С помощью РНР 5 разрабатываются многочисленные компоненты,
входящие в состав полнофункционального Web-сайта.
Рассматриваются работа с СУБД MySQL, вопросы защиты Web-приложений,
работа с графикой, Flash и PDF-документами.
В качестве практических примеров разработаны такие приложения,
как система администрирования контента сайта, форум,
система сбора и анализа статистики посетителей сайта,
система рассылки, FTP-менеджер, универсальный каталог продукции и др.
Книга ориентирована на читателей, знакомых с языками HTML и РНР,
но не имеющих большого опыта разработки динамических Web-приложений.
Книга посвящена использованию популярной программы компьютерной верстки публикаций различного назначения Adobe InDesign CS3. Материал предназначен для самостоятельного изучения: приводится описание возможностей программы, ставятся конкретные задачи верстки и на их примерах выполняются многочисленные упражнения. Особое внимание уделено дополнительным возможностям новой версии программы, ее взаимосвязи при верстке публикаций с другими графическими программами, такими как Photoshop и Illustrator, подготовке публикаций к цветоделению и печати.
В руководстве освещаются основы разработки приложений на языке Adobe® ActionScript® 3.0. Для наилучшего понимания описываемых принципов и техник вы должны быть знакомы с основными понятиями программирования, такими как типы данных, переменные, циклы и функции. Вы должны понимать основные принципы объектно-ориентированного программирования, такие как классы и наследование. Знание языка ActionScript версии 1.0 или 2.0 будет полезно, но необязательно.
Также в руководстве содержатся многочисленные примеры файлов, демонстрирующих принципы программирования с участием важных или часто используемых классов. Образцы файлов объединены в пакеты таким образом, чтобы их было легче загружать и использовать с Adobe® Flash® CS4 Professional. Они также могут включать файлы-оболочки. Тем не менее, ключевым образцом является сам код ActionScript 3.0, который можно использовать в любой среде разработки.
Книга, выпускаемая по лицензии издательства Addison - Wesley, является каноническим описанием языка программирования Java. Структура книги и стиль изложения напоминают "библию" программистов на С - работу "Язык программирования С" Б.Кернигана и Д.Ричи. Эта аналогия тем более оправдана, что один из авторов "Языка программирования Java" (Д.Гослинг) известен как основной разработчик этого языка. Книга в равной степени может служить учебником и справочником по Java, а многочисленные упражнения позволят читателю попрактиковаться в использовании популярного языка программирования.
Книга адресована прежде всего программистам-профессионалам и представляет собой исчерпывающий справочник и методическое пособие по основам программирования на языке Java. Однако это не просто учебник по синтаксису языка. Назначение книги - обучить методам объектно-ориентированного программирования и научить справляться с основными проблемами в этой области. Работа с книгой не требует опыта программирования на языке С++ и применения методов ООП. Любой программист, работавший с такими языками, как Visual Basic, C, Cobol или Pascal, не будет испытывать затруднений при работе с ней. Книга содержит многочисленные примеры и советы по программированию. Авторы уделили большое внимание возможностям, которые стали доступны программистам с появлением JDK 5.0. Новые языковые и библиотечные средства нашли свое отражение в кодах примеров, приведенных в книге.
Кратко и доступно изложены основы популярного языка программирования C++. Рассмотрены основные выражения, операторы и функции C++. Дано неформальное, легко воспринимаемое введение в объектно-ориентированное программирование. Многочисленные примеры позволяют закрепить изученный теоретический материал и являются готовыми фрагментами программ, которые могут быть использованы при создании оригинальных приложений.
Ларри Уолл – создатель Perl и один из авторов этой книги. Уже написано много книг, в которых рассматриваются многочисленные возможности Perl, но только в этой книге рассказывается, зачем эти возможности были созданы и как их использовать в полную силу. Особенно Perl полезен в системном администрировании и веб-програмировании.
В книге приведены исчерпывающие сведения по созданию динамических Web-узлов на основе программных средств, предоставляемых бесплатно в общее пользование (языка PHP, сервера Apache и СУБД MySQL), а также показано, как обеспечить бесперебойную эксплуатацию таких узлов под управлением операционной системы Windows или Linux.
Многочисленные сценарии и готовые программы, представленные в книге, подробно описаны, тщательно прокомментированы и составляют основу практически значимых приложений. Книга дополняет оперативную документацию, содержит все необходимые справочные данные и рассчитана на широкий круг читателей.
Книга состоит из 24 учебных занятий, каждое из которых охватывает отдельную тему. Последовательное описание возможностей JavaScript 1.5 делает длинные сценарии простыми, а сложные понятия — доступными. В конце книги приведен словарь используемых терминов, краткий справочник по операторам JavaScript и множество полезных ссылок. Каждое занятие оканчивается тестовыми вопросами и упражнениями, выполнив которые, вы закрепите пройденный материал и расширите свои познания.
В книге описана последняя версия известного языка подготовки сценариев — JavaScript. Многочисленные советы, замечания и предостережения обращают внимание читателя на важные тонкости создания сценариев и возможные ошибки. Примеры программных кодов и иллюстрации упрощают усвоение нового материала и делают книгу доступной для начинающих пользователей любого уровня.
Эта книга научит вас применять Perl для решения задач, необходимых в современных сетевых приложениях. Множество примеров и еще более многочисленные упражнения дают не просто полезную информацию, но и готовые программы, которые вы можете сразу поместить в свои приложения. Книга поможет вам овладеть практическими приемами и методами, с которыми вы сможете разрабатывать на Perl любые Web-приложения на основе протокола CGI.
Основное внимание в книге уделяется важным вопросам разработки Web-приложений, таким как работа с базами данных, обработка форм и файлов, безопасность, электронная почта и работа с графикой. Кроме того, в этой книге подробно рассматриваются некоторые более специальные темы: обработка Web-форм и получение через них данных пользователя, файлы cookie, отслеживание щелчков и счетчики доступа, применение модуля Apache mod_perl, связывание переменных с базами данных, встраивание кода Perl в HTML при помощи модуля HTML:Mason, управление документами через Web, создание динамических изображений, применение XML и его производных — RSS и RDF.
Книга рассчитана на программистов средней и высокой квалификации.
Учебник по программированию на С/С++, написан специально для начинающих. Показан путь от самых азов языка до построения программ, использующих структуры, указатели и дисковые операции ввода-вывода, В последней главе у читателей создается полезное приложение, управляющее базой данных по домашней коллекции компакт-дисков. Даны многочисленные рисунки, примеры и упражнения.
Учебник основывается на версиях языка C, известных как стандарты K&R и ANSI C. В книге рассматриваются основные аспекты языка C++. Книга поможет в кротчайшие сроки изучить все азы языка, включая создание написание программ, использующих структуры, указатели, дисковые операции ввода и вывода и многое другое. Материал, предлагаемый в книге "Моя первая программа на С/С++ ", сопровождается многочисленными иллюстрациями, примерами подходов к решению задач и упражнениями. Она станет хорошим помощником для программистов, которые хотят изучить C и C++ после других языков наподобие Basic, Pascal, которые применяются в пакетах WordPerfect, Lotus или Excel.
Книга состоит из 13 основных глав:
Основы программирования;
Введение в C/C++;
Переменные и константы;
Вывод в C/C++;
Ввод в C/C++;
Операторы;
Для чего нужны функции;
Позвольте компьютеру принимать решения;
Циклы;
Массивы и строки;
Структуры и указатели;
Вывод на диск и принтер;
Как собрать все вместе.
Каждая глава кончается вопросами для закрепления пройденного материала и заданиями для самостоятельной работы. Учебник может использоваться как в качестве самоучителя, так и в школах и ВУЗах.
В данном пособии представлены подробные материалы по языку Java и многочисленные примеры программирования на Java. Вы познакомитесь с принципами и технологиями, положенными в основу этого языка, изучите библиотеки классов Java, научитесь пользоваться современными визуальными средствами разработки приложений Java, такими как Java WorkShop и Java Studio.
Многочисленные примеры приложений и аплетов помогут вам в кратчайшие сроки освоиться в мире Java.
В книге содержится обзор современных технологий разработки сложных системных приложений для среды UNIX. Приведены многочисленные примеры программ, демонстрирующие принципы создания классов и приложений с помощью стандартных функций и классов ANSI, POSIX, UNIX; включены исходные тексты готовых классов, которые могут быть встроены во вновь создаваемые приложения, что позволит программисту сэкономить время и повысить качество своих программ. Особое внимание уделяется реальным проблемам, с которыми сталкиваются разработчики приложений клиент/сервер и других программных продуктов. Предназначена в первую очередь для специалистов, желающих овладеть передовыми методами программироваия на C++ для UNIX.
Главное о чем стоит упомянуть это, что ваш хранитель экрана будет работать в фоновом режиме и он не должен мешать работе других запущенных программ. Поэтому сам хранитель должен быть как можно меньшего объема. Для уменьшения объема файла в описанной ниже программе не используется визуальные компоненты Delphi, включение хотя бы одного из них приведет к увеличению размера файла свыше 200кб, а так, описанная ниже программа, имеет размер всего 20кб!!!
Технически, хранитель экрана является нормальным EXE файлом (с расширением .SCR), который управляется через командные параметры строки. Например, если пользователь хочет изменить параметры вашего хранителя, Windows выполняет его с параметром "-c" в командной строке. Поэтому начать создание вашего хранителя экрана следует с создания примерно следующей функции:
Поскольку нам нужно создавать небольшое окно предварительного просмотра и полноэкранное окно, их лучше объединить используя единственный класс окна. Следуя правилам хорошего тона, нам также нужно использовать многочисленные нити. Дело в том, что, во-первых, хранитель не должен переставать работать даже если что-то "тяжелое" случилось, и во-вторых, нам не нужно использовать таймер.
Процедура для запуска хранителя на полном экране - приблизительно такова:
Во-первых, мы проинициализировали некоторые глобальные переменные (описанные далее), затем прячем курсор мыши и создаем окно хранителя экрана. Имейте в виду, что важно уведомлять Windows, что это - хранителя экрана через SystemParametersInfo (это выводит из строя Ctrl-Alt-Del чтобы нельзя было вернуться в Windows не введя пароль). Создание окна хранителя:
Теперь окна созданы используя вызовы API. Я удалил проверку ошибки, но обычно все проходит хорошо, особенно в этом типе приложения.
Теперь Вы можете погадать, как мы получим handle родительского окна предварительного просмотра ? В действительности, это совсем просто: Windows просто передает handle в командной строке, когда это нужно. Таким образом:
Как Вы видите, window handle является вторым параметром (после "-p").
Чтобы "выполнять" хранителя экрана - нам нужна нить. Это создается с вышеуказанным CreateThread. Процедура нити выглядит примерно так:
Нить просто заставляет обновляться изображения в нашем окне, спит на некоторое время, и обновляет изображения снова. А Windows будет посылать сообщение WM_PAINT на наше окно (не в нить !). Для того, чтобы оперировать этим сообщением, нам нужна процедура:
Если мышь перемещается, кнопка нажала, мы спрашиваем у пользователя пароль:
Это также демонстрирует использование registry на уровне API. Также имейте в виду как мы динамически загружаем функции пароля, используюя LoadLibrary. Запомните тип функции?
TVSSFunc ОПРЕДЕЛЕН как:
Теперь почти все готово, кроме диалога конфигурации. Это запросто:
Трудная часть -это создать диалоговый сценарий (запомните: мы не используем здесь Delphi формы!). Я сделал это, используя 16-битовую Resource Workshop (остался еще от Turbo Pascal для Windows). Я сохранил файл как сценарий (текст), и скомпилированный это с BRCC32:
Почти также легко сделать диалоговое меню:
После того, как пользователь выбрал некоторые установочные параметры, нам нужно сохранить их.
Загружаем параметры так:
Легко? Нам также нужно позволить пользователю, установить пароль. Я честно не знаю почему это оставлено разработчику приложений ! Тем не менее:
Мы динамически загружаем (недокументированную) библиотеку MPR.DLL, которая имеет функцию, чтобы установить пароль хранителя экрана, так что нам не нужно беспокоиться об этом.
TPCPAFund ОПРЕДЕЛЕН как:
(Не спрашивайте меня что за параметры B и C ! :-)
Теперь единственная вещь, которую нам нужно рассмотреть, - самая странная часть: создание графики. Я не великий ГУРУ графики, так что Вы не увидите затеняющие многоугольники, вращающиеся в реальном времени. Я только сделал некоторые ящики.
И последнее - глобальные переменные:
Затем исходная программа проекта (.dpr). Красива, а!?
Ох, чуть не забыл! Если, Вы используете SysUtils в вашем проекте (например фуекцию StrToInt) вы получите EXE-файл больше чем обещанный в 20k. :) Если Вы хотите все же иметь20k, надо как-то обойтись без SysUtils, например самому написать собственную StrToInt процедуру.
Если все же очень трудно обойтись без использования Delphi-форм, то можно поступить как в случае с вводом пароля: форму изменения параметров хранителя сохранить в виде DLL и динамически ее загружать при необходимости. Т.о. будет маленький и шустрый файл самого хранителя экрана и довеска DLL для конфигурирования и прочего (там объем и скорость уже не критичны).
Сегодня все более актуальной становится проблема перегруженности кабельной канализации, решить которую можно с помощью микротраншейной прокладки волоконно-оптических кабелей. Совершенствование телекоммуникационного оборудования позволяетзначительно сокращать площадь, занимаемую станционным оборудованием, при этом многократно наращивая мощность.
В отношении линейных сооружений такие тенденции, к сожалению, практически не наблюдаются. Развитие сетей операторов связи, а также ведомственных сетей приводит к тому, что существующая кабельная канализация оказывается перегруженной, и дополнительная прокладка кабелей невозможна. Кроме того, следует учитывать, что волоконно-оптические кабели необходимо прокладывать в свободных каналах кабельной канализации, в которые впоследствии могут быть проложены другие волоконно-оптические кабели. В канале кабельной канализации, занятом кабелем с металлическими проводниками, допускается совместная прокладка волоконно-оптических кабелей только в защитной полиэтиленовой трубке. Однако часто в каналах отсутствует место для прокладки кабелей в полиэтиленовых трубках. В такой ситуации приходится выполнять докладку каналов кабельной канализации, а это весьма дорогостоящая процедура. Чаще всего возникает необходимость докладки каналов в центральных районах, и без того перенасыщенных подземными коммуникациями (это, как правило, районы с высокой деловой активностью).
Надо отметить, что разрытие влечет за собой многочисленные неудобства: создает препятствия передвижению транспорта и пешеходов, ухудшает внешний вид улиц. В местах пересечений с коммуникациями сторонних организаций необходимо привлекать представителей этих организаций. Работы часто приходится проводить в сжатые сроки, в том числе и в ночное время. Для движения пешеходов через зоны разрытий устраиваются временные переходы с ограждениями, в темное время суток предусматривается освещение. Кроме того, по окончании работ проводятся ре-культивационные мероприятия, а также восстановление покрытия дорожного полотна (асфальтирование, укладка плитки и пр.). Действующие инструкции рекомендуют проводить ручным способом работы по рытью траншей и котлованов в стесненных городских условиях. Это создает дополнительные проблемы, особенно в зимний период. Городские власти с неохотой позволяют осуществлять разрытия в центральных районах города. Таким образом, есть целый комплекс проблем, препятствующих развитию проводных сетей в районах, где они более всего необходимы. Поиск путей решения этих проблем заставляет обратиться к опыту зарубежных партнеров. Одним из эффективных методов является применение микротраншейной прокладки волоконно-оптических кабелей.
Механизмы микротраншейной прокладки
Методика микротраншейной прокладки основана на использовании специализированных механизмов. Они представляют собой фрезу на шасси трактора для снятия дорожного покрытия и устройство для удаления пыли, песка, гравия и других мелких фракций. Эти механизмы могут быть совмещены в один или же, наоборот, разделены, соответственно распределяя технологическую операцию подготовки траншеи к инсталляции кабеля на два этапа – вскрытия асфальта и очистки микротраншеи. В качестве устройства очистки может применяться компрессор, а также вакуумный или водяной насос. Соответственно, посторонние частицы выдуваются воздушным потоком, отсасываются или же вымываются водяным потоком, который подается под напором.
Как правило, прокладка кабеля в грунт осуществляется в траншею на глубину 1,2 м (кроме скальных и прочих плотных грунтов IV и выше категории) согласно действующим нормам. Такая глубина считается достаточной для надежной защиты линейно-кабельных сооружений, эксплуатируемых вне помещений, от несанкционированного доступа и влияния факторов окружающей среды. В городских условиях для упорядочивания коммуникаций строится кабельная канализация, которая обеспечивает дополнительную защиту линейно-кабельных сооружений.
Различными разработчиками волоконно-оптических кабелей предлагаются разные варианты технологии прокладки кабеля в микротраншею. Эти варианты имеют общую технологическую операцию – заглубление. Идея микротраншейной технологии заключается в том, чтобы при значительном сокращении земляных работ обеспечить надежную защиту кабелей. Дополнительной защитой от наиболее вероятного внешнего механического и температурного воздействия служит само дорожное полотно.
Схема функциональных устройств при прокладке оптического кабеля в микротраншею
Существуют технологии прокладки волоконно-оптических кабелей специальной конструкции непосредственно в микротраншею, а также прокладка специальных каналов для последующей инсталляции в них волоконно-оптических кабелей.
Прокладка волоконно-оптических кабелей непосредственно в грунт
С помощью специализированных механизмов в полотне дороги проделывается микротраншея шириной до 15 мм и глубиной от 40 до 100 мм, в которую укладывается специализированный волоконно-оптический кабель. Проложенный кабель накрывается жгутом из пористой резины, диаметр жгута подобран таким образом, чтобы он плотно укладывался в траншею и служил распоркой. После этого траншея заливается битумом.
Кабель, предназначенный для такого способа инсталляции, представляет собой конструкцию monotube и состоит из одного металлического модуля, выполненного из медного сплава, внутри которого содержатся оптические волокна. Внутреннее пространство модуля с волокнами заполняется гидрофобным компаундом. Внешний диаметр модуля составляет 5 мм. Модуль содержит пучки оптических волокон. Для идентификации оптические волокна в одном пучке имеют различную окраску, а каждый пучок имеет обмотку из цветных синтетических нитей. Количество оптических волокон в пучке – до 12 штук. Кабель может содержать до 5 пучков оптических волокон. Таким образом, количество оптических волокон в кабеле может достигать шестидесяти. Снаружи кабель покрыт защитной полиэтиленовой оболочкой. Наружный диаметр кабеля составляет 7 мм, вес – порядка 110 кг/км.
Волоконно-оптический кабель для микротраншейной прокладки
Такая конструкция волоконно-оптического кабеля обеспечивает высокую устойчивость к температурным колебаниям и механическим воздействиям. Допустимое усилие на разрыв составляет 1 кН. Допустимый радиус изгиба при прокладке – 70 мм. Диапазон рабочих температур – от -40 до+70°С.
Следует заметить, что, как и в случае с другими волоконно-оптическими кабелями, инсталляционные работы должны проводиться при температуре окружающей среды не ниже -5°С.
Для сращивания строительных длин волоконно-оптического кабеля разработаны специальные муфты, предназначенные для установки на поверхности грунта таким образом, чтобы люк муфты оказывался на одном уровне с дорожным покрытием. Это муфты проходного типа. Корпус круглой формы выполнен из нержавеющей стали и рассчитан на сращивание до двух строительных длин кабеля, то есть имеет 4 кабельных ввода. Существуют модификации муфт для сращивания волоконно-оптических кабелей различной емкости. Корпус муфты имеет круглую форму, диаметр рассчитан таким образом, чтобы обеспечить возможность выкладки технологического запаса оптических волокон внутри корпуса муфты.
Кабельные вводы располагаются в нижней части корпуса муфты, герметизируются механически путем обжима патрубка муфты вокруг металлического модуля кабеля с помощью обжимного инструмента. Затем место стыка защитной полиэтиленовой оболочки кабеля и кабельного ввода муфты может быть дополнительно защищено термоусаживаемой трубкой для предотвращения проникновения влаги под оболочку. Такой способ герметизации обеспечивает надежную долговременную защиту муфты от проникновения влаги.
Микротраншейная прокладка кабельных каналов
Способ подготовки микротраншеи для инсталляции аналогичен способу прокладки кабеля непосредственно в грунт, за исключением размеров микротраншеи. Для прокладки каналов проделывается микротраншея шириной 100 мм и глубиной порядка 250 мм. В нее прокладывается 1–2 канала, содержащих до 7 субканалов для прокладки кабелей: один центральный и 7 периферийных. Внутренний диаметр каналов составляет 10 мм. После укладки каналов микротраншея заливается легким бетоном, а затем восстанавливается асфальтовое покрытие. Для расположения муфт и технологического запаса волоконно-оптического кабеля устраиваются специальные микроколодцы, представляющие собой пластиковые или металлические короба, заглубленные в грунт и вмурованные в асфальт. Горловина микроколодца закрывается крышкой или люком с замком, препятствующим несанкционированному доступу. Ввод каналов с кабелями осуществляется через стенки с последующей герметизацией места ввода. Муфта закрепляется на стенке микроколодца, а технологический запас кабеля выкладывается в форме восьмерки. За счет небольшого внешнего диаметра кабеля минимально допустимый радиус изгиба кабеля – около 150 мм.
Сечение микротраншей с проложенным кабелем
Строительство традиционных смотровых устройств кабельной канализации предусматривает значительный объем земляных работ, включающих в себя рытье котлована, вывоз излишков грунта, трамбовку грунта на дне котлована во избежание проседания под весом железобетонной конструкции. При строительстве необходима также техника для разгрузки железобетонных элементов колодца.
Поскольку микроколодцы располагаются на поверхности грунта, а их размеры и вес гораздо меньше стандартных смотровых устройств кабельной канализации, необходимы значительно меньшие затраты на их строительство. В первую очередь это достигается за счет значительного сокращения объемов земляных работ, а также за счет уменьшения трудозатрат.
Для данной методики разработаны специальные микрокабели, представляющие собой типичные кабели конструкции loose tube, но с оптическими модулями уменьшенного диаметра. Благодаря использованию таких технологических решений и совершенствованию материалов кабеля удалось уменьшить наружный диаметр кабеля до 7,2 мм без снижения механической прочности, то есть устойчивости к растягивающим и раздавливающим усилиям, к удару, кручению, изгибу, а также к температурным колебаниям. Такой кабель содержит до 6 оптических модулей, в каждом из которых может быть до 12 оптических волокон. Таким образом, общее количество оптических волокон в кабеле может достигать 72. Выпускаются также модификации этих кабелей, содержащие 8 и 12 оптических модулей и, соответственно, 96 и 144 оптических волокна.
Поскольку основная масса подземных коммуникаций располагается в канализациях и коллекторах, которые находятся на глубине не менее 1 м, а глубина микротраншеи значительно меньше, существенно снижается вероятность повреждения сторонних коммуникаций в процессе инсталляции. Упрощается также процесс согласования строительных работ на этапе проектирования.
При использовании стандартных методик строительства кабельной канализации скорость инсталляции составляет до 300 м в день. Использование микротраншейной технологии позволяет увеличить скорость строительства до нескольких километров в день, без учета времени на строительство смотровых устройств, где преимущества этого метода еще более очевидны.
В результате инсталляции одного канала можно получить кабельную канализацию, готовую для прокладки волоконно-оптических кабелей емкостью до полутысячи оптических волокон.
Перспективы
Широкие перспективы применения микротраншейной технологии прокладки волоконно-оптических кабелей обусловлены отсутствием необходимости приобретения дополнительного дорогостоящего оборудования и привлечения зарубежных специалистов для его наладки и обучения персонала. Необходимое для реализации этого метода дорожно-строительное оборудование имеется в наличии в учреждениях, занимающихся эксплуатацией дорог. Достоинством этой технологии прокладки является отсутствие необходимости длительных перерывов движения транспорта. В случае проведения работ на улицах с незначительным транспортным потоком движение вообще можно не перекрывать даже в случае поперечного пересечения.
В заключение необходимо отметить, что микротраншейная технология прокладки волоконно-оптических кабелей намного дешевле традиционных способов строительства кабельной канализации. Применение этой методики позво-ляет значительно сократить трудозатраты и время на проведение строительных работ, а также повысить эффективность труда с помощью механизации. Широкое внедрение микротраншейной технологии на практике позволит интенсифицировать развитие межстанционной сети в мегаполисах и тем самым улучшить качество обслуживания клиентов.