eyeOS 1.6.0.3-1 - Кроссплатформенная сетевая операционная система с открытым кодом, основанная на принципе Desktop Operating System, т.е. операционная система с применением решения "рабочий стол".
Базовый комплект eyeOS включает в себя собственно операционную систему и несколько офисных приложений - текстовый редактор, календарь, файловый менеджер, мессенджер, веб-браузер, калькулятор и некоторые другие.
Главное отличие от других реализаций рабочего стола состоит в том, что в eyeOS у нет необходимости в установке программного обеспечения на данный конкретный локальный компьютер. Рабочий стол, используемые приложения и вся необходимая информация доступны, при условии доступа в Интернет, из любого современного браузера с поддержкой AJAX, например, Internet Explorer, Mozilla Firefox, Konqueror или Safari.
Photoshop SpeedUp 1.0 - Cокращает время загрузки графического редактора Adobe Photoshop за счет предоставления возможности отключить ненужные для текущей работы плагины. Кроме этого, позволяет при запуске Фотошопа не загружать шрифты, пресеты, а также указать конкретный размер занимаемой памяти.
В данной статье приведены общие сведения об организации работы системы 1С:Предприятие с распределенной информационной базой (ИБ). Также описаны внутренние особенности организации механизма работы с распределенными данными для того, чтобы специалисты, осуществляющие конфигурирование и администрирование распределенных систем могли лучшее понимать выполняемые системой действия. Данная информация может также быть использована для оценки дополнительных затрат ресурсов системы, расходуемых на поддержание распределенной информационной базы.
Так как средства системы 1С:Предприятие для работы с распределенными информационными базами поставляются отдельно, сначала кратко остановимся на назначении и основных принципах организации работы системы 1С:Предприятие с территориально удаленными подразделениями.
Назначение и основные принципы
В тех случаях, когда предприятие представляет собой территориально распределенную структуру, зачастую сохраняется потребность в ведении единой системы учета. То есть необходимо иметь возможность работать в едином пространстве документов, получать отчеты, отражающие состояние дел как в территориально удаленных подразделениях предприятия, так и на предприятии в целом и т.п. При этом не всегда имеется возможность организовать работу всех подразделений с единой информационной базой в режиме он-лайн.
Для решения подобных задач предназначена компонента "Управление распределенными ИБ". С помощью указанной компоненты можно организовать двухуровневую структуру информационных баз (ИБ) системы 1С:Предприятие, состоящую из одной центральной и нескольких периферийных информационных баз, работающих с единой конфигурацией. При этом система будет стремиться поддерживать одинаковое состояние объектов данных во всех узлах распределенной ИБ.
Содержимое информационных баз синхронизируется путем переноса измененных объектов данных между каждой из периферийных и центральной ИБ. Для переноса данных используются так называемые файлы переноса данных. Перенос изменений выполняется только между центральной и периферийными ИБ. Перенос данных непосредственно между периферийными ИБ невозможен. Поэтому изменения данных, произведенные в одном из периферийных узлов распределенной ИБ попадают в другие периферийные узлы только через центральную ИБ.
В простейшем случае (по умолчанию) областью распространения изменений для всех объектов является вся распределенная ИБ. Таким образом, в случае если в течение какого-то времени изменения данных системы не будут производиться, и, в то же время, будут произведены все необходимые действия по обмену изменениями между узлами распределенной ИБ, то все узлы будут содержать абсолютно одинаковые данные.
В некоторых случаях может возникнуть необходимость в том, чтобы объекты того или иного типа никогда не попадали в те или иные узлы распределенной ИБ или никогда не покидали места своего создания. Для обеспечения такой возможности предназначен механизм настройки параметров миграции объектов. С его помощью можно ограничить распространение изменений объектов того или иного вида. Кроме того, в версии 7.7 системы 1С:Предприятие можно создавать периферийные ИБ, которые будут принимать информацию о измененных объектах из центральной ИБ, но не будут передавать изменения, сделанные в них самих.
Механизмы распространения изменений объектов работают полностью автоматически. Разработчик конфигурации лишен возможности вмешиваться в функционирование этих механизмов. Для того, чтобы механизмы распределенной ИБ начали работать, не нужно производить никаких специальных действий по конфигурированию системы.
Однако, для того, чтобы документы, элементы справочников и другие объекты, созданные в разных узлах распределенной ИБ, имели заведомо непересекающиеся пространства номеров, кодов и т. п., может потребоваться внести в конфигурацию некоторые изменения. Также изменения в конфигурации должны вноситься при необходимости обеспечить специальные ограничения работы пользователей на периферийных информационных базах.
Для переноса измененных объектов в распределенной ИБ и для первичного создания периферийной ИБ используется файл переноса данных. Он представляет собой упакованный (сжатый) файл, содержащий объекты информационной базы (все при создании периферийной ИБ или измененные при передаче изменений) в специальном формате. Формат данного файла не предназначен для использования его способами отличными от тех, которые предусмотрены механизмами выгрузки/загрузки и передачи изменений. Файл переноса фактически отражает содержимое объектов информационной базы в формате, не зависящем от формата базы данных. Это позволяет использовать в распределенной информационной системе в различных узлах различные форматы хранения данных, поддерживаемые системой 1С:Предприятие (DBF/CDX и MS SQL Server).
Регистрация изменений
Перенос измененных данных производится "пообъектно". То есть единицей переноса данных является так называемый ведущий объект. С точки зрения работы в распределенной информационной базе в 1С:Предприятии существуют следующие типы ведущих объектов:
константа,
элемент справочника,
документ,
календарь,
счет бухгалтерского учета,
типовая операция.
Вместе с документами переносятся все действия, выполняемые ими в процессе проведения: движения регистров, акты расчета, бухгалтерская операция, проводки. В случае, если при проведении документа производятся изменения периодических реквизитов элемента справочника, то производится перенос всего элемента справочника.
Регистрация изменений объектов производится автоматически при любом изменении объекта, независимо от того каким способом это изменение производилось (интерактивно или из встроенного языка). Кроме того в версии 7.7 системы 1С:Предприятие для таких объектов как элементы справочников и документы появилась возможность управления регистрацией изменений. Для этого у соответствующих объектов метаданных введен признак "Автоматическая регистрация изменений". Если этот признак установлен (значение по умолчанию), то автоматическая регистрация производится, а если признак сброшен, то регистрация не производится и изменения объектов в распределенной ИБ не распространяются. Но и в данном случае, при выполнении записи изменений объектов из встроенного языка можно управлять регистрацией изменений с помощью метода встроенного языка РегистрацияИзменений().
Регистрация изменений ведущих объектов производится в специальной служебной таблице. При этом фиксируются следующие данные об изменении объекта:
Сам ведущий объект;
Идентификатор той ИБ, в которую должно быть передано изменение;
Идентификатор ИБ, в которую должно быть передано изменение, служит для отслеживания переноса данных в каждую из ИБ, с которой данная ИБ обменивается данными. Таким образом, при изменении какого-либо объекта в центральной ИБ в таблицу будет помещено по одной записи для каждой из зарегистрированных периферийных информационных баз. Если же изменение объекта происходит в периферийной ИБ, то в таблицу будет занесена только одна запись, соответствующая центральной ИБ, так как каждая из периферийных ИБ непосредственно взаимодействует только с центральной.
Заметим, что удаление объекта является частным случаем изменения. Оно также помечается в таблице регистрации изменений и передается при выгрузке.
Выгрузка и загрузка изменений
Каждая выгрузка изменений осуществляется в адрес конкретной ИБ. В файл переноса, создаваемый при выгрузке попадают все объекты, записи об изменениях которых содержатся в таблице регистрации изменений для данной ИБ.
Заметим, что выгружаются не изменения объектов, а сами измененные объекты. То есть, если в документе изменилось значение одного реквизита, то будет передаваться весь документ и он будет полностью перезаписан на той ИБ, в которую переносится. Как уже отмечалось, вместе с документом будут перенесены и сделанные им движения регистров, операция и проводки. Если изменяется любой реквизит справочника, то передается полностью весь элемент. При этом история периодических реквизитов передается целиком. Последнее означает, что изменения сделанные в истории периодического реквизита элемента на в двух ИБ не будут сливаться вместе.
В процессе выгрузки в таблице регистрации изменений отмечается выгрузка изменений объектов.
При загрузке файла переноса данных помимо загрузки измененных данных выполняется так называемый прием подтверждений.
В случае, когда пришло подтверждение на получение выгрузки, содержащей последнее изменение объекта, запись об изменении удаляется из таблицы регистрации. То есть записи об изменении объектов данных хранятся в таблице регистрации до тех пор, пока не будет получено подтверждение о доставке измененного объекта по назначению.
Причем выгрузка измененного объекта будет производиться до тех пор, пока не будет получено подтверждение, о доставке изменения. Это значит, что если выполнять перенос все время в одном направлении и не выполнять обратного переноса то объем файла переноса данных будет все время расти, так как каждый раз будут передаваться все объекты, измененные после последнего полученного подтверждения.
При загрузке изменений объектов из периферийной ИБ в центральную, в таблицу регистрации изменений (если, конечно, параметры миграции настроены соответствующим образом) заносятся записи, указывающие, что загруженные из периферийной ИБ изменения объектов должны быть переданы в другие периферийные ИБ.
Изменения конфигурации
Как уже отмечалось, при работе с распределенной ИБ, конфигурация системы может быть изменена только в центральном узле.
Для регистрации изменений конфигурации и передачи ее на периферийные ИБ используется тот же механизм, что и для объектов данных. При записи измененной конфигурации, в таблицу регистрации изменений объектов по числу известных периферийных ИБ заносятся записи, фиксирующие факт изменения конфигурации.
После записи измененной конфигурации в распределенной ИБ складывается такая ситуация, что центральная и периферийные ИБ работают фактически с разными конфигурациями. В таком состоянии созданные на периферийной ИБ файлы переноса данных не могут быть загружены на центральной ИБ по той причине, что в условиях различных конфигураций содержащаяся в файле информация не может быть правильно интерпретирована. Обмен будет восстановлен только после того, как в периферийную ИБ будет загружена измененная конфигурация с центральной ИБ. То есть после изменения конфигурации требуется выполнить перенос из центральной ИБ в каждую из периферийных, а уже затем выполнять перенос из периферийных ИБ в центр.
Перенос измененной конфигурации в периферийные ИБ осуществляется тем же способом, что и перенос измененных объектов данных. В процессе очередной выгрузки из центральной ИБ, в файл переноса данных целиком включается измененная конфигурация, если, конечно, в таблице регистрации изменений содержится запись о том, что измененную конфигурацию следует передать в соответствующую периферийную ИБ. Выгрузка конфигурации также будет производиться до получения извещения о приеме измененной конфигурации.
Заметим, что конфигурация считается измененной при любых изменениях метаданных, форм, модулей, таблиц конфигурации, наборов прав, пользовательских интерфейсов, описаний. В состав конфигурации не входит список пользователей, а также внешние по отношению к файлу конфигурации (1CV7.MD) файлы (внешние отчеты, отдельно записанные таблицы и тексты). И эти внешние файлы не переносятся механизмом управления распределенной ИБ. Поэтому при конфигурировании распределенной системы не рекомендуется использовать в конфигурации находящиеся в отдельных файлах модули, таблицы и отчеты.
Для изменения уже работающей конфигурации можно рекомендовать использовать механизм загрузки измененной конфигурации. Он позволяет специалисту скопировать конфигурацию, выполнить в ней все необходимые изменения, отладить внесенные изменения (этот процесс может занять и несколько дней), а затем загрузить измененную конфигурацию в центральную ИБ, после чего изменения будут распространены на все периферийные ИБ с очередной передачей изменений. Такая последовательность позволит избежать многократной передачи измененной конфигурации в периферийные ИБ в процессе ее модернизации.
При загрузке файла переноса данных на периферийной ИБ, этап загрузки измененной конфигурации (если, конечно, она содержится в файле переноса данных) предшествует этапу загрузки измененных объектов данных. В случае неудачного завершения загрузки конфигурации, загрузка объектов данных производиться не будет и информационная база останется в том же состоянии, что и была до начала загрузки.
Загрузка измененной конфигурации может завершиться неудачей, если измененная конфигурация не соответствует существующим данным. Например, было уменьшено число уровней справочника, а новое число уровней оказывается меньшим, чем фактически содержащееся в справочнике или в других подобных случаях. Если такое произошло, то следует привести данные в соответствие с новой конфигурацией или изменить конфигурацию в центральной ИБ и заново произвести выгрузку, чтобы ликвидировать возникшее противоречие.
Коллизии
При работе в реальных распределенных ИБ один и тот же объект может изменяться одновременно в различных узлах распределенной ИБ. И при переносе измененных объектов из одной ИБ в другую может случиться так, что в какую-либо ИБ будет загружаться объект, зарегистрированный в самой этой ИБ как измененный. Такая ситуация носит название коллизии. Приведем описание действий системы в наиболее типовых вариантах коллизий.
Один и тот же объект изменен более чем в одной ИБ.
Общий принцип здесь состоит в том, что "главным" считается изменение, произведенное в центральной ИБ. Отработка ситуации различается в зависимости от того, на какой ИБ - центральной или периферийной коллизия обнаружена. Если коллизия обнаружена на центральной ИБ, то есть при загрузке файла переноса из периферийной ИБ обнаружено, что один из измененных объектов также изменен и в центральной ИБ, то изменения объекта в центральную ИБ не загружаются. При этом гарантируется, что при очередной выгрузке в адрес периферийной ИБ будет передано состояние объекта как оно есть в центральной ИБ. Если же коллизия обнаружена на периферийной ИБ, то изменения объекта, прибывшие из центральной ИБ загружаются.
Объект, измененный в одной ИБ, удален в другой.
В данном случае принцип заключается в том, что изменение всегда "главнее" удаления. В случае, если на центральную ИБ прибывает файл переноса, в котором содержится информация, что некоторый объект удален на периферийной ИБ, то в центральной ИБ объект не удаляется, а в записи таблицы регистрации изменений данный объект помечается как измененный. То есть при очередном обмене объект будет восстановлен в той ИБ, в которой он был удален, причем само содержание объекта будет соответствовать той ИБ, которая "отвергла" удаление.
Аналогичные действия производятся, если коллизия обнаружена на периферийной ИБ.
Объект, удаленный в одной ИБ, не может быть удален в другой по причине наличия ссылок на него.
При загрузке изменений, если загружается информация об удалении объектов, автоматически включается механизм контроля ссылочной целостности и выполняется проверка наличия ссылок в данной ИБ на объекты, которые переданы как удаленные.
В случае обнаружения коллизии такого рода, вне зависимости от того на какой из ИБ она была обнаружена, выполняется следующее: удаление не выполняется, а в таблицу регистрации изменений заносится запись о том, что объект должен быть перенесен в адрес той ИБ, из которой была прислана информация о его удалении.
При очередном обмене объект восстанавливается в той ИБ, в которой он был удален, однако само содержание объекта будет соответствовать той ИБ, которая "отвергла" удаление.
Таким образом, управление распределенной информационной базой имеет определенную стратегию автоматического разрешения любых коллизий с описанными приоритетами. Однако, в реальных условиях рекомендуется средствами конфигурации определить возможные действия пользователей на различных узлах таким образом, чтобы исключить или минимизировать вероятность возникновения коллизий. Основным путем является определения средствами конфигурации "ответственного" узла за каждый ведущий объект в распределенной ИБ и ограничение всем остальным возможности его редактирования и удаления. Определение "ответственных" должно происходить исходя из логики работы предприятия. Очевидно, что многие виды объектов можно разрешить изменять только в центральной ИБ (например, список складов). Для многих объектов можно рекомендовать средствами встроенного языка установить возможность изменения только на той ИБ, на которой они созданы, например для документов.
Параметры миграции
С помощью настройки параметров миграции можно ограничивать области распространения изменений объектов. Настройка параметров миграции происходит по видам "ведущих" объектов. То есть для каждого вида "ведущих" объектов можно определить конкретную настройку параметров миграции. В настройке параметров миграции объектов ведущую роль играет выбор того или иного варианта области распространения изменений объектов данного вида. Существуют три варианта настройки области распространения:
Все информационные базы. Данный вариант настройки используется по умолчанию для всех объектов. В этом случае любые изменения объектов данного типа будут распространяться по всем узлам распределенной ИБ. Этот вариант обеспечивает полную синхронизацию объектов данного вида во всей распределенной ИБ. Очевидно, что этот вариант наиболее прост для конфигурирования.
Место создания. Данный вариант настройки также является довольно простым. В этом случае изменения объекта не передаются в другие ИБ. При такой настройке параметров миграции, объект данного вида никогда не "покидает" места своего создания и не появляется в других ИБ. Однако при выборе данного варианта следует учитывать возможные ссылки на объекты данного вида из объектов других видов, имеющих другие параметры миграции. Например, если установить такой вариант для справочника, и в документах, которые участвуют в обмене, будет содержаться реквизит типа справочник данного вида, то при переносе документа получится неразрешенная ссылка.
Место создания и центр. При таком варианте настройки области распространения объектов существенную роль играет понятие места создания объекта. Местом создания объекта считается ИБ, в которой был создан конкретный объект. Естественно, что различные объекты одного вида могут быть созданы в различных ИБ. Однако место создания объекта может быть определено не для всех видов "ведущих" объектов. Для таких объектов как константы, календари или корректные проводки место создания не определено. Поэтому для этих видов объектов вариант настройки "Место создания и центр" не может быть установлен.
В случае выбора такого варианта области распространения, объекты данного вида помимо места их создания попадают еще и на центральную ИБ. То есть, в случае, если для некоторого вида объектов установлена область распространения "Место создания и центр", то для объектов этого вида, созданных на периферийной ИБ, их изменения будут передаваться между местом их создания и центральной ИБ. Для объектов того же вида, созданных на центральной ИБ, изменения не будут передаваться никуда. С помощью такого варианта области распространения можно добиться такого эффекта, что все объекты того или иного вида будут "собираться" на центральной ИБ, а на любой из периферийных ИБ будут находиться только те объекты, для которых она является местом создания.
В случае выбора области распространения "Место создания и центр", для вида объекта можно задать перечень периферийных узлов распределенной ИБ, которые дополнительно включаются в область распространения всех объектов данного вида. Этот перечень задается как список кодов периферийных ИБ, разделенный запятыми. При задании кодов ИБ допускается использование символов-заменителей '*'. Символ-заменитель должен завершать последовательность символов, образующих код одной или нескольких периферийных ИБ. Таким образом, "A*" представляет собой обозначение всех периферийных ИБ, коды которых начинаются символом 'А'. Последовательность "A*B" является ошибочной, так как символ '*' не завершает последовательность символов, представляющих код периферийной ИБ.
Кроме того, как отмечалось выше, дополнительной возможностью управлять распространением изменений объектов в версии 7.7 системы 1С:Предприятие является особый вид периферийных ИБ, которые получают изменения из центральной ИБ, а сами информацию о сделанных в них изменениях не передают. Для создания периферийной ИБ такого рода, надо при ее инициализации указать признак "Только получатель".
Отдельно стоит рассмотреть случай, когда параметры миграции объектов изменяются в процессе изменения конфигурации уже работающей системы. Изменения параметров миграции для каждого из объектов производится независимо от других. То есть, Конфигуратор не отслеживает ссылки между объектами при настройке параметров миграции. Таким образом, при определенных вариантах настройки параметров миграции у некоторых объектов могут появиться ссылки, указывающие "никуда". Ответственность за сохранение ссылочной целостности в распределенных ИБ возлагается на лицо, занимающееся конфигурированием системы. Общим правилом настройки параметров миграции является определение области миграции для конкретного вида объектов равной более широкой, чем область миграции ссылающихся на него объектов. Например, для справочника область миграции должна быть определена не уже, чем области миграции документов и справочников, в которых есть реквизиты типа "справочник" данного вида. Если, например, измерение регистра имеет тип "справочник" данного вида, то область миграции справочника должна покрывать области миграции всех документов, которые могут записать движения данного регистра.
При изменении параметров миграции того или иного объекта система старается привести имеющиеся данные в соответствие с новыми параметрами. Общим принципом здесь является то, что при изменении параметров миграции объекты никогда ни в каком узле распределенной ИБ не удаляются. Даже в том случае, если в соответствии с вновь установленными параметрами миграции их там быть не должно. Изменения производятся лишь в таблице регистрации изменений. Рассмотрим случаи изменения параметров миграции объектов подробнее.
Наиболее простой случай - это смена любого из вариантов области распространения на вариант "Место создания". В этом случае из таблицы регистрации изменений удаляются все записи по данному виду объектов. То есть все изменения объектов, еще не переданные в другие ИБ, не будут переданы. При этом, все объекты для которых данная ИБ не является местом создания, не будут удалены. Просто их изменения (как и изменения других объектов данного вида) не будут больше передаваться в другие ИБ.
Следующий случай - это смена области распространения "Место создания" на варианты "Все информационные базы" или "Место создания и центр". В этом случае в таблицу регистрации изменений заносятся записи для передачи всех объектов, для которых текущая ИБ является местом создания во все ИБ, в которые должны передаваться изменения в соответствии с вновь заданной настройкой. В случае, если такая смена производится для объектов, для которых место создания не определено (константы, календари, корректные проводки), то записи в таблицу регистрации изменений будут произведены только в центральной ИБ. Этими двумя вариантами и ограничиваются возможные случаи изменения параметров миграции для такого рода объектов. Все остальные случаи возможны только для тех объектов, для которых место создания можно определить.
При изменении области распространения объектов с "Место создания и центр" на "Все информационные базы", какие-либо действия предпринимаются только в центральной ИБ. В этом случае определяется список периферийных ИБ, попавших в список дополнительно включаемых в область распространения, но ранее в него не входивших. После этого производится обход всех объектов данного вида и для каждого из объектов в таблицу регистрации изменений вносятся записи для передачи состояния объекта в каждую из попавших в список периферийных ИБ, за исключением ИБ места создания объекта.
Последний и самый сложный случай - это изменение области распространения объектов с "Все информационные базы" на "Место создания и центр" или изменение списка дополнительных ИБ в варианте "Место создания и центр". Действия, производимые в данном случае различаются в зависимости от того, производятся они в центральной ИБ или в периферийной. В центральной ИБ для каждой из периферийных ИБ, не попавших в новый перечень дополнительно включаемых в область распространения, выполняется удаление из таблицы регистрации изменений записей соответствующих данному виду объектов, но только для тех объектов, для которых эта периферийная ИБ не является местом создания. Затем определяется список периферийных ИБ, попавших в список дополнительно включаемых в область распространения, но ранее в него не входивших. Естественно, что в случае, если предыдущим вариантом настройки области распространения было "Все информационные базы", то этот список окажется пустым. Затем, как и в предыдущем случае, производится обход всех объектов данного вида и для каждого из объектов в таблицу регистрации изменений вносятся записи для передачи объекта в каждую из попавших в список периферийных ИБ, за исключением ИБ места создания объекта.
Проблемы конфигурирования и администрирования
При разработке конфигурации для распределенной ИБ проявляется ряд объективно существующих проблем, которые решаются как средствами конфигурации, так и административными решениями.
Очевидной проблемой, которая уже упоминалась выше, является уникальная и последовательная нумерация документов и элементов справочников. Для организации уникальной нумерации используется механизм префиксов. Для его включения в конфигурацию, прежде всего, следует выработать некоторую дисциплину, зависимости префикса от ИБ, в которой создается объект. В простейшем случае это может быть собственно код ИБ. Однако часто префикс может автоматически определяться на каждой ИБ, но не являться ее кодом, так как он может участвовать в печатных формах документов и должен быть понятным для пользователей системы. Более сложной задачей является обеспечение сквозной нумерации объектов без префиксов в случае, когда такая нумерация регламентируется нормативными документами. Особенно сложным является обеспечение строго последовательной нумерации. Очевидно, что полного решения данной проблемы не может быть в принципе, так как объекты создаваемые динамически в независимых системах не могут иметь строгой сквозной нумерации. Отчасти данная проблема решается с помощью введения диапазонов номеров, выделяемых для каждой ИБ. Следует заметить, что номера документов и коды справочников не являются внутренними идентификаторами и их уникальность для системы не обязательна. Это значит, что поддержку уникальность номеров и кодов можно отключить для тех видов, объектов, для которых она не нужна. Кроме того, средствами конфигурации можно организовать перенумерацию объектов, например в центральной ИБ. Однако следует иметь ввиду, что эти изменения будут передаваться как и любые другие изменения, что может вызвать достаточно большой объем передаваемых между узлами данных.
Более сложной проблемой является ситуация, когда возникает необходимость использования некоторого нового объекта в двух и более узлах одновременно, до осуществления передачи данных. Например, новый товар должен быть введен и на центральной ИБ и на периферийной. Важно понимать, что созданный ведущий объект системы 1С:Предприятие обладает некоторой сущностью - внутренним идентификатором, который уникален во всей распределенной системе. То есть один и тот же объект не может быть введен в двух узлах. Даже при полном соответствии кодов, номеров и всех данных это будут два разных объекта. Такой принцип необходим для четкой работы системы со всех точек зрения.
Заметим, что возможные варианты ввода двух объектов и затем автоматической замены на центральной ИБ всех ссылок на один из объектов, достаточно сложны в реализации и весьма ненадежны.
Поэтому, на наш взгляд, решение проблемы должно лежать в области администрирования системы. Технология работы пользователей должна быть построена таким образом, чтобы ввод объекта производился на одном узле.
В отдельных случаях может использоваться следующее решение. В справочник заранее вносится некоторое количество новых элементов со специальными кодами или в специальную группу. При появлении необходимости ввода нового товара реально не вводится новый элемент, а изменяется один этих элементов. При этом административными силами должно быть обеспечено идентичное изменение одного и того же "зарезервированного" объекта в тех узлах распределенной ИБ, в которой он должен быть использован до обмена данными. При обмене данными сами реквизиты элемента будут системой синхронизированы, а ссылки в других объектах, разумеется будут идентичными, так как использовался один и тот же объект.
В любых случаях следует учитывать, что раздельный ввод и использование объектов потребует от пользователей правильного ввода данных. Так, например, при вводе нового товара в двух узлах с разными ценами могут иметь место серьезные ошибки в оформлении документов.
Еще одна проблема, с которой приходится сталкиваться при конфигурировании распределенной ИБ, это правильное поддержание механизмов учета компонент при неполной миграции объектов. Следует учитывать, что итоги оперативного и бухгалтерского учета не являются самостоятельными объектами. Они не переносятся, а рассчитываются на основании перенесенных движений регистров и проводок. Движения регистров и проводки переносятся соответственно только вместе с документами. Таким образом, для правильного состояния итогов на некоторой ИБ, на нее должны переноситься все документы, осуществляющие движения регистров или записывающие проводки влияющие на эти итоги. С другой стороны, это не означает, что переноситься должны все документы, записывающие движения конкретного регистра и проводки. Например, если на периферийной ИБ вводятся документы, выполняющие движения по одному складу, и итоги регистра учета товарного запаса в данной ИБ нужны только по данному складу, то, разумеется, в данном узле будет достаточно наличия всех документов выполняющих движения регистров по данному складу. Это достигается установкой параметра миграции "Место создания и центр".
Сеть всегда объединяет несколько абонентов, каждый из которых имеет право передавать свои пакеты. Но, как уже отмечалось, по одному кабелю одновременно передавать два (или более) пакета нельзя, иначе может возникнуть конфликт (коллизия), который приведет к искажению либо потере обоих пакетов (или всех пакетов, участвующих в конфликте). Значит, надо каким-то образом установить очередность доступа к сети (захвата сети) всеми абонентами, желающими передавать. Это относится, прежде всего, к сетям с топологиями шина и кольцо. Точно так же при топологии звезда необходимо установить очередность передачи пакетов периферийными абонентами, иначе центральный абонент просто не сможет справиться с их обработкой.
В сети обязательно применяется тот или иной метод управления обменом (метод доступа, метод арбитража), разрешающий или предотвращающий конфликты между абонентами. От эффективности работы выбранного метода управления обменом зависит очень многое: скорость обмена информацией между компьютерами, нагрузочная способность сети (способность работать с различными интенсивностями обмена), время реакции сети на внешние события и т.д. Метод управления – это один из важнейших параметров сети.
Тип метода управления обменом во многом определяется особенностями топологии сети. Но в то же время он не привязан жестко к топологии, как нередко принято считать.
Методы управления обменом в локальных сетях делятся на две группы:
* Централизованные методы, в которых все управление обменом сосредоточено в одном месте. Недостатки таких методов: неустойчивость к отказам центра, малая гибкость управления (центр обычно не может оперативно реагировать на все события в сети). Достоинство централизованных методов – отсутствие конфликтов, так как центр всегда предоставляет право на передачу только одному абоненту, и ему не с кем конфликтовать.
* Децентрализованные методы, в которых отсутствует центр управления. Всеми вопросами управления, в том числе предотвращением, обнаружением и разрешением конфликтов, занимаются все абоненты сети. Главные достоинства децентрализованных методов: высокая устойчивость к отказам и большая гибкость. Однако в данном случае возможны конфликты, которые надо разрешать.
Существует и другое деление методов управления обменом, относящееся, главным образом, к децентрализованным методам:
* Детерминированные методы определяют четкие правила, по которым чередуются захватывающие сеть абоненты. Абоненты имеют определенную систему приоритетов, причем приоритеты эти различны для всех абонентов. При этом, как правило, конфликты полностью исключены (или маловероятны), но некоторые абоненты могут дожидаться своей очереди на передачу слишком долго. К детерминированным методам относится, например, маркерный доступ (сети Token-Ring, FDDI), при котором право передачи передается по эстафете от абонента к абоненту.
* Случайные методы подразумевают случайное чередование передающих абонентов. При этом возможность конфликтов подразумевается, но предлагаются способы их разрешения. Случайные методы значительно хуже (по сравнению с детерминированными) работают при больших информационных потоках в сети (при большом трафике сети) и не гарантируют абоненту величину времени доступа. В то же время они обычно более устойчивы к отказам сетевого оборудования и более эффективно используют сеть при малой интенсивности обмена. Пример случайного метода – CSMA/CD (сеть Ethernet).
Для трех основных топологий характерны три наиболее типичных метода управления обменом.
Управление обменом в сети с топологией звезда
Для топологии звезда лучше всего подходит централизованный метод управления. Это связано с тем, что все информационные потоки проходят через центр, и именно этому центру логично доверить управление обменом в сети. Причем не так важно, что находится в центре звезды: компьютер (центральный абонент), как на рис. 1.6, или же специальный концентратор, управляющий обменом, но сам не участвующий в нем. В данном случае речь идет уже не о пассивной звезде (рис. 1.11), а о некой промежуточной ситуации, когда центр не является полноценным абонентом, но управляет обменом. Это, к примеру, реализовано в сети 100VG-AnyLAN.
Самый простейший централизованный метод состоит в следующем.
Периферийные абоненты, желающие передать свой пакет (или, как еще говорят, имеющие заявки на передачу), посылают центру свои запросы (управляющие пакеты или специальные сигналы). Центр же предоставляет им право передачи пакета в порядке очередности, например, по их физическому расположению в звезде по часовой стрелке. После окончания передачи пакета каким-то абонентом право передавать получит следующий по порядку (по часовой стрелке) абонент, имеющий заявку на передачу (рис. 4.8). Например, если передает второй абонент, то после него имеет право на передачу третий. Если же третьему абоненту не надо передавать, то право на передачу переходит к четвертому и т.д.
Централизованный метод управления обменом в сети с топологией звезда
Рис. 4.8. Централизованный метод управления обменом в сети с топологией звезда
В этом случае говорят, что абоненты имеют географические приоритеты (по их физическому расположению). В каждый конкретный момент наивысшим приоритетом обладает следующий по порядку абонент, но в пределах полного цикла опроса ни один из абонентов не имеет никаких преимуществ перед другими. Никому не придется ждать своей очереди слишком долго. Максимальная величина времени доступа для любого абонента в этом случае будет равна суммарному времени передачи пакетов всех абонентов сети кроме данного. Для топологии, показанной на рис. 4.8, она составит четыре длительности пакета. Никаких столкновений пакетов при этом методе в принципе быть не может, так как все решения о доступе принимаются в одном месте.
Рассмотренный метод управления можно назвать методом с пассивным центром, так как центр пассивно прослушивает всех абонентов. Возможен и другой принцип реализации централизованного управления (его можно назвать методом с активным центром).
В этом случае центр посылает запросы о готовности передавать (управляющие пакеты или специальные сигналы) по очереди всем периферийным абонентам. Тот периферийный абонент, который хочет передавать (первый из опрошенных) посылает ответ (или же сразу начинает свою передачу). В дальнейшем центр проводит сеанс обмена именно с ним. После окончания этого сеанса центральный абонент продолжает опрос периферийных абонентов по кругу (как на рис. 4.8). Если желает передавать центральный абонент, он передает вне очереди.
Как в первом, так и во втором случае никаких конфликтов быть не может (решение принимает единый центр, которому не с кем конфликтовать). Если все абоненты активны, и заявки на передачу поступают интенсивно, то все они будут передавать строго по очереди. Но центр должен быть исключительно надежен, иначе будет парализован весь обмен. Механизм управления не слишком гибок, так как центр работает по жестко заданному алгоритму. К тому же скорость управления невысока. Ведь даже в случае, когда передает только один абонент, ему все равно приходится ждать после каждого переданного пакета, пока центр опросит всех остальных абонентов.
Как правило, централизованные методы управления применяются в небольших сетях (с числом абонентов не более чем несколько десятков). В случае больших сетей нагрузка по управлению обменом на центр существенно возрастает.
Управление обменом в сети с топологией шина
При топологии шина также возможно централизованное управление. При этом один из абонентов ("центральный") посылает по шине всем остальным ("периферийным") запросы (управляющие пакеты), выясняя, кто из них хочет передать, затем разрешает передачу одному из абонентов. Абонент, получивший право на передачу, по той же шине передает свой информационный пакет тому абоненту, которому хочет. А после окончания передачи передававший абонент все по той же шине сообщает "центру", что он закончил передачу (управляющим пакетом), и "центр" снова начинает опрос (рис. 4.9).
Централизованное управление в сети с топологией шина
Рис. 4.9. Централизованное управление в сети с топологией шина
Преимущества и недостатки такого управления – те же самые, что и в случае централизованно управляемой звезды. Единственное отличие состоит в том, что центр здесь не пересылает информацию от одного абонента к другому, как в топологии активная звезда, а только управляет обменом.
Гораздо чаще в шине используется децентрализованное случайное управление, так как сетевые адаптеры всех абонентов в данном случае одинаковы, и именно этот метод наиболее органично подходит шине. При выборе децентрализованного управления все абоненты имеют равные права доступа к сети, то есть особенности топологии совпадают с особенностями метода управления. Решение о том, когда можно передавать свой пакет, принимается каждым абонентом на месте, исходя только из анализа состояния сети. В данном случае возникает конкуренция между абонентами за захват сети, и, следовательно, возможны конфликты между ними и искажения передаваемой информации из-за наложения пакетов.
Существует множество алгоритмов доступа или, как еще говорят, сценариев доступа, порой очень сложных. Их выбор зависит от скорости передачи в сети, длины шины, загруженности сети (интенсивности обмена или трафика сети), используемого кода передачи.
Иногда для управления доступом к шине применяется дополнительная линия связи, что позволяет упростить аппаратуру контроллеров и методы доступа, но заметно увеличивает стоимость сети за счет удвоения длины кабеля и количества приемопередатчиков. Поэтому данное решение не получило широкого распространения.
Суть всех случайных методов управления обменом довольно проста.
Если сеть свободна (то есть никто не передает своих пакетов), то абонент, желающий передавать, сразу начинает свою передачу. Время доступа в этом случае равно нулю.
Если же в момент возникновения у абонента заявки на передачу сеть занята, то абонент, желающий передавать, ждет освобождения сети. В противном случае исказятся и пропадут оба пакета. После освобождения сети абонент, желающий передавать, начинает свою передачу.
Возникновение конфликтных ситуаций (столкновений пакетов, коллизий), в результате которых передаваемая информация искажается, возможно в двух случаях.
* При одновременном начале передачи двумя или более абонентами, когда сеть свободна (рис. 4.10). Это ситуация довольно редкая, но все-таки вполне возможная.
* При одновременном начале передачи двумя или более абонентами сразу после освобождения сети (рис. 4.11). Это ситуация наиболее типична, так как за время передачи пакета одним абонентом вполне может возникнуть несколько новых заявок на передачу у других абонентов.
Существующие случайные методы управления обменом (арбитража) различаются тем, как они предотвращают возможные конфликты или же разрешают уже возникшие. Ни один конфликт не должен нарушать обмен, все абоненты должны, в конце концов, передать свои пакеты.
В процессе развития локальных сетей было разработано несколько разновидностей случайных методов управления обменом.
Коллизии в случае начала передачи при свободной сети
Рис. 4.10. Коллизии в случае начала передачи при свободной сети
Коллизии в случае начала передачи после освобождения сети
Рис. 4.11. Коллизии в случае начала передачи после освобождения сети
Например, был предложен метод, при котором не все передающие абоненты распознают коллизию, а только те, которые имеют меньшие приоритеты. Абонент с максимальным приоритетом из всех, начавших передачу, закончит передачу своего пакета без ошибок. Остальные, обнаружив коллизию, прекратят свою передачу и будут ждать освобождения сети для новой попытки. Для контроля коллизии каждый передающий абонент производит побитное сравнение передаваемой им в сеть информации и данных, присутствующих в сети. Побеждает тот абонент, заголовок пакета которого дольше других не искажается от коллизии. Этот метод, называемый децентрализованным кодовым приоритетным методом, отличается низким быстродействием и сложностью реализации.
При другом методе управления обменом каждый абонент начинает свою передачу после освобождения сети не сразу, а, выдержав свою, строго индивидуальную задержку, что предотвращает коллизии после освобождения сети и тем самым сводит к минимуму общее количество коллизий. Максимальным приоритетом в этом случае будет обладать абонент с минимальной задержкой. Столкновения пакетов возможны только тогда, когда два и более абонентов захотели передавать одновременно при свободной сети. Этот метод, называемый децентрализованным временным приоритетным методом, хорошо работает только в небольших сетях, так как каждому абоненту нужно обеспечить свою индивидуальную задержку.
В обоих случаях имеется система приоритетов, все же данные методы относятся к случайным, так как исход конкуренции невозможно предсказать. Случайные приоритетные методы ставят абонентов в неравные условия при большой интенсивности обмена по сети, так как высокоприоритетные абоненты могут надолго заблокировать сеть для низкоприоритетных абонентов.
[pagebreak]
Чаще всего система приоритетов в методе управления обменом в шине отсутствует полностью. Именно так работает наиболее распространенный стандартный метод управления обменом CSMA/CD (Carrier Sense Multiple Access with Collision Detection – множественный доступ с контролем несущей и обнаружением коллизий), используемый в сети Ethernet. Его главное достоинство в том, что все абоненты полностью равноправны, и ни один из них не может надолго заблокировать обмен другому (как в случае наличия приоритетов). В этом методе коллизии не предотвращаются, а разрешаются.
Суть метода состоит в том, что абонент начинает передавать сразу, как только он выяснит, что сеть свободна. Если возникают коллизии, то они обнаруживаются всеми передающими абонентами. После чего все абоненты прекращают свою передачу и возобновляют попытку начать новую передачу пакета через временной интервал, длительность которого выбирается случайным образом. Поэтому повторные коллизии маловероятны.
Еще один распространенный метод случайного доступа – CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance – множественный доступ с контролем несущей и избежанием коллизий) применяющийся, например, в сети Apple LocalTalk. Абонент, желающий передавать и обнаруживший освобождение сети, передает сначала короткий управляющий пакет запроса на передачу. Затем он заданное время ждет ответного короткого управляющего пакета подтверждения запроса от абонента-приемника. Если ответа нет, передача откладывается. Если ответ получен, передается пакет. Коллизии полностью не устраняются, но в основном сталкиваются управляющие пакеты. Столкновения информационных пакетов выявляются на более высоких уровнях протокола.
Подобные методы будут хорошо работать только при не слишком большой интенсивности обмена по сети. Считается, что приемлемое качество связи обеспечивается при нагрузке не выше 30—40% (то есть когда сеть занята передачей информации примерно на 30—40% всего времени). При большей нагрузке повторные столкновения учащаются настолько, что наступает так называемый коллапс или крах сети, представляющий собой резкое падение ее производительности.
Недостаток всех случайных методов состоит еще и в том, что они не гарантируют величину времени доступа к сети, которая зависит не только от выбора задержки между попытками передачи, но и от общей загруженности сети. Поэтому, например, в сетях, выполняющих задачи управления оборудованием (на производстве, в научных лабораториях), где требуется быстрая реакция на внешние события, сети со случайными методами управления используются довольно редко.
При любом случайном методе управления обменом, использующем детектирование коллизии (в частности, при CSMA/CD), возникает вопрос о том, какой должна быть минимальная длительность пакета, чтобы коллизию обнаружили все начавшие передавать абоненты. Ведь сигнал по любой физической среде распространяется не мгновенно, и при больших размерах сети (диаметре сети) задержка распространения может составлять десятки и сотни микросекунд. Кроме того, информацию об одновременно происходящих событиях разные абоненты получают не в одно время. С тем чтобы рассчитать минимальную длительность пакета, следует обратиться к рис. 4.12.
Пусть L – полная длина сети, V – скорость распространения сигнала в используемом кабеле. Допустим, абонент 1 закончил свою передачу, а абоненты 2 и 3 захотели передавать во время передачи абонента 1 и ждали освобождения сети.
После освобождения сети абонент 2 начнет передавать сразу же, так как он расположен рядом с абонентом 1. Абонент 3 после освобождения сети узнает об этом событии и начнет свою передачу через временной интервал прохождения сигнала по всей длине сети, то есть через время L/V. При этом пакет от абонента 3 дойдет до абонента 2 еще через временной интервал L/V после начала передачи абонентом 3 (обратный путь сигнала). К этому моменту передача пакета абонентом 2 не должна закончиться, иначе абонент 2 так и не узнает о столкновении пакетов (о коллизии), в результате чего будет передан неправильный пакет.
Получается, что минимально допустимая длительность пакета в сети должна составлять 2L/V, то есть равняться удвоенному времени распространения сигнала по полной длине сети (или по пути наибольшей длины в сети). Это время называется двойным или круговым временем задержки сигнала в сети или PDV (Path Delay Value). Этот же временной интервал можно рассматривать как универсальную меру одновременности любых событий в сети.
Стандартом на сеть задается как раз величина PDV, определяющая минимальную длину пакета, и из нее уже рассчитывается допустимая длина сети. Дело в том, что скорость распространения сигнала в сети для разных кабелей отличается. Кроме того, надо еще учитывать задержки сигнала в различных сетевых устройствах. Расчетам допустимых конфигураций сети Ethernet посвящена глава 10.
Отдельно следует остановиться на том, как сетевые адаптеры распознают коллизию в кабеле шины, то есть столкновение пакетов. Ведь простое побитное сравнение передаваемой абонентом информации с той, которая реально присутствует в сети, возможно только в случае самого простого кода NRZ, используемого довольно редко. При применении манчестерского кода, который обычно подразумевается в случае метода управления обменом CSMA/CD, требуется принципиально другой подход.
Как уже отмечалось, сигнал в манчестерском коде всегда имеет постоянную составляющую, равную половине размаха сигнала (если один из двух уровней сигнала нулевой). Однако в случае столкновения двух и более пакетов (при коллизии) это правило выполняться не будет. Постоянная составляющая суммарного сигнала в сети будет обязательно больше или меньше половины размаха (рис. 4.13). Ведь пакеты всегда отличаются друг от друга и к тому же сдвинуты друг относительно друга во времени. Именно по выходу уровня постоянной составляющей за установленные пределы и определяет каждый сетевой адаптер наличие коллизии в сети.
Определение факта коллизии в шине при использовании манчестерского кода
Рис. 4.13. Определение факта коллизии в шине при использовании манчестерского кода
Задача обнаружения коллизии существенно упрощается, если используется не истинная шина, а равноценная ей пассивная звезда (рис. 4.14).
Обнаружение коллизии в сети пассивная звезда
Рис. 4.14. Обнаружение коллизии в сети пассивная звезда
При этом каждый абонент соединяется с центральным концентратором, как правило, двумя кабелями, каждый из которых передает информацию в своем направлении. Во время передачи своего пакета абоненту достаточно всего лишь контролировать, не приходит ли ему в данный момент по встречному кабелю (приемному) другой пакет. Если встречный пакет приходит, то детектируется коллизия. Точно так же обнаруживает коллизии и концентратор.
Управление обменом в сети с топологией кольцо
Кольцевая топология имеет свои особенности при выборе метода управления обменом. В этом случае важно то, что любой пакет, посланный по кольцу, последовательно пройдя всех абонентов, через некоторое время возвратится в ту же точку, к тому же абоненту, который его передавал (так как топология замкнутая). Здесь нет одновременного распространения сигнала в две стороны, как в топологии шина. Как уже отмечалось, сети с топологией кольцо бывают однонаправленными и двунаправленными. Наиболее распространены однонаправленные.
В сети с топологией кольцо можно использовать различные централизованные методы управления (как в звезде), а также методы случайного доступа (как в шине), но чаще выбирают все-таки специфические методы управления, в наибольшей степени соответствующие особенностям кольца.
Самые популярные методы управления в кольцевых сетях маркерные (эстафетные), те, которые используют маркер (эстафету) – небольшой управляющий пакет специального вида. Именно эстафетная передача маркера по кольцу позволяет передавать право на захват сети от одного абонента к другому. Маркерные методы относятся к децентрализованным и детерминированным методам управления обменом в сети. В них нет явно выраженного центра, но существует четкая система приоритетов, и потому не бывает конфликтов.
Работа маркерного метода управления в сети с топологией кольцо представлена на рис. 4.15.
Рис. 4.15. Маркерный метод управления обменом (СМ—свободный маркер, ЗМ— занятый маркер, МП— занятый маркер с подтверждением, ПД—пакет данных)
По кольцу непрерывно ходит специальный управляющий пакет минимальной длины, маркер, предоставляющий абонентам право передавать свой пакет. Алгоритм действий абонентов:
1. Абонент 1, желающий передать свой пакет, должен дождаться прихода к нему свободного маркера. Затем он присоединяет к маркеру свой пакет, помечает маркер как занятый и отправляет эту посылку следующему по кольцу абоненту.
2. Все остальные абоненты (2, 3, 4), получив маркер с присоединенным пакетом, проверяют, им ли адресован пакет. Если пакет адресован не им, то они передают полученную посылку (маркер + пакет) дальше по кольцу.
3. Если какой-то абонент (в данном случае это абонент 2) распознает пакет как адресованный ему, то он его принимает, устанавливает в маркере бит подтверждения приема и передает посылку (маркер + пакет) дальше по кольцу.
4. Передававший абонент 1 получает свою посылку, прошедшую по всему кольцу, обратно, помечает маркер как свободный, удаляет из сети свой пакет и посылает свободный маркер дальше по кольцу. Абонент, желающий передавать, ждет этого маркера, и все повторяется снова.
Приоритет при данном методе управления получается географический, то есть право передачи после освобождения сети переходит к следующему по направлению кольца абоненту от последнего передававшего абонента. Но эта система приоритетов работает только при большой интенсивности обмена. При малой интенсивности обмена все абоненты равноправны, и время доступа к сети каждого из них определяется только положением маркера в момент возникновения заявки на передачу.
В чем-то рассматриваемый метод похож на метод опроса (централизованный), хотя явно выделенного центра здесь не существует. Однако некий центр обычно все-таки присутствует. Один из абонентов (или специальное устройство) должен следить, чтобы маркер не потерялся в процессе прохождения по кольцу (например, из-за действия помех или сбоя в работе какого-то абонента, а также из-за подключения и отключения абонентов). В противном случае механизм доступа работать не будет. Следовательно, надежность управления в данном случае снижается (выход центра из строя приводит к полной дезорганизации обмена). Существуют специальные средства для повышения надежности и восстановления центра контроля маркера.
Основное преимущество маркерного метода перед CSMA/CD состоит в гарантированной величине времени доступа. Его максимальная величина, как и при централизованном методе, составит (N-1)• tпк, где N – полное число абонентов в сети, tпк – время прохождения пакета по кольцу. Вообще, маркерный метод управления обменом при большой интенсивности обмена в сети (загруженность более 30—40%) гораздо эффективнее случайных методов. Он позволяет сети работать с большей нагрузкой, которая теоретически может даже приближаться к 100%.
Метод маркерного доступа используется не только в кольце (например, в сети IBM Token Ring или FDDI), но и в шине (в частности, сеть Arcnet-BUS), а также в пассивной звезде (к примеру, сеть Arcnet-STAR). В этих случаях реализуется не физическое, а логическое кольцо, то есть все абоненты последовательно передают друг другу маркер, и эта цепочка передачи маркеров замкнута в кольцо (рис. 4.16). При этом совмещаются достоинства физической топологии шина и маркерного метода управления.
Применение маркерного метода управления в шине
Рис. 4.16. Применение маркерного метода управления в шине
Какие жесткие диски лучше установить на компьютере с windows 2000/XP: ata (иначе ide) или scsi? Спор о сравнительных достоинствах и недостатках дисков ata и scsi – один из самых давних в отрасли. В одной из статей я уже сравнивал технические характеристики различных вариантов этих технологий и рассказывал, как их использовать в системах на базе windows nt.
За последнее время появились новые реализации интерфейсов ata и scsi. Сфера scsi расширилась и теперь охватывает ultra2 scsi, волоконно-оптический канал, ultra160 scsi и новейший стандарт – ultra320 scsi. Максимальная пропускная способность этих устройств составляет 80, 100, 160 и 320 Мбайт/с, соответственно. Однако высокая скорость всегда была достоинством scsi, поэтому более важным событием стало сокращение ценового разрыва между технологией scsi и ее конкурентами.
ATA догоняет
Последние стандарты ata 66 (или ultra dma/66, или udma/66) и ata 100 (или ultra dma/100, или udma/100) обеспечивают быструю передачу данных в пакетном и непрерывном режимах (66 и 100 Мбайт/с, соответственно). Планка производительности ata поднимется еще выше с появлением в 2002 г. стандарта se-rialata (первые устройства будут обеспечивать скорость передачи данных 150 Мбайт/с, а в дальнейшем – до 300 и даже 600 Мбайт/с). Таким образом, ata уже годится не только для пользовательских систем и корпоративных настольных компьютеров начального уровня, но и для машин, к дисковой подсистеме которых предъявляются повышенные требования.
Реально на офисных однодисковых системах обычно не удается достигнуть максимального быстродействия. Системные ограничения (например, возможности микросхем ata, архитектура системной шины, физические ограничения диска) часто снижают скорость пересылки данных. Тем не менее, в основном из-за дороговизны scsi (которая объясняется высокой стоимостью контроллера и диска), ata преобладает везде, кроме настольных рабочих станций самого высокого уровня. Однако, чтобы добиться максимальной производительности дисков ata на компьютерах win-dows 2000, недостаточно просто установить новые накопители и подключить кабели.
Стараясь идти в ногу с технологией ata, разработчики microsoft дополнили windows 2000 новыми возможностями и уделяют ata больше внимания при подготовке различных пакетов исправления и программных заплаток. Чтобы эффективно использовать устройства ata на компьютерах windows 2000, требуется иметь базовые знания об интерфейсе ata, необходимых аппаратных средствах и программном обеспечении (например, пакетах исправления и заплатках windows 2000, встроенных драйверах и драйверах независимых поставщиков).
Аппаратные средства
Во-первых, в системе должен быть установлен контроллер, который поддерживает скоростные режимы ata. Самые распространенные стандарты современных дисков – ata/33 (ultra dma/33 или udma/33), ata/66 и ata/100. Практически все контроллеры ata обратно совместимы с дисками прежних стандартов. Например, контроллер ata/100 обычно совместим с дисками ata/33 и даже старыми стандартами ide и eide.
В большинстве систем контроллер реализован в микросхемах ata на системной плате (львиная доля рынка микросхем ata принадлежит компании intel, но есть и другие поставщики, такие, как viahardware.com). Однако в некоторых случаях контроллер может быть размещен на плате расширения pci, например в raid-контроллере ata.
От набора микросхем (важнейшего компонента системной конфигурации ata) и его драйверов зависят функциональные возможности дисков и других устройств, подключенных к контроллеру. Поэтому в первую очередь необходимо тщательно изучить набор микросхем на системной или вспомогательной плате и определить его возможности. Эту информацию можно получить у поставщика ком-пьютера, с системной платы или платы контроллера.
Если микросхемы ata расположены на системной плате, необходимо убедиться, что bios системы поддерживает нужные режимы ata. По всей вероятности, конкретный режим ata реализован в наборе микросхем, но он может отсутствовать в редакции bios, регулярно обновляемой поставщиками ПК и системных микросхем. В этом случае новую версию bios можно получить на web-сайте изготовителя системной платы или компьютера.
Затем следует убедиться, что аппаратные средства обеспечивают нужный режим ata и настроены на оптимальную производительность. Во-первых, все жесткие диски должны поддерживать необходимые режимы ata (например, ata/66, ata/100). Во-вторых, важно распределить диски по отдельным каналам, так как по умолчанию канал ata работает со скоростью самого медленного диска. Если диски ata/33 и ata/100 установлены в одном канале, то скорость передачи данных будет определяться быстродействием ata/33. Поэтому следует разместить медленные устройства ata (например, устройства cd-rom, cd-r, cd-rw, zip, старые жесткие диски) на одном канале, а скоростные жесткие диски – на другом.
Кроме того, необходимо верно выбрать кабели. В спецификациях ata/33, ata/66 и ata/100 указывается, что устройства следует подключать через специальный 80-жильный ленточный кабель, а не 40-жильные кабели, применявшиеся в прежних дисках ata. Дополнительные жилы кабеля нужны для заземления и увеличивают соотношение сигнал/шум при передаче данных. И наконец, накопители следует подключать к 80-жильному кабелю иначе, чем к прежним 40-жильным кабелям. Главное устройство (drive 0) необходимо разместить на конце 80-жильного кабеля, а вторичный накопитель (drive 1) нужно подключить к среднему разъему. Синий разъем на одном конце предназначен для системной платы или платы контроллера, серый разъем в середине – для вторичного устройства, а черный разъем на другом конце – для главного устройства.
Очевидно, что администрирование работы сетевых служб подразумевает выполнение некоторых дополнительных процедур, направленных на обеспечение корректной работы всей системы. Вовсе не обязательно, чтобы эти функции выполнял один человек. Во многих организациях работа распределяется между несколькими администраторами. В любом случае необходим хотя бы один человек, который понимал бы все поставленные задачи и обеспечивал их выполнение другими людьми.
1. Введение
Идея создания сетей для передачи данных на большие и не очень большие расcтояния витала в воздухе с той самой поры, как человек впервые задумался над созданием телекоммуникационных устройств. В разное время и в различных ситуациях в качестве «устройств передачи информации» использовались почтовые голуби, бутылки с сообщениями «SOS» и наконец, люди — гонцы и нарочные.
Конечно, с тех пор прошло немало лет. В наши дни для того, чтобы передать от одного человека к другому приглашение на субботний футбольный матч, множество компьютеров обмениваются электронными сообщениями, используя для передачи информации массу проводов, оптических кабелей, микроволновых передатчиков и прочего.
Компьютерные сети сегодня представляют собой форму сотрудничества людей и компьютеров, обеспечивающего ускорение доставки и обработки информации.
Сеть обеспечивает обмен информацией и ее совместное использование (разделение). Компьютерные сети делятся на локальные (ЛВС, Local Area Network, LAN), представляющие собой группу близко расположенных, связанных между собой компьютеров, и распределенные (глобальные, Wide Area Networks, WAN)
Соединенные в сеть компьютеры обмениваются информацией и совместно используют периферийное оборудование и устройства хранения информации.
Очевидно, что администрирование работы сетевых служб подразумевает выполнение некоторых дополнительных процедур, направленных на обеспечение корректной работы всей системы. Вовсе не обязательно, чтобы эти функции выполнял один человек. Во многих организациях работа распределяется между несколькими администраторами. В любом случае необходим хотя бы один человек, который понимал бы все поставленные задачи и обеспечивал их выполнение другими людьми.
Основные задачи системного администратора
2.1. Подключение и удаление аппаратных средств
Любая компьютерная сеть состоит из трех основных компонентов:
1. Активное оборудование (концентраторы, коммутаторы, сетевые адаптеры и др.).
2. Коммуникационные каналы (кабели, разъемы).
3. Сетевая операционная система.
Естественно, все эти компоненты должны работать согласованно. Для корректной работы устройств в сети требуется их правильно инсталлировать и установить рабочие параметры.
В случае приобретения новых аппаратных средств или подключения уже имеющихся аппаратных средств к другой машине систему нужно сконфигурировать таким образом, чтобы она распознала и использовала эти средства. Изменение конфигурации может быть как простой задачей (например, подключение принтера), так и более сложной (подключение нового диска).
Для того чтобы принять правильное решение о модернизации системы, как системному администратору необходимо проанализировать производительность системы. Конечными узлами сети являются компьютеры, и от их производительности и надежности во многом зависят характеристики всей сети в целом. Именно компьютеры являются теми устройствами в сети, которые реализуют протоколы всех уровней, начиная от физического и канального (сетевой адаптер и драйвер) и заканчивая прикладным уровнем (приложения и сетевые службы операционной системы). Следовательно, оптимизация компьютера включает две достаточно независимые задачи:
* Во-первых, выбор таких параметров конфигурации программного и аппаратного обеспечения, которые обеспечивали бы оптимальные показатели производительности и надежности этого компьютера как отдельного элемента сети. Такими параметрами являются, например, тип используемого сетевого адаптера, размер файлового кэша, влияющий на скорость доступа к данным на сервере, производительность дисков и дискового контроллера, быстродействие центрального процессора и т.п.
* Во-вторых, выбор таких параметров протоколов, установленных в данном компьютере, которые гарантировали бы эффективную и надежную работу коммуникационных средств сети. Поскольку компьютеры порождают большую часть кадров и пакетов, циркулирующих в сети, то многие важные параметры протоколов формируются программным обеспечением компьютеров, например начальное значение поля TTL (Time-to-Live) протокола IP, размер окна неподтвержденных пакетов, размеры используемых кадров.
Тем не менее выполнение вычислительной задачи может потребовать участия в работе нескольких устройств. Каждое устройство использует определенные ресурсы для выполнения своей части работы. Плохая производительность обычно является следствием того, что одно из устройств требует намного больше ресурсов, чем остальные. Чтобы исправить положение, вы должны выявить устройство, которое расходует максимальную часть времени при выполнении задачи. Такое устройство называется узким местом (bottleneck). Например, если на выполнение задачи требуется 3 секунды и 1 секунда тратится на выполнение программы процессором, а 2 секунды — на чтение данных с диска, то диск является узким местом.
Определение узкого места — критический этап в процессе улучшения производительности. Замена процессора в предыдущем примере на другой, в два раза более быстродействующий процессор, уменьшит общее время выполнения задачи только до 2,5 секунд, но принципиально исправить ситуацию не сможет, поскольку узкое место устранено не будет. Если же мы приобретем диск и контроллер диска, которые будут в два раза быстрее прежних, то общее время уменьшится до 2 секунд.
Если вы всерьез недовольны быстродействием системы, исправить положение можно следующими способами:
* обеспечив систему достаточным ресурсом памяти. Объем памяти — один из основных факторов, влияющих на производительность;
* устранив некоторые проблемы, созданные как пользователями (одновременный запуск слишком большого количества заданий, неэффективные методы программирования, выполнение заданий с избыточным приоритетом, а также объемных заданий в часы пик), так и самой системой (квоты, учет времени центрального процессора);
* организовав жесткие диски и файловые системы так, чтобы сбалансировать нагрузку на них и таким образом максимально повысить пропускную способность средств ввода-вывода;
* осуществляя текущий контроль сети, чтобы избежать ее перегрузки и добиться низкого коэффициента ошибок. Сети UNIX/Linux можно контролировать с помощью программы netstat. Если речь идет об сетевых операционных системах семейства Windows, то вам поможет утилита PerformanceMonitor.
* откорректировав методику компоновки файловых систем в расчете на отдельные диски;
* выявив ситуации, когда система совершенно не соответствует предъявляемым к ней требованиям.
Эти меры перечислены в порядке убывания эффективности.
2.2. Резервное копирование
Процедура резервного копирования довольно утомительна и отнимает много времени, но выполнять ее необходимо. Ее можно автоматизировать, но системный администратор обязан убедиться в том, что резервное копирование выполнено правильно и в соответствии с графиком. Практически любая сетевая операционная система содержит механизмы для создания резервных копий или зеркального ведения дисков. Например, в UNIX-системах самое распространенное средство создания резервных копий и восстановления данных — команды dump и restore. В большинстве случаев информация, хранящаяся в компьютерах, стоит дороже самих компьютеров. Кроме того, ее гораздо труднее восстановить.
Существуют сотни весьма изобретательных способов потерять информацию. Ошибки в программном обеспечении зачастую портят файлы данных. Пользователи случайно удаляют то, над чем работали всю жизнь. Хакеры и раздраженные служащие стирают данные целыми дисками. Проблемы c аппаратными средствами и стихийные бедствия выводят их строя целые машинные залы. Поэтому ни одну систему нельзя эксплуатировать без резервных копий.
При правильном подходе создание резервных копий данных позволяет администратору восстанавливать файловую систему (или любую ее часть) в том состоянии, в котором она находилась на момент последнего снятия резервных копий. Резервное копирование должно производиться тщательно и строго по графику.
[pagebreak]
Поскольку многие виды неисправностей способны одновременно выводить из строя сразу несколько аппаратных средств, резервные копии следует записывать на съемные носители, CD-диски, ZIP-дискеты и т.д. Например, копирование содержимого одного диска на другой, конечно, лучше, чем ничего, но оно обеспечивает весьма незначительный уровень защиты от отказа контроллера.
2.3. Инсталляция новых программных средств
После приобретения нового программного обеспечения его нужно инсталлировать и протестировать. Если программы работают нормально, необходимо сообщить пользователям об их наличии и местонахождении.
Как правило, самой ответственной и самой сложной задачей системного администратора являются инсталляция и конфигурирование операционной системы. От правильности ваших действий зависит, будете ли вы играть в Quake и просматривать любимые сайты или вам придется бегать между пользователями системы и заниматься рутинной работой.
Во многих современных операционных системах разработчики идут по пути исключения многих непродуктивных параметров системы, с помощью которых администраторы способны влиять на производительность ОС. Вместо этого в операционную систему встраиваются адаптивные алгоритмы, которые определяют рациональные параметры системы во время ее работы. С помощью этих алгоритмов ОС может динамически оптимизировать свои параметры в отношении многих известных сетевых проблем, автоматически перераспределяя свои ресурсы и не привлекая к решению администратора.
Существуют различные критерии оптимизации производительности операционной системы. К числу наиболее распространенных критериев относятся:
* Наибольшая скорость выполнения определенного процесса.
* Максимальное число задач, выполняемых процессором за единицу времени. Эта характеристика также называется пропускной способностью компьютера. Она определяет качество разделения ресурсов между несколькими одновременно выполняемыми процессами.
* Освобождение максимального количества оперативной памяти для самых приоритетных процессов, например процесса, выполняющего функции файлового сервера, или же для увеличения размера файлового кэша.
* Освобождение наибольшего количества дисковой памяти.
Обычно при оптимизации производительности ОС администратор начинает этот процесс при заданном наборе ресурсов. В общем случае одновременно улучшить все критерии производительности невозможно. Например, если целью является увеличение доступной оперативной памяти, то администратор может увеличить размер страничного файла, но это приведет к уменьшению доступного дискового пространства.
После инсталляции и оптимальной настройки операционной системы начинается практически бесконечный процесс установки программного обеспечения. И здесь на первый план выходят проблемы совместимости различных программ, а если вы устанавливаете серверное программное обеспечение, — то еще и о безопасности.
Если вы начинающий системный администратор — устанавливайте на свой сервер более простые программы — в них меньше ошибок. В UNIX — избавьтесь от sendmail, поставьте другой SMTP-демон, внимательно анализируйте исходный код всех устанавливаемых на сервер программ, особенно если имя производителя вам ничего не говорит. В Windows NT не стоит использовать монстры типа Microsoft Exchange Server, и желательно избегать установки на сервер всевозможных freeware-программок.
2.4. Мониторинг системы
Существует великое множество обязательных для исполнения ежедневных операций. Например, проверка правильности функционирования электронной почты и телеконференций, просмотр регистрационных файлов на предмет наличия ранних признаков неисправностей, контроль за подключением локальных сетей и за наличием системных ресурсов.
Все многообразие средств, применяемых для мониторинга и анализа вычислительных сетей, можно разделить на несколько крупных классов:
Системы управления сетью (NetworkManagementSystems) — централизованные программные системы, которые собирают данные о состоянии узлов и коммуникационных устройств сети, а также данные о трафике, циркулирующем в сети. Эти системы не только осуществляют мониторинг и анализ сети, но и выполняют в автоматическом или полуавтоматическом режиме действия по управлению сетью — включение и отключение портов устройств, изменение параметров мостов адресных таблиц мостов, коммутаторов и маршрутизаторов и т.п. Примерами систем управления могут служить популярные системы HPOpenView, SunNetManager, IBMNetView.
Средства управления системой (SystemManagement). Средства управления системой часто выполняют функции, аналогичные функциям систем управления, но по отношению к другим объектам. В первом случае объектами управления являются программное и аппаратное обеспечение компьютеров сети, а во втором — коммуникационное оборудование. Вместе с тем некоторые функции этих двух видов систем управления могут дублироваться, например средства управления системой могут выполнять простейший анализ сетевого трафика.
Встроенные системы диагностики и управления (Embeddedsystems). Эти системы выполняются в виде программно-аппаратных модулей, устанавливаемых в коммуникационное оборудование, а также в виде программных модулей, встроенных в операционные системы. Они выполняют функции диагностики и управления единственным устройством, и в этом их основное отличие от централизованных систем управления. Примером средств этого класса может служить модуль управления концентратором Distrebuted 5000, реализующий функции автосегментации портов при обнаружении неисправностей, приписывания портов внутренним сегментам концентратора, и ряд других. Как правило, встроенные модули управления «по совместительству» выполняют роль SNMP-агентов, поставляющих данные о состоянии устройства для систем управления.
Анализаторы протоколов (Protocolanalyzers). Представляют собой программные или аппаратно-программные системы, которые ограничиваются, в отличие от систем управления, лишь функциями мониторинга и анализа трафика в сетях. Хороший анализатор протоколов может захватывать и декодировать пакеты большого количества протоколов, применяемых в сетях, — обычно несколько десятков. Анализаторы протоколов позволяют установить некоторые логические условия для захвата отдельных пакетов и выполняют полное декодирование захваченных пакетов, то есть показывают в удобной для специалиста форме вложенность друг в друга пакетов протоколов разных уровней с расшифровкой содержания отдельных полей каждого пакета.
Оборудование для диагностики и сертификации кабельных систем. Условно это оборудование можно поделить на четыре основные группы: сетевые мониторы, приборы для сертификации кабельных систем, кабельные сканеры и тестеры (мультиметры).
Экспертные системы. Этот вид систем аккумулирует человеческие знания о выявлении причин аномальной работы сетей и возможных способах приведения сети в работоспособное состояние. Экспертные системы часто реализуются в виде отдельных подсистем различных средств мониторинга и анализа сетей: систем управления сетями, анализаторов протоколов, сетевых анализаторов. Простейшим вариантом экспертной системы является контекстно-зависимая help-система. Более сложные экспертные системы представляют собой так называемые базы знаний, обладающие элементами искусственного интеллекта. Примером такой системы является экспертная система, встроенная в систему управления Spectrum компании Cabletron.
Многофункциональные устройства анализа и диагностики. В последние годы в связи с повсеместным распространением локальных сетей возникла необходимость разработки недорогих портативных приборов, совмещающих функции нескольких устройств: анализаторов протоколов, кабельных сканеров и даже ряд возможностей ПО сетевого управления.
Однако в отдельной сети Ethernet формальные процедуры управления сетью внедрять, как правило, не стоит. Достаточно провести тщательное тестирование сети после инсталляции и время от времени проверять уровень нагрузки. Сломается — почините.
Если у вас задействованы глобальная сеть или сложные ЛВС, рассмотрите вопрос приобретения выделенных станций управления сетью со специальным программным обеспечением.
2.5. Поиск неисправностей
Операционные системы и аппаратные средства, на которых они работают, время от времени выходят из строя. Задача администратора — диагностировать сбои в системе и в случае необходимости вызвать специалистов. Как правило, найти неисправность бывает намного сложнее, чем устранить ее.
Если вы обнаружили, что какой-то из узлов сети работает некорректно или вовсе отказывается работать, вам стоит обратить внимание на светодиодные индикаторы при включенном концентраторе и компьютерах, соединенных кабелями. Если они не горят, то очень вероятно, что причина заключается в следующем:
* Адаптеры некорректно сконфигурированы. Чаще всего при инсталляции сети проблем не возникает до тех пор, пока не будут подключены кабели, а иногда и до попытки получить доступ к сетевым ресурсам. Обычно источником проблемы является конфликт IRQ (два устройства используют одно прерывание). Такие ситуации не всегда легко обнаружить программными средствами, поэтому внимательно проверьте установки прерываний для всех устройств компьютера (звуковые платы, параллельные и последовательные порты, приводы CD-ROM, другие сетевые адаптеры и т.п). Иногда в определении доступного прерывания может помочь программа конфигурирования и/или диагностики адаптера. В некоторых случаях проблемы возникают при использовании на современных компьютерах с шиной PCI для сетевого адаптера IRQ 15, даже если это прерывание не используется.
* Адаптер не отвечает на запросы. Если после включения компьютера программа диагностики не может обнаружить адаптер или детектирует сбой при внутреннем тесте, попробуйте заменить адаптер или обратитесь к его производителям.
* Если проверка адаптеров и кабелей доказала их работоспособность, причиной возникновения проблем могут быть некорректные параметры драйвера сетевого адаптера. Проверьте корректность параметров и сам драйвер (он должен быть предназначен для используемого вами адаптера). Дополнительную информацию можно найти в описании адаптера.
* Концентраторы редко являются источником проблем, однако одной из наиболее распространенных проблем такого рода является отсутствие питания. Иногда неисправный сетевой адаптер может нарушить работу порта в концентраторе. Для проверки адаптера пользуйтесь диагностическими программами из комплекта адаптера.
[pagebreak]
2.6. Ведение локальной документации
Настраивая конфигурацию под конкретные требования, вы вскоре обнаружите, что она значительно отличается от той, что описана в документации (базовой конфигурации). Скорее всего, вы не вечно будете занимать место системного администратора и рано или поздно на ваше место придет другой человек. Известно, что бывших супругов и бывших системных администраторов редко вспоминают добрым словом. Но, чтобы уменьшить количество «камней в ваш огород» и, что важнее, оградить себя от звонков и вопросов с места бывшей работы, системный администратор должен документировать все инсталлируемые программные средства, не входящие в стандартный пакет поставки, документировать разводку кабелей, вести записи по обслуживанию всех аппаратных средств, регистрировать состояние резервных копий и документировать правила работы с системой.
Также следует учитывать, что система учета, ядро, различные утилиты — все эти программы выдают данные, которые регистрируются и в конце концов попадают на ваши диски. Эти данные тоже являются локальной документацией, характеризующей работу конкретной системы. Однако срок полезной службы большинства данных ограничен, поэтому их нужно обобщать, упаковывать и наконец, выбрасывать.
Процедура ведения файлов регистрации в любой операционной системе представляет собой набор процедур, которые повторяются через определенное время в одном и том же порядке. Следовательно, ее необходимо автоматизировать.
В UNIX-системах для этой цели используется процесс cron. А программа syslog может удачно применяется в качестве полной системы регистрации. Она отличается высокой гибкостью и позволяет сортировать сообщения системы по источникам и степени важности, а затем направлять их в разные пункты назначения: в файлы регистрации, на терминалы пользователей и даже на другие машины. Одной из самых ценных особенностей этой системы является ее способность централизовать регистрацию для сети.
Администраторы Windows NT могут для тех же целей использовать утилиту PerformanceMonitor, разработанную для фиксации активности компьютера в реальном масштабе времени. С ее помощью можно определить большую часть узких мест, снижающих производительность. Эта утилита включена в Windows NT Server и Windows NT Workstation.
PerformanceMonitor основан на ряде счетчиков, которые фиксируют такие характеристики, как число процессов, ожидающих завершения операции с диском, число сетевых пакетов, передаваемых в единицу времени, процент использования процессора и другие. PerformanceMonitor генерирует полезную информацию посредством следующих действий:
* наблюдения за производительностью в реальном времени и в исторической перспективе;
* определения тенденций во времени;
* определения узких мест;
* отслеживания последствий изменения конфигурации системы;
* наблюдения за локальным или удаленными компьютерами;
* предупреждения администратора о событиях, связанных с превышением некоторыми характеристиками заданных порогов.
2.7 Контроль защиты
Основной особенностью любой сетевой системы является то, что ее компоненты распределены в пространстве, а связь между ними осуществляется физически — при помощи сетевых соединений (коаксиальный кабель, витая пара, оптоволокно и т.д.) и программно — при помощи механизма сообщений. К сетевым системам наряду с обычными (локальными) атаками, осуществляемыми в пределах одной операционной системы, применим специфический вид атак, обусловленный распределенностью ресурсов и информации в пространстве, — так называемые сетевые (или удаленные) атаки. Они характеризуются тем, что, во-первых, злоумышленник может находиться за тысячи километров от атакуемого объекта, а во-вторых, нападению может подвергнуться не конкретный компьютер, а информация, передающаяся по сетевым соединениям.
Системный администратор должен реализовывать стратегию защиты и периодически проверять, не нарушена ли защита системы.
Естественно, абсолютная защита сети невозможна, однако задача каждого администратора — сделать все возможное для максимального ее улучшения. При построении системы защиты разумно придерживаться следующих принципов:
* Актуальность. Защищаться следует от реальных атак, а не от фантастических или же архаичных.
* Разумность затрат. Поскольку 100% защиты вы все равно не обеспечите, необходимо найти тот рубеж, за которым дальнейшие траты на повышение безопасности превысят стоимость той информации, которую может украсть злоумышленник.
Конечно же, действия, которые вы должны предпринять для защиты своего сервера очень зависят от того, какую операционную систему вы используете. Однако есть ряд простых правил, которые пригодятся любому системному администратору.
* Внимательно прочитайте руководство по администрированию системы, вы наверняка найдете там полезные советы, которыми захотите воспользоваться.
* Запустите программу автоматизированного контроля вашего хоста — типа Internet Scanner. Система Internet Scanner может быть запущена на одной из платформ (Windows NT, Windows 2000, HP/UX, AIX, Linux, Sun OS, Solaris). Используется она для анализа защищенности систем.
* Загляните на серверы CERT (http://www.cert.org/) или CIAC (http://ciac.llnl.gov/) и внимательно прочитайте относящиеся к вашей ОС бюллетени за последнее время. Установите все рекомендуемые заплатки и сконфигурируйте систему, как полагается.
* Правильно настройте (или установите) межсетевой экран. Поставьте монитор всех входящих соединений (например, tcp_wrapper).
* Запустите последний взломщик паролей. Здесь у вас большое преимущество перед хакерами — у вас уже есть файл с хэшированными паролями.
* Проверьте настройки основных Интернет-служб (http, ftp). Максимально используйте анонимный доступ, чтобы предотвратить передачу паролей по сети в открытом виде. При необходимости разграничения доступа используйте стойкие протоколы типа SSL.
* У всех остальных сетевых служб также по возможности используйте аутентификацию, не включающую передачу пароля открытым текстом.
* Выбросьте некоторые малоиспользуемые службы. Особенно это касается администраторов UNIX-серверов: давно не используемый, но существующий на вашем сервере сервис типа finger, talk, rpc может стать той самой «дырой» в системе безопасности, через которую сможет проникнуть (или уже проник) хакер.
* Поставьте proxy-сервер для дополнительной аутентификации извне, а также для скрытия адресов и топологии внутренней подсети.
* Поставьте защищенную версию UNIX или другой операционной системы.
2.8. Подключение и удаление пользователей. Оказание им помощи
Создание бюджетов для новых пользователей и удаление бюджетов тех пользователей, которые уже не работают, — обязанность системного администратора. Процесс включения и удаления пользователей можно автоматизировать, но некоторые решения, от которых зависит включение нового пользователя, должен принимать администратор.
Очень часто сотрудники предприятия оказываются самым слабым звеном в системе его безопасности, поэтому системному администратору следует уделять больше внимания работе с пользователями системы. Иначе простой листочек бумаги с паролем, лежащий на рабочем месте забывчивой сотрудницы, сделает бесполезной выверенную настройку вашего межсетевого экрана.
Для усиления безопасности компьютерных систем компании разумными могут считаться следующие шаги:
* Привлечение внимания людей к вопросам безопасности.
* Осознание сотрудниками всей серьезности проблемы и принятие в организации политики безопасности.
* Изучение и внедрение необходимых методов и действий для повышения защиты информационного обеспечения.
Если вы работаете в крупной (более 100 человек) организации, то для определения уровня ее защищенности можно провести тест на проникновение. Этот метод позволяет выявить недостатки безопасности с точки зрения постороннего человека. Он позволяет протестировать схему действий, которая раскрывает и предотвращает внутренние и внешние попытки проникновения и сообщает о них.
Тест должен разрешить два основных вопроса:
* Все ли пункты политики безопасности достигают своих целей и используются так, как было задумано.
* Существует ли что-либо, не отраженное в политике безопасности, что может быть использовано для достижения злоумышленником своих целей.
Все попытки должны контролироваться обеими сторонами — как взломщиком, так и «клиентом». Это поможет протестировать систему гораздо более эффективно. Необходимо также свести к минимуму количество людей, знающих о проведении эксперимента.
Требуется создать и разработать различные варианты политики безопасности, определить правила корректного использования телефонов компьютеров и другой техники. Необходимо учитывать и неосведомленность в области безопасности, поскольку любые средства технического контроля могут быть использованы ненадлежащим образом. В итоге тестирование системы безопасности должно обеспечить вам защиту от проникновения.
3. Почему давят на системного администратора
Сети имеют тенденцию разрастаться, следовательно, вы будете вынуждены тратить все больше и больше времени на выполнение функций администратора. Вскоре окажется, что вы — единственный человек в своей организации, который знает, как решить целый ряд важнейших проблем.
Поскольку круг обязанностей системного администратора четко ограничить нельзя, от вас, скорее всего, потребуют, чтобы вы были не только штатным администратором, но и штатным инженером, писателем, а также секретарем.
Вместо этого мы предлагаем вам следующее: ведите работу на должном уровне, параллельно регистрируя время, затрачиваемое на системное администрирование. Собирайте доказательства, которые могут вам пригодиться, когда вы попросите руководство взять в штат еще одного администратора или освободить вас от «лишних» обязанностей.
С другой стороны, вы можете обнаружить, что системное администрирование вам нравится. В этом случае проблем с поиском работы у вас не будет.
Я уже рассказывал о брандмауэре Windows Firewall, компоненте пакета обновлений Windows XP Service Pack 2 (SP2), прежние версии которого были известны как Internet Connection Firewall (ICF). В данной статье я более подробно остановлюсь на этой программе и покажу, как подготовить ее для работы в конкретной сети. В моем распоряжении была только предварительная версия SP2, в окончательную редакцию могут быть внесены изменения.
Итак, рассмотрим девять новых параметров Group Policy для Windows Firewall и соответствующие команды. Параметры Windows Firewall хранятся в папке Computer Configuration\Administrative Templates\Network\Network Connections\Internet Connection Firewall. В этой папке существует две подпапки: Domain Profile и Mobile Profile. Параметры политики Domain Profile активизируются на компьютере с установленным Windows Firewall, когда данный компьютер регистрируется в домене; в противном случае выбираются параметры Mobile Profile. Обе подпапки содержат одинаковый набор из девяти параметров политики.
В предыдущей статье речь шла о первом параметре, Operational Mode. Данный параметр обеспечивает три режима: Disabled отключает брандмауэр, Protected активизирует брандмауэр, а Shielded активизирует брандмауэр, но компьютер оказывается более изолированным от сети, чем в режиме Protected, который позволяет открыть определенные порты. Чтобы перевести компьютер в режим Disabled, Protected или Shielded, следует воспользоваться командой
netsh firewall ipv4 set opmode
с ключом disabled, enabled или shield. Обозначения в командной строке иногда отличаются от названий соответствующих параметров Group Policy. Таким образом, чтобы надежно защитить сетевой адаптер, следует ввести команду
netsh firewall ipv4 set opmode shield
Эту команду удобно использовать в командном файле. Можно создать для командного файла ярлык на рабочем столе, назвав его Shield this System, чтобы можно было дважды щелкнуть на нем при любых признаках опасности для сети. С помощью команды
netsh firewall ipv4 show opmode
можно узнать режим брандмауэра.
Изменение параметров брандмауэра
Свойства следующего параметра политики Windows Firewall - Allow User Preference/Group Policy Settings Merge не совсем ясны. В документации Windows Firewall указывается, что с помощью данного параметра локальные администраторы могут изменить режим брандмауэра. Но что означает слово "изменить" - включить или выключить брандмауэр либо настроить его, открывая и закрывая порты? В данном случае "изменить" имеет второе значение: с помощью данной политики локальный администратор может открыть или закрыть порт, но не отменить режим Disabled, Protected или Shielded, установленный доменной политикой (предполагается, что доменная политика для Windows Firewall существует). Если в политике задан режим Disabled, то локальный администратор не может управлять работой брандмауэра.
Путаница начинается, если локальный администратор пытается отменить параметры Windows Firewall, заданные объектом Group Policy Object (GPO). В ответ на команду
netsh firewall ipv4 set opmode disable
будет получен результат OK, и следующая команда Netsh Firewall сообщит, что брандмауэр отключен. Однако, заглянув в свойства сетевого адаптера в папке Network Connections, можно увидеть, что брандмауэр активен. Несколько тестов показывают, что информация графического интерфейса соответствует действительности: преобладают доменные параметры. Будем надеяться, что в окончательной версии эти недостатки будут исправлены.
Однако нельзя всегда полагаться на диалоговые окна. Если присвоить параметру Allow User Preference/Group Policy Settings Merge значение Disabled, то цвет окна становится серым, а переключатели для активизации и отключения Windows Firewall перестают действовать. Такой подход разумен. Но попробуйте активизировать параметр, а затем вернуться к экрану настройки Windows Firewall. Кнопки для включения и выключения брандмауэра доступны. Если щелкнуть на одной из них, а затем на OK, то на экране не появится сообщения об ошибке, но и изменений также не произойдет. Однако локальный администратор может открывать и закрывать порты с помощью командной строки или gpedit.msc. Для параметра политики Allow User Preference/Group Policy Settings Merge эквивалента командной строки не существует.
Открываем порты для программ
Следующий параметр политики - первый из семи параметров, с помощью которых можно открыть или (в некоторых случаях) закрыть конкретный порт. Открывая брандмауэр для прохождения определенного типа трафика (например, Web-трафика, данных аутентификации Active Directory или загрузки электронной почты), трудно определить, какой порт необходим для этого типа трафика. Задача упрощается благодаря параметру политики Define Allowable Programs. По умолчанию Windows Firewall блокирует непрошеный входящий трафик, но не исходящий. Такой подход приемлем, если рабочая станция функционирует как клиент, инициирующий обмен данными (например, запрашивая почтовый сервер о наличии сообщений или Web-сервер - об информации). Но он не срабатывает, если рабочая станция предоставляет службы другим компьютерам сети, например, если на рабочей станции размещен почтовый сервер, потому что брандмауэр блокирует попытки клиентов инициировать диалог с серверной программой. Он также непригоден для одноранговых (peer-to-peer, P2P) соединений, таких как Instant Messaging (IM), в которых две или несколько машин обмениваются данными, выполняя обязанности и клиентов, и серверов одновременно. Таким образом, для запуска сервера или организации соединений P2P необходимо открыть некоторые порты.
Но какие именно порты следует открыть? Для ответа на этот вопрос достаточно указать конкретную программу в параметре Define Allowable Programs, и Windows Firewall открывает порты, необходимые данной программе. Пользователь указывает в параметре политики местонахождение программы, определяет ее состояние (активное или блокированное; например, можно составить политику блокирования портов для конкретной программы, если эта программа была "троянским конем", проникшим в сеть) и открывает соответствующие порты для всего Internet или только для локальной подсети.
Предположим, что на компьютере работает серверная программа C:\myprogs\serverprog.exe. Неизвестно, какие порты она открывает, но необходимо, чтобы эти порты были открыты только для компьютеров той подсети, в которой расположен сервер. Нужно активизировать параметр Define Allowable Programs, затем щелкнуть на кнопке Show, чтобы на экране появилось диалоговое окно для ввода информации о почтовом сервере. В этом диалоговом окне я ввел строку
C:\myprogs\serverprog.exe:LocalSubnet: enabled:E-mail server
которая определяет четыре компонента, каждый из которых отделен от остальных двоеточием. Первый компонент - полный путь к программе. Можно использовать переменные среды, такие как %ProgramFiles%. Следующий компонент, LocalSubnet, указывает на необходимость принять трафик, входящий в порты этого сервера только из систем той же подсети. Третий компонент, enabled, разрешает прохождение трафика. И четвертый компонент, E-mail server, представляет собой просто метку, которую Windows Firewall может использовать при составлении отчетов. Число программ не ограничено.ъ
Открытие конкретных портов
С помощью остальных параметров открываются различные порты. Не совсем ясно, следует ли активизировать первый из них, Allow Dynamically Assigned Ports for RPC and DCOM. Вообще я предпочитаю инструменты на основе Windows Management Instrumentation (WMI), такие как WMI VBScripts и оснастка Manage Computer консоли Microsoft Management Console (MMC), но для WMI необходимы вызовы удаленных процедур (Remote Procedure Calls, RPC). Оснастку Manage Computer нельзя использовать для дистанционного управления системой без WMI, поэтому, чтобы управлять удаленными системами с помощью Manage Computer при активном Windows Firewall, необходимо активизировать этот параметр. Опасность открывания портов для RPC заключается в том, что за последние два года в RPC было обнаружено несколько серьезных ошибок, одна из которых привела к памятной атаке MSBlaster. Поэтому активизация брандмауэра при открытых портах для RPC - противоречивое решение; с таким же успехом можно запереть на замок все двери в доме, ради удобства (своего и грабителей) оставив открытым парадный вход. Как и предыдущий, данный параметр позволяет открыть порты для всех IP-адресов или только для локальной подсети, но такой вариант тоже не очень удачен. Во многих случаях вирус MSBlaster распространялся от зараженного компьютера, который кто-то приносил на предприятие. Поэтому перед активизацией данного параметра необходимо тщательно все обдумать.
Как и RPC, параметры File and Print Sharing, Remote Assistance Support и Universal Plug and Play можно отменить или активизировать, а действие активных параметров ограничить локальной подсетью. Все эти параметры, кроме Remote Assistance Support, можно активизировать из командной строки с помощью команды
netsh firewall ipv4 set service
за которой следует type= и имя службы (например, FILEANDPRINT, RPCANDDCOM или UPNP) или scope= с последующими ключами all (для всех IP-адресов) и subnet (для локальной подсети). Например, чтобы разрешить совместную работу с файлами и принтерами только в локальной подсети, следует ввести команду
netsh firewall ipv4 set service type=fileandprint scope=subnet
Любую команду можно дополнить ключами profile= и interface=, поэтому, если файл- или принт-службу требуется открыть для проводного Ethernet-соединениия только в случаях, когда система подключена к домену, нужно ввести команду
netsh firewall ipv4 set service type=fileandprint scope=subnet interface="local area connection" profile=corporate
Group Policy работает с профилями Domain и Mobile, а инструменты командной строки - с корпоративными и другими профилями.
Остается два параметра политики. Allow ICMP Settings воздействует на подсистему ICMP (Internet Control Message Protocol - протокол управления сообщения Internet). В сущности, для администратора важен лишь один компонент ICMP: Ping. По умолчанию в системах с брандмауэром блокируются все запросы ICMP, и потому сигналы эхо-тестирования игнорируются. В Allow ICMP Settings Properties перечислено девять типов запросов ICMP, разрешенных брандмауэром Windows Firewall. Для тестирования нужно активизировать только запрос Allow Inbound Echo Request. Данный параметр не позволяет ограничить ICMP-трафик локальной подсетью.
ICMP открывается из командной строки:
netsh firewall ipv4 set icmpsetting
с последующим ключом type= и числом (3, 4, 5, 8, 10, 11, 12, 13 или 17) или словом all. Номер указывает один из девяти параметров ICMP, и нам нужен номер 8 - входящий запрос (incoming echo request). Чтобы машина отвечала на сигналы тестирования, необходимо ввести команду
netsh firewall ipv4 set icmpsetting type=8
Команду можно уточнить с помощью ключей profile= и interface=.
Как открыть порт для службы, которая в данной статье не рассматривалась? Для этого можно воспользоваться девятым параметром политики, Define Custom Open Ports. Затем следует указать номер порта Windows Firewall, тип порта (TCP или UDP), область действия (все IP-адреса или только локальная подсеть) и действие (активизировать или блокировать). При желании порту можно присвоить описательное имя. Например, для почтового сервера можно открыть всему миру порт TCP 25:
25:TCP:*:enabled:SMTP
где 25 - номер порта, TCP - протокол, звездочка (*) открывает порт всему миру (не только подсети), ключ enabled открывает, а не закрывает порт, и SMTP - описательная фраза. В командной строке нужно ввести
netsh firewall ipv4 add portopening
с последующими ключами protocol= (варианты - tcp, udp или all), port= (с номером), name= (с именем), mode= (enable или disable) и scope= (all или subnet). Для активизации почтового сервера следует ввести команду
В процессе экспериментов могут возникнуть недоразумения - порт был закрыт, но почему-то остается открытым. Чтобы избежать недоразумений, следует уяснить разницу между поведением брандмауэров, управляемых параметром Group Policy и с помощью командной строки. Команды, подаваемые из командной строки, обычно вступают в силу немедленно. Изменения в Group Policy начинают действовать спустя некоторое время. Чтобы изменения Group Policy для Windows Firewall вступали в действие сразу же, следует применить команду gpupdate.
Необходимо дождаться, пока обработка команды завершится, затем перейти к функции Services в оснастке Manage Computer и перезапустить службу Internet Connection Firewall (в окончательной версии имя службы может быть изменено).
Дополнительные возможности командной строки
Мы рассмотрели возможности параметров Group Policy для Windows Firewall, но функции командной строки шире. Следует помнить, что Windows Firewall имеет два профиля: Domain и Mobile. Предположим, нам нужно выяснить, какой профиль используется в данный момент. Следующая команда показывает активный профиль - Domain Profile (corporate) или Mobile Profile (other):
netsh firewall ipv4 show currentprofile
Команда Set Logging позволяет больше узнать о работе брандмауэра. Она имеет четыре факультативных параметра: Filelocation= показывает брандмауэру, куда записать ASCII-файл журнала, а maxfilesize= задает максимальный размер файла. Размер файла указывается в килобайтах, и максимальное допустимое значение - 32767. Параметры droppedpackets= и connections= принимают значения enable или disable и указывают брандмауэру, следует ли регистрировать блокированные и успешные соединения. Например, чтобы записывать как успешные, так и блокированные соединения в файле C:\firelog.txt размером максимум 8 Мбайт, нужно ввести команду
netsh firewall ipv4 set logging filelocation="C:\firelog.txt" maxfilesize=8192 droppedpackets= enable connections=enable
Журнал может быть большим, но если нужно обнаружить взломщика, регулярно предпринимающего попытки атак, полезно иметь полный журнал, в котором отражены все соединения и отказы TCP и UDP. Задать текущий режим регистрации можно с помощью команды
netsh firewall ipv4 show logging
Следующая команда выдает исчерпывающий список параметров брандмауэра:
netsh firewall ipv4 show config
Заменив в данной команде ключ config ключом state, можно получить подробные сведения о действиях, выполняемых брандмауэром. Чтобы получить более компактный отчет, содержащий только информацию об открытых портах, следует заменить config на icmpsetting или portopening.
Для работы с Windows Firewall требуется освоить много новых понятий. Однако если в системе персонального брандмауэра нет, то Windows Firewall поможет защитить машину, придется лишь потратить незначительное время на создание GPO, чтобы открывать нужные порты. Вознаграждением для администратора будет сознание того, что система за брандмауэром станет куда менее уязвимой.
Прежде чем работать с графикой, необходимо понять, как именно в Windows реализован принцип перерисовки изображений. Не инструменты рисования являются предметом этого материала, а общий механизм перерисовки окон.
Данный материал посвящен системному сообщению WM_PAINT.
Основной принцип перерисовки: Save and Paint - сохраняй и прорисовывай.
Windows не хранит в памяти нарисованное изображение в виде растрового рисунка. Система перерисовывает ту часть окна , которая в какждый конкретный момент в этом нуждается.
Когда Windows ( или другое приложение) посылает запрос на перерисовку окна или его части, этому окну посылается сообщение WM_PAINT.
Посылка сообщения WM_PAINT окну может быть вызвана как явным обращением к методам Window или RedrawWindow, так и полученим запроса на перерисовку от системы, которое поступает при перемещении окна, изменении его размеров и так далее. Windows посылает это сообщение, когда не имеется никаких других сообщений в очереди сообщений приложения.
Сообщение WM_PAINT относится к сообщениям с низким приоритетом, поэтому оно будет обработано в самую последнюю очередь.
Если будут посланы подряд несколько сообщений WM_PAINT, то обработано будет только одно, так как система не регистрирует следующие сообщения WM_PAINT. Таким образом достигается минимизация затрат на исполнение очень длительной операции - перерисовки окна.
В соответствии с общим подходом, принятым в Windows, перерисовываться будет не все окно, а только та часть, которая в этом нуждается. Так называемая область модификации - Region. К области модификации добавляется только некорректно отображаемая часть - Invalid Area , именна та часть окна, которая нуждается в перерисовке.
Область окна установливается как некорректная (Invalid area) методами Invalidate, InvalidateRect, или InvalidateRgn, а так же после того, как окно передвигают, изменяют его размеры или выполняют любою другою операцию, которая воздействует на клиентскую область окна.
Метод Invalidate объявляет некорректной всю клиентскую область окна.
Метод InvalidateRect ( и InvalidateRgn ) объявляет некорректной клиентскую область внутри данного прямоугольника, добавляя этот прямоугольник к текущей области модификации ( Region).
Удалить некоторую область из Region можно методами ValidateRect или ValidateRgn.
Таким образом, некорректные области накапливаются в Region, пока эта область не будет обработана при следующем сообщении WM_PAINT , или пока она не будет объявлена корректной принудительно, методом ValidateRect или ValidateRgn.
Как уже отмечалось выше, установка непустой области модификации Region не заставляет приложение немедленно перерисоваться. Вместо этого, приложение продолжает получать сообщения из очереди, пока все сообщения не будут обработаны. Затем Windows проверяет область модификации, и если область не пустая, посылает сообщение WM_PAINT окну. При проверке области модификации могут быть посланы так же сообщения WM_NCPAINT и WM_ERASEBKGND, если требуется перерисовать рамку ( неклиентскую часть) окна или необходимо очистить окно.
Например, при увеличении размера окна будут посланы все три сообщения : WM_NCPAINT , WM_ERASEBKGND и WM_PAINT. При уменьшении размеров, окну придет только два сообщения из этой группы, сообщение WM_NCPAINT и WM_ERASEBKGND. По смыслу ситуации это резонно - при уменьшении окна клиентская часть его только урезается, следовательно стереть ее надо, а рисовать, вообще говоря, нечего...
[pagebreak]
Метод Window требует немедленной перерисовки клиентской области в обход общей очереди. Предварительно проверяется состояние области модификации: если область модификации не пустая, окну будет послано сообщение WM_PAINT. Если область модификации пуста сообщение WM_PAINT, наоборот, не будет послано.
Если эта область была помечена для стирания, то окну предварительно будет послано сообщение WM_ERASEBKGND.
Для получения более подробной информации смотрите Help WinAPI по темам:
Все вышеперечисленные методы являются методами класса CWnd, доступного через WinAPI.
Для перерисовки окон в Delphi применяются два метода :
Метод RePaint заключается в объявлении всей области окна как некорректной и немедленного запроса на перерисовавание окна. Достаточно привести реализацию этого метода из модуля Controls.pas, чтобы это увидеть:
Метод Refresh является модификацией метода RePaint. Для класса TWinControl метод Refresh повторяет вызов RePaint.
Таким образом, если Вам необходимо немедленно обновить окно, воспользуйтесь методом RePaint, если в этом нет необходимости и перерисовку нужно запросить, но в порядке общей очереди, лучше использовать метод Invalidate;
Для получения более подробной информации смотрите реализацию методов:
* TWinControl.Invalidate
* TWinControl.
* метод Refresh для разных компонент, наследников от TWinControl.