Книга предназначена для учащихся техникумов по специальности 1750 «Прикладная математика» и содержит теоретический материал, соответствующий программе курса «Математическая логика», а также упражнения для активного усвоения курса н приобретения необходимых навыков. Изложение базируется на знаниях по математике, полученных учащимися в восьмилетней школе, и на усвоенных ими языковых нормах. Предназначается для учащихся средних специальных учебных заведений.
Книга представляет собой вторую часть учебного пособия авторов "Введение в математическую логику" (1982г), но может изучаться и самостоятельно. Излагаются фундаментальные факты математической логики: начала акиоматической теории множеств, теория алгоритмов, теорема о полноте исчисления предикатов, теорема Геделя о неполноте. Обсуждается программа Гильберта обоснования математики.
Редкая книга 1964 года.
Предисловие: Эта книга популярно излагает основы математической логики. Необходимость такой книги вызвана тем, что в настоящее время все большее значение приобретает автоматизация производственных процессов. Программа КПСС прямо указывает на важность автоматизации для создания материально-технической базы коммунизма. Математическая логика является теоретической основой кибернетики, а эта последняя в свою очередь применяется для решения проблема автоматизации. Несмотря на важность математической логики, в нашей стране почти нет книг, излагающих основы этой науки. Имеющиеся у нас книги по математической логике рассчитаны на читателя, достаточно математически подготовленного. Между тем необходимо создать такую книгу, которая давала бы представление о математической логике и в то же время не требовала бы для своего понимания большего, чем школьный курс математики. Данна книга, по-моему, решает эту задачу.
В этом разделе речь пойдет о растеризации двумерных графических примитивов, таких как отрезки, окружности, эллипсы. Мы попробуем разобраться, в чем отличие идеальных математических объектов от реальных отрезков и окружностей, рисуемых на экране.
При этом рассматриваются реальные задачи отрисовки графики, поэтому предложенные алгоритмы должны работать с приемлемой скоростью и использовать различные оптимизации.
Далее, на базе рассмотренных методов, будут построенны алгоритмы заливки фигур.
Связность
Идеальная математическая линия представляет собой бесконечное количество точек, удовлетворяющих определенному уравнению, или задана другим образом. Реальный экран это всегда конечное количество точек. Изображение представляет из себя прямоугольную сетку, узлы которой имеет целочисленные координаты. Появляется законный вопрос: как определить связность линии на экране?
Традиционно вводятся два понятия связности.
4-связность: пикселы p1(x1, y1) и p2(x2, y2) называются соседними, если либо разность их координат по оси x, либо разность их координат по оси y равна 1 (либо исключающее):
|x2 – x1| + |y2 – y1| <= 1
8-связность: пикселы p1(x1, y1) и p2(x2, y2) называются соседними, если разность их координат по оси x и разность их координат по оси y не больше 1:
|x2 – x1| <= 1, |y2 – y1| <= 1
8-связность(рис 1.) и 4-связность (рис 2.)
Линией на растровой сетке будем считать последовательность пикселов {P1, …, Pn}, таких, что любые два пиксела Pi, Pi+1 являются соседними в смысле заданной связности.
Прим. Отметим, что любая четырехсвязная линия одновременно является восьмисвязной, но не наоборот. Таким образом 4-связность является более сильным понятием.
Отсечение
Понятие связности, введенное выше, позволяет обойти требование на целочисленность координат всех точек. С помощью этого понятия можно судить о связности дискретной линии. Другая проблема состоит в том, что область вывода всегда имеет ограниченные размеры. Область формы, на которую делался вывод в предыдущих разделах, имеет форму прямоугольника. Таким образом появляется задача отсечения выводимых геометрических примитивов по границе некоторой области. Алгоритмы отчесения будут рассмотрены ниже.
Переход к оконным координатам
В предыдущем разделе не акцентировалось внимание, где именно стоит перейти из логических координат в оконные. Дискретность сетки, на которую выводится изображение, имеет определенные преимущества. А именно, за счет целочисленности коорднат пикселей можно создать алгоритмы, которые будут также работать только с целыми числами. Более того, во многих случаях основной цикл из числа арифметических операций содержит только сложения!
Становится ясно, что переход к оконным коодинатам нужно осуществить до начала работы основного алгоритма. В общем случае схема работы будет выглядеть следующим образом:
Это то, что касается базовых понятий. В последующих статьях будут рассмотрены математические основы задания графических примитивов и алгоритмы их построения (растеризации).