Для обозначения стран используются трехбуквенные и двухбуквенные аббревиатуры, а для различных типов организаций используются следующие аббревиатуры:
* com - коммерческие организации (например, microsoft.com);
* edu - образовательные (например, mit.edu);
* gov - правительственные организации (например, nsf.gov);
* org - некоммерческие организации (например, fidonet.org);
* net - организации, поддерживающие сети (например, nsf.net).
Каждый домен DNS администрируется отдельной организацией, которая обычно разбивает свой домен на поддомены и передает функции администрирования этих поддоменов другим организациям. Каждый домен имеет уникальное имя, а каждый из поддоменов имеет уникальное имя внутри своего домена. Имя домена может содержать до 63 символов. Каждый хост в сети Internet однозначно определяется своим полным доменным именем (fully qualified domain name, FQDN), которое включает имена всех доменов по направлению от хоста к корню.
Автоматизация процесса назначения IP-адресов узлам сети - протокол DHCP
Как уже было сказано, IP-адреса могут назначаться администратором сети вручную. Это представляет для администратора утомительную процедуру. Ситуация усложняется еще тем, что многие пользователи не обладают достаточными знаниями для того, чтобы конфигурировать свои компьютеры для работы в интерсети и должны поэтому полагаться на администраторов.
Протокол Dynamic Host Configuration Protocol (DHCP) был разработан для того, чтобы освободить администратора от этих проблем. Основным назначением DHCP является динамическое назначение IP-адресов. Однако, кроме динамического, DHCP может поддерживать и более простые способы ручного и автоматического статического назначения адресов.
В ручной процедуре назначения адресов активное участие принимает администратор, который предоставляет DHCP-серверу информацию о соответствии IP-адресов физическим адресам или другим идентификаторам клиентов. Эти адреса сообщаются клиентам в ответ на их запросы к DHCP-серверу.
При автоматическом статическом способе DHCP-сервер присваивает IP-адрес (и, возможно, другие параметры конфигурации клиента) из пула наличных IP-адресов без вмешательства оператора. Границы пула назначаемых адресов задает администратор при конфигурировании DHCP-сервера. Между идентификатором клиента и его IP-адресом по-прежнему, как и при ручном назначении, существует постоянное соответствие. Оно устанавливается в момент первичного назначения сервером DHCP IP-адреса клиенту. При всех последующих запросах сервер возвращает тот же самый IP-адрес.
При динамическом распределении адресов DHCP-сервер выдает адрес клиенту на ограниченное время, что дает возможность впоследствии повторно использовать IP-адреса другими компьютерами. Динамическое разделение адресов позволяет строить IP-сеть, количество узлов в которой намного превышает количество имеющихся в распоряжении администратора IP-адресов.
DHCP обеспечивает надежный и простой способ конфигурации сети TCP/IP, гарантируя отсутствие конфликтов адресов за счет централизованного управления их распределением. Администратор управляет процессом назначения адресов с помощью параметра "продолжительности аренды" (lease duration), которая определяет, как долго компьютер может использовать назначенный IP-адрес, перед тем как снова запросить его от сервера DHCP в аренду.
Примером работы протокола DHCP может служить ситуация, когда компьютер, являющийся клиентом DHCP, удаляется из подсети. При этом назначенный ему IP-адрес автоматически освобождается. Когда компьютер подключается к другой подсети, то ему автоматически назначается новый адрес. Ни пользователь, ни сетевой администратор не вмешиваются в этот процесс. Это свойство очень важно для мобильных пользователей.
Протокол DHCP использует модель клиент-сервер. Во время старта системы компьютер-клиент DHCP, находящийся в состоянии "инициализация", посылает сообщение discover (исследовать), которое широковещательно распространяется по локальной сети и передается всем DHCP-серверам частной интерсети. Каждый DHCP-сервер, получивший это сообщение, отвечает на него сообщением offer (предложение), которое содержит IP-адрес и конфигурационную информацию.
Компьютер-клиент DHCP переходит в состояние "выбор" и собирает конфигурационные предложения от DHCP-серверов. Затем он выбирает одно из этих предложений, переходит в состояние "запрос" и отправляет сообщение request (запрос) тому DHCP-серверу, чье предложение было выбрано.
Выбранный DHCP-сервер посылает сообщение DHCP-acknowledgment (подтверждение), содержащее тот же IP-адрес, который уже был послан ранее на стадии исследования, а также параметр аренды для этого адреса. Кроме того, DHCP-сервер посылает параметры сетевой конфигурации. После того, как клиент получит это подтверждение, он переходит в состояние "связь", находясь в котором он может принимать участие в работе сети TCP/IP. Компьютеры-клиенты, которые имеют локальные диски, сохраняют полученный адрес для использования при последующих стартах системы. При приближении момента истечения срока аренды адреса компьютер пытается обновить параметры аренды у DHCP-сервера, а если этот IP-адрес не может быть выделен снова, то ему возвращается другой IP-адрес.
В протоколе DHCP описывается несколько типов сообщений, которые используются для обнаружения и выбора DHCP-серверов, для запросов информации о конфигурации, для продления и досрочного прекращения лицензии на IP-адрес. Все эти операции направлены на то, чтобы освободить администратора сети от утомительных рутинных операций по конфигурированию сети.
Однако использование DHCP несет в себе и некоторые проблемы. Во-первых, это проблема согласования информационной адресной базы в службах DHCP и DNS. Как известно, DNS служит для преобразования символьных имен в IP-адреса. Если IP-адреса будут динамически изменятся сервером DHCP, то эти изменения необходимо также динамически вносить в базу данных сервера DNS. Хотя протокол динамического взаимодействия между службами DNS и DHCP уже реализован некоторыми фирмами (так называемая служба Dynamic DNS), стандарт на него пока не принят.
Во-вторых, нестабильность IP-адресов усложняет процесс управления сетью. Системы управления, основанные на протоколе SNMP, разработаны с расчетом на статичность IP-адресов. Аналогичные проблемы возникают и при конфигурировании фильтров маршрутизаторов, которые оперируют с IP-адресами.
Наконец, централизация процедуры назначения адресов снижает надежность системы: при отказе DHCP-сервера все его клиенты оказываются не в состоянии получить IP-адрес и другую информацию о конфигурации. Последствия такого отказа могут быть уменьшены путем использовании в сети нескольких серверов DHCP, каждый из которых имеет свой пул IP-адресов.
|
|
|
Сетевой уровень в первую очередь должен предоставлять средства для решения следующих задач:
* доставки пакетов в сети с произвольной топологией,
* структуризации сети путем надежной локализации трафика,
* согласования различных протоколов канального уровня.
Локализация трафика и изоляция сетей
Трафик в сети складывается случайным образом, однако в нем отражены и некоторые закономерности. Как правило, некоторые пользователи, работающие над общей задачей, (например, сотрудники одного отдела) чаще всего обращаются с запросами либо друг к другу, либо к общему серверу, и только иногда они испытывают необходимость доступа к ресурсам компьютеров другого отдела.
Желательно, чтобы структура сети соответствовала структуре информационных потоков. В зависимости от сетевого трафика компьютеры в сети могут быть разделены на группы (сегменты сети). Компьютеры объединяются в группу, если большая часть порождаемых ими сообщений, адресована компьютерам этой же группы.
Для разделения сети на сегменты используются мосты и коммутаторы. Они экранируют локальный трафик внутри сегмента, не передавая за его пределы никаких кадров, кроме тех, которые адресованы компьютерам, находящимся в других сегментах. Тем самым, сеть распадается на отдельные подсети. Это позволяет более рационально выбирать пропускную способность имеющихся линий связи, учитывая интенсивность трафика внутри каждой группы, а также активность обмена данными между группами.
Однако локализация трафика средствами мостов и коммутаторов имеет существенные ограничения.
С одной стороны, логические сегменты сети, расположенные между мостами, недостаточно изолированы друг от друга, а именно, они не защищены от, так называемых, широковещательных штормов. Если какая-либо станция посылает широковещательное сообщение, то это сообщение передается всем станциям всех логических сегментов сети. Защита от широковещательных штормов в сетях, построенных на основе мостов, имеет количественный, а не качественный характер: администратор просто ограничивает количество широковещательных пакетов, которое разрешается генерировать некоторому узлу.
С другой стороны, использование механизма виртуальных сегментов, реализованного в коммутаторах локальных сетей, приводит к полной локализации трафика - такие сегменты полностью изолированы друг от друга, даже в отношении широковещательных кадров. Поэтому в сетях, построенных только на мостах и коммутаторах, компьютеры, принадлежащие разным виртуальным сегментам, не образуют единой сети.
Приведенные недостатки мостов и коммутаторов связаны с тем, что они работают по протоколам канального уровня, в которых в явном виде не определяется понятие части сети (или подсети, или сегмента), которое можно было бы использовать при структуризации большой сети. Вместо того, чтобы усовершенствовать канальный уровень, разработчики сетевых технологий решили поручить задачу построения составной сети новому уровню - сетевому.
Согласование протоколов канального уровня
Современные вычислительные сети часто строятся с использованием нескольких различных базовых технологий - Ethernet, Token Ring или FDDI. Такая неоднородность возникает либо при объединении уже существовавших ранее сетей, использующих в своих транспортных подсистемах различные протоколы канального уровня, либо при переходе к новым технологиям, таким, как Fast Ethernet или 100VG-AnyLAN.
Именно для образования единой транспортной системы, объединяющей несколько сетей с различными принципами передачи информации между конечными узлами, и служит сетевой уровень. Когда две или более сетей организуют совместную транспортную службу, то такой режим взаимодействия обычно называют межсетевым взаимодействием (internetworking). Для обозначения составной сети в англоязычной литературе часто также используется термин интерсеть (internetwork или internet).
Создание сложной структурированной сети, интегрирующей различные базовые технологии, может осуществляться и средствами канального уровня: для этого могут быть использованы некоторые типы мостов и коммутаторов. Однако возможностью трансляции протоколов канального уровня обладают далеко не все типы мостов и коммутаторов, к тому же возможности эти ограничены. В частности, в объединяемых сетях должны совпадать максимальные размеры полей данных в кадрах, так как канальные протоколы, как правило, не поддерживают функции фрагментации пакетов.
Маршрутизация в сетях с произвольной топологией
Среди протоколов канального уровня некоторые обеспечивают доставку данных в сетях с произвольной топологией, но только между парой соседних узлов (например, протокол PPP), а некоторые - между любыми узлами (например, Ethernet), но при этом сеть должна иметь топологию определенного и весьма простого типа, например, древовидную.
При объединении в сеть нескольких сегментов с помощью мотов или коммутаторов продолжают действовать ограничения на ее топологию: в получившейся сети должны отсутствовать петли. Действительно, мост или его функциональный аналог - коммутатор - могут решать задачу доставки пакета адресату только тогда, когда между отправителем и получателем существует единственный путь. В то же время наличие избыточных связей, которые и образуют петли, часто необходимо для лучшей балансировки нагрузки, а также для повышения надежности сети за счет существования альтернативного маршрута в дополнение к основному.
Сетевой уровень позволяет передавать данные между любыми, произвольно связанными узлами сети.
Реализация протокола сетевого уровня подразумевает наличие в сети специального устройства - маршрутизатора. Маршрутизаторы объединяют отдельные сети в общую составную сеть. Внутренняя структура каждой сети не показана, так как она не имеет значения при рассмотрении сетевого протокола. К каждому маршрутизатору могут быть присоединены несколько сетей (по крайней мере две).
В сложных составных сетях почти всегда существует несколько альтернативных маршрутов для передачи пакетов между двумя конечными узлами. Задачу выбора маршрутов из нескольких возможных решают маршрутизаторы, а также конечные узлы.
Маршрут - это последовательность маршрутизаторов, которые должен пройти пакет от отправителя до пункта назначения.
Маршрутизатор выбирает маршрут на основании своего представления о текущей конфигурации сети и соответствующего критерия выбора маршрута. Обычно в качестве критерия выступает время прохождения маршрута, которое в локальных сетях совпадает с длиной маршрута, измеряемой в количестве пройденных узлов маршрутизации (в глобальных сетях принимается в расчет и время передачи пакета по каждой линии связи).
[pagebreak]
Сетевой уровень и модель OSI
В модели OSI, называемой также моделью взаимодействия открытых систем (Open Systems Interconnection - OSI) и разработанной Международной Организацией по Стандартам (International Organization for Standardization - ISO), средства сетевого взаимодействия делятся на семь уровней, для которых определены стандартные названия и функции.
Сетевой уровень занимает в модели OSI промежуточное положение: к его услугам обращаются протоколы прикладного уровня, сеансового уровня и уровня представления. Для выполнения своих функций сетевой уровень вызывает функции канального уровня, который в свою очередь обращается к средствам физического уровня.
Рассмотрим коротко основные функции уровней модели OSI.
Физический уровень выполняет передачу битов по физическим каналам, таким, как коаксиальный кабель, витая пара или оптоволоконный кабель. На этом уровне определяются характеристики физических сред передачи данных и параметров электрических сигналов.
Канальный уровень обеспечивает передачу кадра данных между любыми узлами в сетях с типовой топологией либо между двумя соседними узлами в сетях с произвольной топологией. В протоколах канального уровня заложена определенная структура связей между компьютерами и способы их адресации. Адреса, используемые на канальном уровне в локальных сетях, часто называют МАС-адресами.
Сетевой уровень обеспечивает доставку данных между любыми двумя узлами в сети с произвольной топологией, при этом он не берет на себя никаких обязательств по надежности передачи данных.
Транспортный уровень обеспечивает передачу данных между любыми узлами сети с требуемым уровнем надежности. Для этого на транспортном уровне имеются средства установления соединения, нумерации, буферизации и упорядочивания пакетов.
Сеансовый уровень предоставляет средства управления диалогом, позволяющие фиксировать, какая из взаимодействующих сторон является активной в настоящий момент, а также предоставляет средства синхронизации в рамках процедуры обмена сообщениями.
Уровень представления. В отличии от нижележащих уровней, которые имеют дело с надежной и эффективной передачей битов от отправителя к получателю, уровень представления имеет дело с внешним представлением данных. На этом уровне могут выполняться различные виды преобразования данных, такие как компрессия и декомпрессия, шифровка и дешифровка данных.
Прикладной уровень - это в сущности набор разнообразных сетевых сервисов, предоставляемых конечным пользователям и приложениям. Примерами таких сервисов являются, например, электронная почта, передача файлов, подключение удаленных терминалов к компьютеру по сети.
При построении транспортной подсистемы наибольший интерес представляют функции физического, канального и сетевого уровней, тесно связанные с используемым в данной сети оборудованием: сетевыми адаптерами, концентраторами, мостами, коммутаторами, маршрутизаторами. Функции прикладного и сеансового уровней, а также уровня представления реализуются операционными системами и системными приложениями конечных узлов. Транспортный уровень выступает посредником между этими двумя группами протоколов.
Функции сетевого уровня
Протоколы канального уровня не позволяют строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Для того, чтобы, с одной стороны, сохранить простоту процедур передачи пакетов для типовых топологий, а с другой стороны, допустить использование произвольных топологий, вводится дополнительный сетевой уровень.
Прежде, чем приступить к рассмотрению функций сетевого уровня , уточним, что понимается под термином "сеть". В протоколах сетевого уровня термин "сеть" означает совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи пакетов общую базовую сетевую технологию. Внутри сети сегменты не разделяются маршрутизаторами, иначе это была бы не одна сеть, а несколько сетей. Маршрутизатор соединят несколько сетей в интерсеть.
Основная идея введения сетевого уровня состоит в том, чтобы оставить технологии, используемые в объединяемых сетях в неизменном в виде, но добавить в кадры канального уровня дополнительную информацию - заголовок сетевого уровня, на основании которой можно было бы находить адресата в сети с любой базовой технологией. Заголовок пакета сетевого уровня имеет унифицированный формат, не зависящий от форматов кадров канального уровня тех сетей, которые могут входить в объединенную сеть.
Заголовок сетевого уровня должен содержать адрес назначения и другую информацию, необходимую для успешного перехода пакета из сети одного типа в сеть другого типа. К такой информации может относиться, например:
* номер фрагмента пакета, нужный для успешного проведения операций сборки-разборки фрагментов при соединении сетей с разными максимальными размерами кадров канального уровня,
* время жизни пакета, указывающее, как долго он путешествует по интерсети, это время может использоваться для уничтожения "заблудившихся" пакетов,
* информация о наличии и о состоянии связей между сетями, помогающая узлам сети и маршрутизаторам рационально выбирать межсетевые маршруты,
* информация о загруженности сетей, также помогающая согласовать темп посылки пакетов в сеть конечными узлами с реальными возможностями линий связи на пути следования пакетов,
* качество сервиса - критерий выбора маршрута при межсетевых передачах - например, узел-отправитель может потребовать передать пакет с максимальной надежностью, возможно в ущерб времени доставки.
В качестве адресов отправителя и получателя в составной сети используется не МАС-адрес, а пара чисел - номер сети и номер компьютера в данной сети. В канальных протоколах поле "номер сети" обычно отсутствует - предполагается, что все узлы принадлежат одной сети. Явная нумерация сетей позволяет протоколам сетевого уровня составлять точную карту межсетевых связей и выбирать рациональные маршруты при любой их топологии, используя альтернативные маршруты, если они имеются, что не умеют делать мосты.
Таким образом, внутри сети доставка сообщений регулируется канальным уровнем. А вот доставкой пакетов между сетями занимается сетевой уровень.
Существует два подхода к назначению номера узла в заголовке сетевого пакета. Первый основан на использовании для каждого узла нового адреса, отличного от того, который использовался на канальном уровне. Преимуществом такого подхода является его универсальность и гибкость - каков бы ни был формат адреса на канальном уровне, формат адреса узла на сетевом уровне выбирается единым. Однако, здесь имеются и некоторые неудобства, связанные с необходимостью заново нумеровать узлы, причем чаще всего вручную.
Второй подход состоит в использовании на сетевом уровне того же адреса узла, что был дан ему на канальном уровне. Это избавляет администратора от дополнительной работы по присвоению новых адресов, снимает необходимость в установлении соответствия между сетевым и канальным адресом одного и того же узла, но может породить сложную задачу интерпретации адреса узла при соединении сетей с разными форматами адресов.
Протоколы передачи данных и протоколы обмена маршрутной информацией
Для того, чтобы иметь информацию о текущей конфигурации сети, маршрутизаторы обмениваются маршрутной информацией между собой по специальному протоколу. Протоколы этого типа называются протоколами обмена маршрутной информацией (или протоколами маршрутизации). Протоколы обмена маршрутной информацией следует отличать от, собственно, протоколов сетевого уровня. В то время как первые несут чисто служебную информацию, вторые предназначены для передачи пользовательских данных, также, как это делают протоколы канального уровня.
Для того, чтобы доставить удаленному маршрутизатору пакет протокола обмена маршрутной информацией, используется протокол сетевого уровня, так как только он может передать информацию между маршрутизаторами, находящимися в разных сетях. Пакет протокола обмена маршрутной информацией помещается в поле данных пакета сетевого уровня, поэтому с точки зрения вложенности пакетов протоколы маршрутизации следует отнести к более высокому уровню, чем сетевой. Но функционально они решают общую задачу с пакетами сетевого уровня - доставляют кадры адресату через разнородную составную сеть.
С помощью протоколов обмена маршрутной информацией маршрутизаторы составляют карту межсетевых связей той или иной степени подробности и принимают решение о том, какому следующему маршрутизатору нужно передать пакет для образования рационального пути.
На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов - Address Resolution Protocol, ARP. Иногда их относят не к сетевому уровню, а к канальному, хотя тонкости классификации не изменяют их сути.
|
|
|
Задачей протокола транспортного уровня UDP (User Datagram Protocol) является передача данных между прикладными процессами без гарантий доставки, поэтому его пакеты могут быть потеряны, продублированы или прийти не в том порядке, в котором они были отправлены.
Зарезервированные и доступные порты UDP
В то время, как задачей сетевого уровня является передача данных между произвольными узлами сети, задача транспортного уровня заключается в передаче данных между любыми прикладными процессами, выполняющимися на любых узлах сети. Действительно, после того, как пакет средствами протокола IP доставлен в компьютер-получатель, данные необходимо направить конкретному процессу-получателю. Каждый компьютер может выполнять несколько процессов, более того, прикладной процесс тоже может иметь несколько точек входа, выступающих в качестве адреса назначения для пакетов данных.
Пакеты, поступающие на транспортный уровень, организуются операционной системой в виде множества очередей к точкам входа различных прикладных процессов. В терминологии TCP/IP такие системные очереди называются портами. Таким образом, адресом назначения, который используется на транспортном уровне, является идентификатор (номер) порта прикладного сервиса. Номер порта, задаваемый транспортным уровнем, в совокупности с номером сети и номером компьютера, задаваемыми сетевым уровнем, однозначно определяют прикладной процесс в сети.
Локальное присвоение номера порта заключается в том, что разработчик некоторого приложения просто связывает с ним любой доступный, произвольно выбранный числовой идентификатор, обращая внимание на то, чтобы он не входил в число зарезервированных номеров портов. В дальнейшем все удаленные запросы к данному приложению от других приложений должны адресоваться с указанием назначенного ему номера порта.
Мультиплексирование и демультиплексирование прикладных протоколов с помощью протокола UDP
Протокол UDP ведет для каждого порта две очереди: очередь пакетов, поступающих в данный порт из сети, и очередь пакетов, отправляемых данным портом в сеть.
Процедура обслуживания протоколом UDP запросов, поступающих от нескольких различных прикладных сервисов, называется мультиплексированием.
Распределение протоколом UDP поступающих от сетевого уровня пакетов между набором высокоуровневых сервисов, идентифицированных номерами портов, называется демультиплексированием.
Хотя к услугам протокола UDP может обратиться любое приложение, многие из них предпочитают иметь дело с другим, более сложным протоколом транспортного уровня TCP. Дело в том, что протокол UDP выступает простым посредником между сетевым уровнем и прикладными сервисами, и, в отличие от TCP, не берет на себя никаких функций по обеспечению надежности передачи. UDP является дейтаграммным протоколом, то есть он не устанавливает логического соединения, не нумерует и не упорядочивает пакеты данных.
С другой стороны, функциональная простота протокола UDP обуславливает простоту его алгоритма, компактность и высокое быстродействие. Поэтому те приложения, в которых реализован собственный, достаточно надежный, механизм обмена сообщениями, основанный на установлении соединения, предпочитают для непосредственной передачи данных по сети использовать менее надежные, но более быстрые средства транспортировки, в качестве которых по отношению к протоколу TCP и выступает протокол UDP. Протокол UDP может быть использован и в том случае, когда хорошее качество каналов связи обеспечивает достаточный уровень надежности и без применения дополнительных приемов типа установления логического соединения и квитирования передаваемых пакетов.
Формат сообщений UDP
Единица данных протокола UDP называется UDP-пакетом или пользовательской дейтаграммой (user datagram). UDP-пакет состоит из заголовка и поля данных, в котором размещается пакет прикладного уровня. Заголовок имеет простой формат и состоит из четырех двухбайтовых полей:
* UDP source port - номер порта процесса-отправителя,
* UDP destination port - номер порта процесса-получателя,
* UDP message length - длина UDP-пакета в байтах,
* UDP checksum - контрольная сумма UDP-пакета
Не все поля UDP-пакета обязательно должны быть заполнены. Если посылаемая дейтаграмма не предполагает ответа, то на месте адреса отправителя могут помещаться нули. Можно отказаться и от подсчета контрольной суммы, однако следует учесть, что протокол IP подсчитывает контрольную сумму только для заголовка IP-пакета, игнорируя поле данных.
|
|
Всего 94 на 7 страницах по 15 на каждой странице<< 1 2 3 4 5 6 7 >>
Внимание! Если у вас не получилось найти нужную информацию, используйте рубрикатор или воспользуйтесь поиском
.
книги по программированию исходники компоненты шаблоны сайтов C++ PHP Delphi скачать
|
|