Книга посвящена доказательству существования невычислимых функций и алгоритмически неразрешимых задач. Обсуждаются проблемы оценки сложности вычислений и алгоритмов. Книга будет полезна широкому кругу специалистов, занимающихся проблемами машинного перевода, искусственного интеллекта, общего использования ЭВМ.
Эта заметка не имеет непосредственного отношения к DELPHI, уж извините :) Но получив в очередной раз письмо с предложение за два клика заработать $5000 я не выдержал, душа просит высказаться!
Я рассмотрю несколько вариантов заработка денег в internet с описанием, их плюсами и минусами. Сразу предупреждаю, это мое личное мнение, никак не претендую на глубину и всесторонность обзора.
1. Начнем с наиболее правильного и близкого нам программистам :) SHAREWARE.
Написание программы с целью ее продажи. Решаясь на подобное сначала все хорошенько обдумайте и взвесьте, зарабатывать на shareware можно и нужно, но… всегда есть проклятое "но" :) Для создания хорошо продаваемой программы вам придется не мало потрудиться. Срок от начала написания до реальных продаж вряд ли получится менее полугода. Вам придется много работать и главное думать. Здесь нет руководителя, который напишет Т.З. и скажет когда и что нужно сделать :( Все самому, а еще лучше команде. Одному человеку трудно быть одновременно хорошим программистом, генератором идей, дизайнером, маркетологом и т.д. и т.п. Лучше, если каждый будет заниматься тем, что умеет делать лучше всего. И тогда… по непроверенным данным ReGet получат более $50.000 в месяц! ;)
Как этого добиться? Здесь нет никаких строгих правил, все зависит от вашего таланта и, наверное, везения. Вот один из вариантов: выбрать направление программы, лучше, если это будет то, что требуется большому количеству людей каждый день в их постоянной работе за компьютером. Потратить с месяц или более, на сбор и анализ существующих подобных программ в интернете (трудно придумать что-то совсем уж уникальное :) обязательно уже есть аналоги, необходимо выяснить слабые и сильные стороны каждой программы и составить Т.З. для своей программы, включая туда самое лучшее. Кстати, не обязательно делать самостоятельную программу, это вполне может быть что-то прикладное к уже имеющимся. Например, каждый браузер умеет сам закачивать файлы из internet и тем не менее, "качалок" великое множество! Почему? Да потому что они удобнее в использовании и имеют дополнительные функции.
Далее самый плодотворный процесс - написание самой программы. На это уходит от месяца до года (больше не надо, а то она за это время бесконечно устареет :) По окончании написания программы, ее отладка и анализ, а действительно ли она так хороша, как предполагалось в начале?! ;) На этом этапе лучше выложить для скачивания бесплатную beta-версию на русском языке. И, зарегистрировавшись в русских каталогах, предлагать нашим тестировать новое чудо современных технологий! После чего, вы получите массу писем с ошибками и пожеланиями, все учитываете и дорабатываете, дорабатываете… На это может уйти даже больше, чем на написание основного кода программы. Когда считаете, что программа отшлифована и проверена на самых различных конфигурациях компьютеров, можно готовить английскую версию, выкладывать на сайт, регистрироваться в системах, которые помогут вам получать деньги от буржуев (например RegNow) и раскрутка вашего детища - регистрация в поисковых системах, а главное в каталогах для ShareWare программ, которых в инете великое множество. И с замиранием сердца ждать :) анализировать статистику заходов на ваш сайт, откуда приходят, почему с других мест не идут? Сколько людей пришло и "дошло" до скачивания и оплаты. На каком этапе вы потеряли клиента, почему? Все надо довести до идеала, клиенту нужно максимально упростить способ расставания с деньгами! :) Как видите, непосредственно программирование здесь занимает очень малую долю, и можно даже сказать, не главную! (Билл Гейтс ведь смог же продавать геморрой за деньги! :) :)
Рекомендую вам подписаться на рассылку российских шароварщиков swrus.com, узнаете много нового и полезного. А главное, общение с людьми, которые реально зарабатывают на этом! Плюсы:Это станет вашим основным заработком. Сумма, получаемая вами ежемесячно, ничем не ограничена, только вашим талантом! При удачной раскрутке, можно создавать свою фирму, становиться начальником, нанимая других программистов ;) Если на вас обратит внимание крупная западная фирма, то можно выгодно "продаться" :) Минусы: Вам придется долгое время вкалывать за красивую мечту. Никто, ничего не гарантирует. Вы с большой вероятностью можете в итоге оказаться у разбитого корыта :( Придется запастись терпением!
2. Создание сайта.
Вы создаете сайт, делаете его интересным для как можно большей доли посетителей интернета и как следствие, высокую посещаемость. После чего можно продавать рекламное место на своем сайте или зарабатывать через баннерные сети, что платят за показы или клики. Важно правильно выбрать тематику сайта, рекламодателям должно быть выгодно именно у вас размещать свою рекламу. Возьмем к примеру этот сайт (Мастера DELPHI), сайт сильно специфичен, рассчитан на очень малый процент людей в сети, мало того что именно программист, так еще и обязательно на DELPHI :) Потому добиться действительно высокой посещаемости его просто не реально. Но не это главное, кто из рекламодателей захочет здесь разместить рекламу? Ведь, понятно, его реклама должна ему же приносить деньги, т.е. чаще всего это или продажа своей программы, или привлечение целевой аудитории. Сайт русскоязычный, а русские не привыкли покупать программы, да и зачастую не на что! Вот и получается, что работаем мы над этим сайтом, только ради альтруизма и пользы вам, наши дорогие посетители :)
Или другой пример, сайт NoNaMe. Ему пол года, и за это время автор сайта добился блестящих результатов! (потому что сайт действительно интересен, всегда можно найти для себя что-то полезное. Рекомендую всем!) На данный момент до 9тыс. уникальных посетителей! Но… опять же, сайт специфичен, публикация кряков к программам оставляет весьма сомнительную вероятность того, что кто-то захочет рекламировать там свой продукт ;)
Лучше всего, конечно же, сайт рассчитанный на широкую публику: поисковые системы, каталоги, новости… игровые/развлекательные сайты здесь не лучшем положении (мой знакомый, автор сайта netcross.ru раскрутил его весьма хорошо, а сейчас практически забросил. Создал свою фирму по дизайну, и она за два месяца принесла денег больше чем за все время существования netcross.ru :) Плюсы:Широчайшее поле для творчества. Ваш доход ничем не ограничен. Интернет развивается бешенными темпами. И помните! Совсем недавно list.ru был продан за $5.000.000 !!! Вполне хватит на карманные расходы ;) Минусы: Вам придется в поте лица работать над своим сайтом и, как и в первом случае, большая вероятность остаться у разбитого корыта :(
3. Интернет услуги.
Создаете свою компанию по оказанию каких-либо интернет услуг: дизайн, интернет магазин, хостинг, регистрация, раскрутка и т.д. и т.п. Вполне реальный способ заработка, здесь нечего добавить. Практически в любом случае вы будете получать доход, доход лишь зависит от вашего желания работать и от того, откуда у вас растут руки :) Лично я напрямую связан с предоставлением хостинга российским компаниям, и со всей ответственностью заявляю, на хостинге можно и нужно зарабатывать. Помните, русский интернет сейчас развивается очень быстро, и потребность в различных видах услуг велика. Плюсы: Вы получаете реальные деньги за реальную работу. Все сводится только к поиску и привлечению людей, которым ваши услуги необходимы. Минусы: Зачастую требует начальных капиталовложений. Здесь нет халявы, не получится почивать на лаврах (как при удачном раскладе в первых двух пунктах), работать, работать и еще раз работать :)
На этом позвольте закончить вторую часть. Это не все о заработке, возможно я продолжу этот цикл, если вам конечно интересно :)
В последнее вpемя стало очень модно полагать, что опеpационные системы Windows NT и Windows содеpжат массу погpешностей в защите пpи pаботе в IP сетях, что позволяет едва ли не каждому злоумышленнику делать все что он пожелает с компьютеpом беззащитного пользователя. Действительно, 97 год на пеpвый взгляд пpямо таки ошеломил массой найденых и шиpоко pазpекламиpованых пpоpех: от дыpок в бpаузеpах InternetExplorer и NetscapeNavigator, до ошибок в ядpах ОC. Hо не все так фатально. Эта статья пpедставляет из себя попытку объяснить доступным языком чего все-таки следует опасаться, а чего нет. Рассчитана статья на гpамотных пользователей, но может быть навеpное полезной и системным администpатоpам.
По тексту статьи под Windows понимаются Windows NT и Windows. Пpактически все нижесказанное относится к обеим системам в pавной степени.
Итак, что пpедставляет непосpедственную опасность
Hаиболее опасными мне пpедставляются дыpки имеющие место быть в WWW бpаузеpах. В самых pаспpостpаненных: Internet Explorer и Netscape Navigator.
Эти ошибки опасны потому, что жеpтвой их можно стать совеpшенно случайно, пpосто зайдя на сайт, где кто-нибудь заложил нечто дестpуктивное. Конечно, можно ходить только на сайты кpупных надежных компаний, но вpяд ли кто-нибудь пpенебpегал возможностью пpосто свободного скольжения по сети, от ссылки к ссылке.
Очень сеpьезная ошибка имеется в Internet Explorer веpсии 3.00 и 3.01. Cуть ее в следующем: к вам может быть пеpекачан из сети файл с pасшиpением.url или.lnk и выполнен на вашем компьютеpе, пpичем сделано это может быть совеpшенно незаметно для вас. Понятно, что содеpжание этих файлов зависит, только от настpоения злоумышленника. Теоpетически возможна, полная потеpя вашей инфоpмации. Поэтому всем пользователям указанных веpсий настоятельно pекомендуется немедленно пpекpатить использовать указанные веpсии IE и пеpейти на IE 3.02 или более новый, хотя доступен и fix - http://www.microsoft.com/ie/security/update.htm
Хотя IE 3.02 тоже не абсолютно безопасен. Шиpоко известна дыpка основаная на связке PowerPoint и Internet Explorer. Cуть ее в следующем: документы PowerPoint способны выполнять внешние команды, а IE способен отобpажать PowerPoint-овские документы как встpоенные обьекты. Cоответственно, пpи установленном PowerPoint возможно выполнение каких-либо внешних команд автоматически, пpосто пpи пpосмотpе стpаницы содеpжащей документ PP. Fix доступен на http://www.microsoft.com/ie/security/powerpoint.htm
Тепеpь остановимся на дыpках, специфичных для NetscapeNavigator. Достаточно шиpоко стала известна ошибка найденная одним датским пpогpаммистом. Она позволяет получить ваши локальные файлы во вpемя вашего доступа к сайту. Технически все это выполняется чеpез фоpмы в невидимом окне, заполняемые содеpжимым локальных файлов и посылаемыми в сеть. Фиpма Netscape а также многочисленная аpмия любителей pугать Microsoft и не замечать пpоблем в пpодуктах дpугих пpоизводителей пpеуменьшают опасность мотивиpуя это тем, что необходимо знать полный путь до того файла, котоpый хочешь утащить, а пеpекачка pаспpостpаненных файлов типа autoexec.bat не имеет никакого смысла. Hу что же, давайте пофантазиpуем: много людей используют Windows 95; большинство из них ставит ее на диск C; много людей используют dial-up scripting tools; достаточно шиpоко pаспpостpанена пpактика когда в стандаpтном скpипте pppmenu.scp явным текстом пpописывается логин и паpоль к своему пpовайдеpу. Если сооpудить пpивлекательный сайт - эpотику какую-нибудь) , да pазместить его в большом гоpоде, то скоpее всего за dial-up платить самому уже не пpидется никогда. И это только пеpвый пpишедший мне в голову ваpиант использования этой "безвpедной" ошибки Netscape.
Gовоpить об ошибках имеющихся в IE 4.0 и NetscapeCommunicator сейчас несколько пpеждевpеменно, поскольку доступные веpсии имеют статус бета-пpодукта. Хотя некотоpый пpогноз сделать можно. В IE будут находить все новые дыpки, идущие от интегpации IE с опеpационной системой. В пpодуктах Netscape дыpок будет значительно меньше, но поскольку, ввиду все большего захвата pынка бpаузеpов фиpмой Microsoft, число пользователей Netscape будет уменьшаться, то чеpез некотоpое вpемя наличие или отсутствие дыp в NetcapeNavigator, Communicator и "что-то там еще потом будет" будет не столь важно. Тепеpь давайте поговоpим об опасностях идущих не от ошибок, а от новых "пеpспективных" технологий, конечно же делающих web стpанички пpивлекательней и, возможно, опасней.
Java
Это уже достаточно устоявшаяся технология, успешно pазвиваемая фиpмой Sun. Об успехе говоpит то, что даже Microsoft был вынужден лицензиpовать java, что не соответсвует обычной агpессивной политике MS. По самой своей идеологии java достаточно безопасна. В спецификации написано, что java applet не может иметь доступ к физическим pесуpсам компьютеpа и не может влиять на дpугие пpоцессы. Единственная пpиходящая в голову пpостая дестpуктивная возможность это запpосить из апплета большое количество памяти, чем вызвать своп и существенное замедление pаботы системы. Тут надо добавить, что степень защиты IE 3.02, значительно выше чем в пpедыдущих веpсиях IE или же в NetscapeNavigator. Так, в IE 3.02 пpи попытке чтения файла с локального диска пpоисходит исключение. Как следствие, аплеты, использующие внешние файлы с каpтинками, не pаботают пpи запуске с диска. Это в общем-то затpудняет жизнь pазpаботчика java аплетов. Hекотоpое беспокойство вызывает желание некотоpых контоp (в том числе и Microsoft) увеличить скоpость выполнения java апплетов, за счет снижения уpовня безопасности. Hу что же, поживем увидим.
ActiveX
Cия технология была задумана Microsoft как ответ на Java. Cильная стоpона ActiveX controls это значительно более шиpокие возможности и скоpость чем у java, слабая стоpона это пpивязанность к опpеделенной аппаpатной платфоpме и более слабая система безопасности. C внутpенней точки зpения ActiveX control пpедставляет из себя обычную dll выполняющуюся в адpесном пpостpанстве IE и имеющую доступ пpактически ко всем pесуpсам PC чеpез COM интеpфейсы. Безопасность в ActiveX основана на пpинципе довеpия. Пеpед скачиванием и инсталляцией ActiveX control появляется изобpажение сеpтификата с названием фиpмы пpоизводителя, и если вы не довеpяете пpоизводителю, то control можно запpетить. Ввиду недостаточно шиpокой pаспpостpаненности этой технологии сообщений о найденых дыpках в системе безопасности пока что не появлялось. Хотя я бы посоветовал очень остоpожно относиться к ActiveX, потенциально там возможна большая опасность.
JavaScript
Cамая большая пpоблема этой технологии, то что у Netscape и Microsoft достаточно pазные взгляды на стандаpты и pеализацию JavaScript, что служит пpичиной головной боли многих web дизайнеpов. Подход обоих вышеуказанных фиpм схож в одном: имеющие место быть дыpки в защите существуют и в IE и в NN. Если java выполняется в pамках виpтуальной машины java и огpаничена ее возможностями, то JavaScript выполняется www бpаузеpом и, соответственно, теоpетически есть возможность делать все то, что делает www бpаузеp, а это как минимум манипуляции с файлами на локальном диске и возможность посылки своей инфоpмации куданибудь в сеть. Cобственно возможность подобных действий уже была пpодемонстpиpована на пpимеpе Netscape Navigator и получила шиpокую огласку - cм. http://www.aleph2.com/tracker/tracker.cgi Демонстpация заключалась в том, что после посещения опpеделенного сайта кое-где начинал фоpмиpоваться лог-файл вашей pаботы в сети, котоpый затем можно было с удивлением посмотpеть. Доступны заплатки от Netscape - http://www.netscape.com/flash4/assist/security/index.html
и Microsoft - http://www.microsoft.com/ie/security/update.htm
Hа втоpое по опасности место после ошибок в бpаузеpах я бы поставил ошибки в опеpационных системах. Здесь опасности меньше, потому что необходима напpавленная атака именно на вас, ну или вы случайно попадете в диапазон адpесов, подвеpгающихся атаке. Хотя если у вас есть "добpожелатели" такая опасность выходит на пеpвое место.
Cамый шиpоко известный способ атаки получил название Winnuke: (cм. http://www.darkening.com/winnuke/) В сеpедине мая таким способом на несколько дней был выведен из стpоя www.microsoft.com. Hекотоpое вpемя после этого в сети твоpился настоящий кошмаp. Шло массовое убийство сеpвеpов на базе Windows NT. Итак, что же это такое. Hаpяду с обычными данными пеpесылаемыми по TCP соединению cтандаpт пpедустатpивает также пеpедачу сpочных (Out Of Band) данных. Hа уpовне фоpматов пакетов TCP это выpажается в ненулевом urgent pointer. Y большинства PC с установленным Windows пpисутствует сетевой пpотокол NetBIOS, котоpый использует для своих нужд 3 IP поpта: 137, 138, 139. Как выяснилось, если соединиться с Windows машиной в 139 поpт и послать туда несколько байт OutOfBand данных, то pеализация NetBIOS-а не зная что делать с этими данными попpосту подвешивает или пеpезагpужает машину. Для Windows 95 это обычно выглядит как синий текстовый экpан, сообщающий об ошибке в дpайвеpе TCP/IP и невозможность pаботы с сетью до пеpезагpузки ОC. NT 4.0 без сеpвис паков пеpезагpужается, NT 4.0 со втоpым сеpвис паком выпадает в синий экpан. Cудя по инфоpмации из сети подвеpжены такой атаке и Windows NT 3.51 и Windows 3.11 for Workgropus. Имеется очень большое количество пpогpамм для атаки этим способом, пpактически для всех платфоpм. Hаpяду с обилием сpедств атаки существует большое количество сpедств защиты. Так если вы ходите в интеpнет с компьютеpа неподсоединенного к локальной сети и с установленной Windows 95, то пpостейший способ это пpосто убpать клиента для Microsoft Network. Именно так сделано на моем домашнем компьютеpе и могу завеpить, что WinNuke такую конфигуpацию не пpобивает. Cуществуют пpогpаммы, котоpые отслеживают все попытки отстpела вас, и даже те котоpые делают ответный залп, скоpее всего бесполезный. Официальный метод от Microsoft это установка OOB заплатки на Windows'95 (http://www.microsoft.com/kb/articles/q168/7/47.htm) и тpетьего Serivice Pack для NT v4.0 (ftp://ftp.microsoft.com/bussys/winnt/ winnt-public/fixes/usa/nt40/ussp3/).
Хотя с SP3 и WinNuke связана достаточно веселая истоpия. Как выяснилось вскоpе после выпуска SP3, запущеный с компьютеpов Apple WinNuke спокойно пpобивал защиту сеpвис пака. Пpичиной этого послужило существование двух pазных стандаpтов на IP пакеты, содеpжащие OutOfBand данные. Есть стандаpт от Berkley и стандаpт, описаный в RFC 1122. Отличие их состоит в том, что UrgentPointer вычисляется по pазному. В действительности, UrgentPointer в двух pеализациях будет отличаться pовно на единицу. Тpетий сеpвис пак, защищающий от "своих" OOB пакетов, оказался беззащитен пpотов пакетов дpугого стандаpта. Поэтому почти сpазу после SP3 вышел дополнительный OOB fix. (см. ftp://ftp.microsoft.com/bussys/winnt/winnt-public/fixes/usa/nt40/ hotfixes-postSP3/oob-fix/). Здесь следует отметить, что само существование OOB данных, безотносительно WinNuke, вызывает достаточно много пpоблем именно из за существования двух стандаpтов, или веpнее отсутствия стандаpта. Поэтому гаpантиpовать пpавильную pаботу пpогpаммы, использующей OOB не может никто. Многие умные люди pекомендуют вообще не использовать OOB данные в своих пpогpаммах. В действительности, если для написания оpигинального WinNuke достаточно самых тpивиальных функций pаботы с TCP/IP (пpогpамма на PERL занимает 7 стpок), то чтобы пpобить SP3 потpебуется pаботать с TCP на низком уpовне, либо запускать стандаpтный WinNuke с платфоpмы поддеpживающей дpугую pеализацию OOB. Кстати, подвеpженным такой атаке является не только 139 поpт, точно известно, что MS DNS (53 поpт) тоже стpеляется OOB данными, а автоp статьи убедился, что популяpный сетевой пpефеpанс легко убивается этим методом.
Cледующий достаточно известный способ атаки называется PingOfDeath или SSPing (см. http://www.darkening.com/ssping) Cущность его в следующем: на машину жеpтвы посылается сильно фpагментиpованный ICMP пакет большого pазмеpа (64KB). Реакцией Windows систем на получение такого пакета является безоговоpочное повисание, включая мышь и клавиатуpу. Пpогpамма для атаки шиpоко доступна в сети в виде исходника на C и в виде запускаемых файлов для некотоpых веpсий unix. Lюбопытно, что в отличие от WinNuke жеpтвой такой атаки могут стать не только Windows машины, атаке подвеpжены MacOS и некотоpые веpсии unix. Пpеимущества такого cпособа атаки в том, что обычно firewall пpопускает ICMP пакеты, а если firewall и настpоен на фильтpацию адpесов посылателей, то используя нехитpые пpиемы spoofing можно обмануть и такой firewall. Hедостаток PingOfDeath в том, что для одной атаки надо пеpеслать более 64KB по сети, что делает вообще его говоpя малопpименимым для шиpокомасштабных дивеpсий, хотя конечно поpтить жизнь нескольким отдельно взятым личностям можно достаточно легко. По этой же пpичине еще менее пpименима модификация, называемая PingOfDeath 2, заключающаяся в посылке нескольких 64KB ICMP пакетов. Официальные заплатки доступны на Microsoft для Windows 95 (ftp://ftp.microsoft.com/Softlib/MSLFILES/VIPUPD.EXE), NT v4.0 (ftp://ftp.microsoft.com/bussys/winnt/winnt-public/fixes/usa/ NT40/hotfixes-postSP3/icmp-fix/icmpfixi.exe) и NT v3.51 (ftp://ftp.microsoft.com/bussys/winnt/winnt-public/fixes/usa/ nt351/hotfixes-postSP5/icmp-fix/ICMP351I.EXE). Cледует заметить, что по некотоpым слухам установка этих заплаток снимает OOB fix, поэтому после этого необходимо будет еще pаз ставить защиту от WinNuke. Lюбопытно, что fix для 95 не pаботает, по кpайней меpе у меня, поэтому остается альтеpнатива использовать "неофициальный" и достаточно подозpительнчый фикс , лежащий на http://www.darkening.com/ssping/pingfix.zip. Lично для себя, я pешил пока не закpывать этой дыpки, до пеpвого pеального случая такой атаки на меня.
Имелась большая гpуппа ошибок Windows NT 4.0 испpавленных в SP3, котоpые могли пpивести к достаточно печальным последствиям. Hаиболее популяpна была следующая: заходится telnet-ом на 135 поpт, и посылается несколько символов. После этого загpузка сеpвеpа пеpманентно pавна 100 % до пеpезагpузки. Есть много способов закpыть эту дыpку, но я бы pекомендовал поставить SP3, поскольку он включает в себя кpоме этого еще очень много дpугих не менее полезных вещей.
Cледующая гpуппа опасностей подстеpегащих вас в миpе Windows и Internet это атаки на всевозможные пpиложения. Частный случай таких атак (WWW бpаузеpы - как самые pаспpостpаненные пpогpаммы для pаботы с интеpнетом) уже pассматpивался. Тепеpь обсудим пpоблемы безопасности связанные с дpугими пpиложениями на пpимеpе дpугого частного случая: Microsoft Internet Information Server.
Cуществуют несколько способов уpонить интеpнет сеpвеp с IIS.
Достаточно стаpый и шиpоко известный способ это зайти telnet-ом на 80 поpт и дать команду GET "../..". Реакцией на эту команду будет повисание HTTP сеpвеpа.
Дpугой метод дивеpсии носит название IISSlayer. В сеpедине июня 97 года www.microsoft.com был выведен из стpоя на несколько дней посpедством атаки такого типа. Cуть ее в следующем: пpи запpосе у IIS очень длинного URL (4 - 8KB) сеpвеp повисает и не pеагиpует на дальнейшие запpосы. Пpоблема в том, что точный pазмеp URL зависит от конкpетного сеpвеpа, поэтому пpогpаммы-убийцы начиная с некотоpого базового pазмеpа запpоса и постепенно увеличивая pазмеp пытаются найти ту кpитическую точку, что подвесит сеpвеp-жеpтву. Получил pаспpостpанение java applet называющийся IISSlayer.class (см. http://www.ntsecurity.net/security/tools/IIServerSlayer.class) котоpый и осуществляет подобную атаку. Заплатка доступна на Microsoft. Конечно можно описывать еще много способов дивеpсий для Windows систем и отдельных пpиложений (типа известной, но некpитической ошибке NetscapeMail, позволяющей получить кому-либо копию вашего майлбокса), но самые опасные из шиpоко pаспpостpаненных дыpок уже освещены. И если вы защитились от всего вышепеpечисленного, то можно считать, что пpичинить вам вpед будет не очень легко. Хотя конечно всегда останутся методы гpубой силы типа пингования гpомадными пакетами или SYN flood, котоpыми можно заваливать любую интеpнет машину или подсеть, независимо от конфигуpации. Также неизвестно какие вновь найденные ошибки в популяpных пpогpаммах готовит нам будущее. За пpеделами этой статьи остались вопpосы безопасности в Windows касающиеся всевозможных способов взлома и незаконного получения пpав доступа, заслуживающие отдельной большой статьи. Также здесь опущены общие вопpосы безопасности в Internet, заслуживающие не статьти, а хоpошей моногpафии.
В заключение хочется опpовеpгнуть бытующее мнение, что в ОC семейства Windows и всевозможных пpиложениях для этих ОC содеpжится очень много ошибок (хотя вpоде бы сам дух статьи говоpит о дpугом). Да, ошибки есть, но где их нет? Значительно важнее то, что все кpитические ошибки очень быстpо испpавляются. Так для WinNuke и IISSlayer (знаменитые убийцы www.microsoft.com) fix становился доступен в течении 2 суток. Если такой уpовень сеpвиса останется и в будущем, то конкуpентов у Windows платфоpмы в Internet попpосту не будет. Hа этой оптимистической ноте позволю себе завеpшить эту статью и без того достаточно длинную.
За годы существования интернета такие понятия "вес" или "популярность" ссылки, технология Google PageRank, прочно укрепились среди пользователей интернета. В особенности среди вебмастеров и владельцев сайтов. Но часто возникает путаница между этими двумя терминами, а ведь для поисковой машины это не одно и тоже. Попытаюсь внести ясность в данный вопрос.
Что такое "вес" ссылки?
Теоретически это выглядит так: поисковый робот решает, что если другие сайты ссылаются на ваш сайт, то значит его (ваш сайт) нужно повысить в рейтинге. Т.е. при прочих равных условиях рейтинг будет выше у того сайта, на который ссылается большее число сайтов (желательно еще и с собственным "большим весом"). Ведь, исходя из элементарной логики, вебмастера ставят ссылки на дружественные сайты, которые заслуживают на внимание посетителей.
PageRank и "вес" ссылки - не одно и тоже
Да, эти два термина кое в чем между собой отличаются. PR - это скорее одна из составляющих "веса" ссылки. Поскольку PR больше сфокусирована на количестве ссылок (как прямых, так и обратных на сайт), то под термином "вес ссылки" скрывается качественная составляющая этих ссылок. Тем не менее, множество пользователей интернета неправильно понимают эти два термина, а зачастую и просто воспринимают их как синонимы.
На сегодняшний день все главные поисковые машины уделяют популярности ссылок большое внимание. В первую очередь это затрагивает алгоритмы, по которым составляются рейтинги проиндексированных сайтов. А что же полезного можно извлечь из этого для раскрутки собственного сайта? Оказывается, что существует 2 основных типа ссылок, которые наиболее важны в поисковой оптимизации:
1. Ссылки с других сайтов, которые содержат тот же набор ключевых слов, что и ваш ресурс
2. Ссылки с релевантных (с похожей тематикой) рубрик в популярных каталогах
А вот ссылки с каталогов типа "Free-for-all" (FFA) не дают весомых ссылок, поэтому нет необходимости тратить деньги и время на размещение в них. Уж лучше разместить сайт в десятке наиболее известных каталогов (таких, как например Яндекс. Каталог), чем в сотне малоизвестных. А еще, как показывает практика, размещение сайта в каталоге вместе с сайтами неродственных категорий (как и в непопулярных каталогах) дает только временный рост PR.
Алгоритмы поисковых машин постоянно меняются, как и эффективность методик раскрутки. Хочу заметить, что в последнее время наметилась общемировая тенденция в seo - повышать рейтинг только тех ресурсов, на которые ссылаются сайты с большим собственным рейтингом. Может это связано с ростом количества сайтов, а может проблема в чем-то другом. Возможно, что места под солнцем становиться все меньше, а желающих - все больше.
Как работает механизм "рейтинг ссылки"
Хочу привести вам пример того, каким образом работают ссылки на популяризацию сайта.
Предположим, что у дяди Васи есть пиццерия. Естественно, она у него имеет и свой сайт в интернете (люди заходят и заказывают пиццу). Далее представим, что на этом сайте дядя Вася решил разместить ссылочку на сайт свого соседа по дому дяди Вани. А вот он занимается продажей мужской одежды, у него сайт с низкой посещаемостью, вот и решил он помочь ему в раскрутке.
Итак, на сайте дяди Васи появилась ссылка на сайт продаже мужской одежды дяди Вани. Пусть она будет выглядеть как "лучший магазин мужской одежды". Если посмотреть на название ссылки, то все ок - ключевые слова тут как тут. Только вот эффект для дяди Вани от этого будет минимальным: ведь пицца и мужская одежда - это совсем не одно и то же.
Лучшим вариантом для дяди Вани было бы разместить ссылочку на сайте с похожей тематикой. Пусть лучше это был бы сайт тети Клавы о продаже женской одежды, сайт дяди Миши о продаже мужской обуви или любой другой, но уже тематически связанный с одеждой / обувью.
А вот просто идеальным было бы иметь для дяди Вани ссылочку в "Каталоге магазинов одежды Сан Саныча", в котором содержаться ссылки на наиболее популярные магазины одежды. Вот именно это и есть тот случай, когда поисковый робот непременно повысит рейтинг вашего сайта.
Нужно ли ставить обратные ссылки?
Вокруг этой тематики уже не один год ведутся споры, в которых было сломано немало копий. Но ситуация яснее не стала: достаточно как приверженцев, так и противников наличия обратных ссылок. А все началось с тех пор, когда вебмастера решили, что взаимный обмен ссылками - это самый простой способ привлечения посетителей (хотя это и не всегда верно). Сейчас же большинство вебмастеров обмениваются ссылками по принципу "ты-ставишь-ссылку-на-мой-сайт-я-ставлю-ссылку-на-твой". Но есть и противники такой методики, которые ее считают неэффективной для повышения рейтинга сайта.
Так кто же прав? Да неправы обе стороны одновременно. Я считаю, что нет необходимости ставить обратную ссылку, но если все же хочется, то можно и поставить. Необходимо помнить, что являются полезными лишь ссылки, которые указывают НА ваш сайт. А те ссылки, которые ведут ОТ вашего сайта, полезны лишь в том случае, если тот сайт является родственный по тематике. Ведь посетитель вашего сайт заинтересован, как правило, в посещении и других сайтов с похожей тематикой.
Необходимо ли заботиться о "популярности" ссылки?
Не только необходимо, а и жизненно важно для вашего сайта. Тем не менее, необходимо помнить, что (вопреки распространенному мнению) вес ссылки является только частью работы алгоритма поисковой машины. Но тут особенно выделяется Google, которая больше остальных поисковиков уделяет внимание качеству и количеству ссылающихся сайтов. А вот насколько реально это повышает рейтинг сайта и каким образом - это спорный вопрос, точного ответа на который не знает никто (кроме разработчиков поискового алгоритма).
Хочу также заметить, что не последнюю роль в рейтинге сайта играет и то, какие слова содержатся в ссылке на него. Как показывает практика, несколько ссылок с высокой релевантностью и удачным описанием - это едва ли не единственный быстрый и простой путь к повышению рейтинга сайта.
Но тут главное не переусердствовать. Не нужно сразу же бросаться рассылать сотни писем владельцам сайтов с предложением разместить на вас ссылочку. Думаю, что большинство вебмастеров не будут в восторге от излишней настойчивости, если вообще не примут ваши письма за спам. Необходимо понять, что каждая ссылка на "вес золота" - только благодаря ей можно получить посетителей больше, чем со всех поисковиков, вместе взятых.
Способ получить ссылки ничего не делая
Хочу с вами поделиться одним способом получения ссылок на свой сайт. Пусть он и более затратный по времени, но зато очень эффективный. Необходимо просто создать лучший (ну или один из лучших) сайтов в своей тематической нише. Для этого будет вполне достаточно, чтобы он был грамотно и красиво сделан, содержал множество статей (желательно еще и уникальных) и постоянно бы обновлялся (в идеале - каждый день). Пройдет некоторое время и сайты с похожей тематикой начнут сами ставить ссылки на ваш ресурс.
Пусть кто-то добавит ваш сайт в "рекомендованные сайты", кто-то в "друзья" или "каталог ссылок", но ведь главное, что ссылка будет. Могут также взять статью с вашего сайта, главное, чтобы ссылочку на источник поставили :)
Да, может быть этот метод в чем-то и утопичен. Но уж лучше сразу потратить месяц-другой на создание хорошего ресурса, чем потом просить поставить ссылку на ваш сайт. Хотя, не буду спорить, может этот метод и не самый лучший.
Поэтому советую вам не пожалеть времени и подумать над тем, как создать супер-сайт. Вот тогда вам уже не придется беспокоиться о каких-то "рейтингах" ссылки, обратных ссылках и непонятной аббревиатуре PR!
Многие начинающие создатели своих собственных страничек и маленьких сайтов часто заблуждаются, думая, что как только они создадут и разместят свои творения на веб-сервере, к ним тут же ринутся волны посетителей, желающих прочитать об авторе и что-то скачать с сайта. Это далеко не так.
Обычные обитатели Интернета с большим интересом заглянут не к вам, а на какой-нибудь информационный портал. И действительно, нам куда больше хочется узнать что-либо о наших кумирах, нежели о каких-то обычных людях.
Правда, сейчас многие люди приобретают известность именно в виртуальном мире. Например, популярные авторы различных электронных изданий или рассылок, владельцы широко известных сайтов различной тематики. Многие компьютерные авторитеты приобрели значимость в сетевом мире благодаря своим публикациям на сайтах или активной переписке в различных форумах. Вы, конечно же, можете повторить такой путь, но, увы, для этого надо много работать и многому научиться, и здесь я вам никак не смогу помочь своим советом, так как дело это требует оригинального творческого подхода и не терпит повторений.
В процессе разработки сайта важно понимать, что вы создаёте своё собственное произведение. Не ровняйтесь ни на кого. Можно лишь почерпнуть идеи относительно дизайна, концепции, но содержание ваших страниц должно быть плодом вашего собственного умственного труда. Вы не должны публиковать на своём сайте чужие мысли, пусть они находятся у других. Вам нужно писать всё самостоятельно, ведь это важно не только для посетителей, но и для вас, так как именно практикуясь передавать другим информацию от себя, вы приобретаете столь ценный опыт. И не важно насколько хорошо у вас будет получаться, со временем вы научитесь и будете работать более профессионально. Для начала ознакомьтесь со схожими по тематике работами других людей. Вы можете многое для себя открыть. Узнав что-либо новое, не спешите всё это выдать посетителям, вначале сами всё осмыслите и разберитесь в новой информации, ведь вам могут задать вопросы, на которые будет стыдно не ответить.
Если вам вдруг понравятся некоторые материалы, и вы захотите выложить это добро на своём сайте, то заранее следует спросить об этом автора. Это поможет вам избежать в дальнейшем многих проблем. Например, у меня был такой случай, когда один ушлый паренёк из родного города Владивостока просто-напросто украл мою статью. Дело-то нехитрое. Просто убрал из работы все мои ссылки и сам назвался автором. Таким образом он обманом попытался наполнить свой сайт чужой информацией за что и был наказан. Не скажу, что я сделал, но статья быстро исчезла с сайта злоумышленника, а сам он был явно напуган. Не допускайте этого. Всегда и везде старайтесь соблюдать авторские права, тем более что, спросив у человека разрешение на использование его материалов, вы тем самым можете приобрести в его лице хорошего друга и единомышленника.
Важную роль перед раскруткой сайта играет степень его информационной ценности. Вся информация должна быть специальным образом распределена по тематическим подразделам. Не следует сразу на главной странице давать ссылки на все ваши странички. Лучше распределить всё содержание так, чтобы вашим посетителям было удобно смотреть интересующие его страницы без существенных затрат времени на поиск нужной ему информации. Не создавайте пустых разделов. Если вам нечего пока выложить, лучше не запутывайте читателей. Всё это плохо скажется на отношении к вам. Характерным признаком непрофессионализма является наличие страничек с коронной надписью "Under Construction". А рядом ещё могут поставить какую-нибудь анимированную картинку, взятую из заурядной графической библиотеки. Зачем создавать такие странички? Сайт должен содержать полезную информацию, чем полезнее она будет, тем легче будет впоследствии перейти к его раскрутке и дальнейшему расширению.
На стадии создания сайта также полезно знать, что постепенное наполнение информацией намного эффективнее нерегулярных обновлений в плане удержания аудитории. Постоянное добавление новых полезных и бесполезных :) материалов очень полезно. Особенно полезно это в начальной стадии развития сайта. Допустим, к вам на сайт пришёл посетитель. Куда он двинется вначале? Правильно! Смотреть ваши новости. Именно на стадии ознакомления с новостями сайта посетитель обычно делает вывод о том, насколько актуальна информация, предложенная ему на данном сервере.
Увидев, что вчера на вашем сайте появились свежие странички или другие интересные штучки, посетитель первым делом направится туда чтобы оценить вашу работу. Если вы достаточно часто обновляете свой веб-сайт, то могу вам с уверенностью сказать, что у вас будет формироваться постоянное ядро аудитории, состоящее из повторных посетителей. Люди будут регулярно посещать ваш сайт просто чтобы проверить не появилось ли на нём что-то новенькое. Такие посетители для вас самые ценные, берегите их. При обновлении сайта обязательно давайте знать об этом вашим читателям.
Продвижение сайта в интернете - дело нелёгкое. Всю работу по раскрутке можно разделить на несколько этапов. Разумеется, все эти этапы взаимосвязаны и могут укладываться в одни и те же временные рамки. Я бы выделил три основных этапа: первоначальное привлечение посетителей, удержание аудитории и дальнейшее продвижение.
Самый важный этап в развитии любого сайта заключается в первоначальном привлечении на него посетителей. На данном этапе вы заявляете на весь мир, что ваш сайт появился и содержит массу полезной информации. Вся работа заключается в регистрации сайта в различных поисковых системах и каталогах. Трудно заранее предсказать, откуда приток будущих посетителей будет больше. Тут всё зависит от тематики сайта и от организации того или иного каталога или поисковой машины. На своём примере скажу, что основная масса новых людей приходит на мой сайт с Yandex (http://yandex.ru/) и с Google (http://google.com/).
Данный факт распространяется не только на этот сайт , так как общий объём страниц огромен и весьма разнообразен по своему содержанию. Поисковые машины с лёгкостью выводят такие сайты на первых страницах результатов поиска. Но, увы, такая перспектива светит только сайтам, где содержится действительно полезная информация. Но что делать, например, если ваш сайт предлагает посетителям галерею ваших графических работ? Ну не фиксируют современные поисковики графические файлы. Обидно. В таких случаях советую под каждым изображением давать краткое описание. Это позволит посетителям находить ваши работы даже при помощи поисковых машин.
Другое дело - каталоги. Тут можно разгуляться вволю. Каталоги отличаются от поисковых машин тем, что информация о ресурсах вводится вручную в отличие от автоматических роботов поисковых машин. Поисковые машины легко обмануть, людей трудно. Обычно каталоги ресурсов обслуживаются людьми. Регистрируясь, вы заполняете предложенные поля, где соблюдая правила даёте информацию о своём сайте (Название, описание, ключевые слова для поиска, адрес, имя автора и так далее). Далее за работу берутся модераторы каталога.
Модератор - человек занимающийся регистрацией сайтов, следящий за актуальностью информации и работоспособностью ссылок. Также модераторы осуществляют роль цензоров. Именно они решают быть или не быть вашему сайту в каталоге. Поэтому никогда не передавайте им ложную информацию! Кстати, многие каталоги имеют свои собственные требования к регистрируемым ресурсам. Некоторые не берут сайты, располагающиеся на бесплатных серверах или содержащие информацию эротического характера. Но таких строгих каталогов немного, и вы с лёгкостью сможете зарегистрироваться в огромном количестве их менее требовательных коллег. Это правда не относится к каталогу сайтов РМП "ProtoPlex", куда попасть вообще сложно.
Прописаться в огромном количестве каталогов и поисковых машин нам помогают специальные программы и онлайновые службы. Есть такие сайты, которые абсолютно бесплатно предоставят вам возможность быстрой регистрации. Обычно всё происходит довольно быстро, на это может уйти менее часа при хорошей производительности. Все инструкции по использованию таких служб можно найти непосредственно на их серверах. Различные компьютерные программы-регистраторы также удобны при регистрации. Принцип их действия весьма прост и незатейлив. В основном всё сводится к копированию данных из буфера обмена в поля форм веб-сайтов. Примером такой программы может стать Allsubmitter.
Привлекая посетителей на сайт, можно воспользоваться услугами многочисленных виртуальных досок объявлений или попросту форумов. При этом информацию о вашем ресурсе важно подать грамотно, иначе результат будет обратным. Не публикуйте ваше объявление многократно, это может вызвать раздражение со стороны других обитателей сети. Засорение форумов, чатов, гостевых книг однообразной информацией называется на сетевом жаргоне "флудом". Не занимайтесь этим. Даже заманив посетителей таким образом, вы не добьетесь от них внимания и тем более заинтересованности в вашей информации. Более правильным подходом будет размещение объявлений в нескольких форумах, нежели размещение нескольких одинаковых объявлений в одном.
СПАМ - метод привлечения аудитории за счёт массовой непрошеной рассылки почтовых сообщений рекламного характера. Я категорически против этого. Это лёгкий путь. Эффективность данного метода резко падает, несмотря на всю изобретательность спаммеров. Очень грубый метод, который может привести к плачевным результатам. Можно лишиться почтового ящика, нажить врагов и даже выслушать грубые слова от своего провайдера. В последнем случае вы можете лишиться и провайдера.
Все вышеперечисленные методы увеличения аудитории являются самыми простыми и к тому же бесплатными. На халяву обычно слетается очень много желающих, вы можете утонуть в их потоке. Поэтому можно использовать более продвинутые способы. Я не буду говорить о платном размещении вашей рекламы на других сайтах. Это довольно дорогое и абсолютно ненужное удовольствие для начинающих. Стоит рассказать о методах, использованных в своё время мной.
Размещение своих авторских статей на других сайтах предусматривает размещение ссылки на сайт при указании авторских прав. Вы можете этим воспользоваться и предлагать свои материалы различным информационным сайтам, электронным издательствам и так далее. На практике можно увидеть хороший приток посетителей с таких ссылок. И это не требует от вас каких-либо действий в дальнейшем. Размещая свои собственные материалы у других, вы тем самым приобретаете известность, на вас легко могут выйти другие и попросить разрешение на публикацию ваших материалов. Это в свою очередь ускорит процесс раскрутки сайта.
Также можно открыть рассылку новостей вашего сайта посредством электронной почты. При этом приток посетителей можно получить от самих служб рассылок. Наиболее популярны сейчас Служба рассылок Городского Кота (http://subscribe.ru/), Контент (http://content.ru/) и MailList (http://maillist.ru/). Первая - самая старая и самая вредная. Новичкам тут трудно. Причин этого множество. Начиная с того, что информацию о вашей рассылке будет трудно найти в общем каталоге для новичков, и заканчивая требованиями администрации к качеству и содержанию рассылок.
Самым оптимальным вариантом я считаю Контент.Ру. Их политика весьма лояльна к новичкам и непрофессионалам. Служба очень удобна и, что самое главное, очень грамотно относится к привлечению подписчиков к новым рассылкам. Всё это и многое другое позволяют новичкам иметь более трёхсот подписчиков уже в первые дни существования рассылки. Но одно дело создать рассылку, другое дело её вести. Я не говорю, что это достаточно сложно и к чему-то вас обязывает. Я вам это утверждаю.
Для программистов существуют специальные каталоги программного обеспечения. Размещая на таких сайтах ссылки на свои программы, вы приобретаете не только аудиторию, но и фанатов. Различные сайты, посвящённые компьютерной графике и анимации имеют обширные галереи работ со ссылками на авторов. Поэты могут публиковать свои произведения на литературных сайтах и так далее.
Таким образом, существует очень много разных методов первоначальной раскрутки сайтов. Секрет успеха заключается в правильном использовании этих методов и, конечно-же, в постоянном совершенствовании вашего веб-узла. Ведь вы же хотите, чтобы ваш сайт был самым интересным и популярным?
Технология стека TCP/IP сложилась в основном в конце 1970-х годов и с тех пор основные принципы работы базовых протоколов, таких как IP, TCP, UDP и ICMP, практически не изменились. Однако, сам компьютерный мир за эти годы значительно изменился, поэтому долго назревавшие усовершенствования в технологии стека TCP/IP сейчас стали необходимостью.
Основными обстоятельствами, из-за которых требуется модификация базовых протоколов стека TCP/IP, являются следующие.
* Повышение производительности компьютеров и коммуникационного оборудования. За время существования стека производительность компьютеров возросла на два порядка, объемы оперативной памяти выросли более чем в 30 раз, пропускная способность магистрали Internet в Соединенных Штатах выросла в 800 раз.
* Появление новых приложений. Коммерческий бум вокруг Internet и использование ее технологий при создании intranet привели к появлению в сетях TCP/IP, ранее использовавшихся в основном в научных целях, большого количества приложений нового типа, работающих с мультимедийной информацией. Эти приложения чувствительны к задержкам передачи пакетов, так как такие задержки приводят к искажению передаваемых в реальном времени речевых сообщений и видеоизображений. Особенностью мультимедийных приложений является также передача очень больших объемов информации. Некоторые технологии вычислительных сетей, например, frame relay и ATM, уже имеют в своем арсенале механизмы для резервирования полосы пропускания для определенных приложений. Однако эти технологии еще не скоро вытеснят традиционные технологии локальных сетей, не поддерживающие мультимедийные приложения (например, Ethernet). Следовательно, необходимо компенсировать такой недостаток средствами сетевого уровня, то есть средствами протокола IP.
* Бурное расширение сети Internet. В начале 90-х годов сеть Internet расширялась очень быстро, новый узел появлялся в ней каждые 30 секунд, но 95-й год стал переломным - перспективы коммерческого использования Internet стали отчетливыми и сделали ее развитие просто бурным. Первым следствием такого развития стало почти полное истощение адресного пространства Internet, определяемого полем адреса IP в четыре байта.
* Новые стратегии администрирования. Расширение Internet связано с его проникновением в новые страны и новые отрасли промышленности. При этом в сети появляются новые органы администрирования, которые начинают использовать новые методы администрирования. Эти методы требуют появления новых средств в базовых протоколах стека TCP/IP.
Сообщество Internet уже несколько лет работает над разработкой новой спецификации для базового протокола стека - протокола IP. Выработано уже достаточно много предложений, от простых, предусматривающих только расширения адресного пространства IP, до очень сложных, приводящих к существенному увеличению стоимости реализации IP в высокопроизводительных (и так недешевых) маршрутизаторах.
Основным предложением по модернизации протокола IP является предложение, разработанное группой IETF. Сейчас принято называть ее предложение версией 6 - IPv6, а все остальные предложения группируются под названием IP Next Generation, IPng.
В предложении IETF протокол IPv6 оставляет основные принципы IPv4 неизменными. К ним относятся дейтаграммный метод работы, фрагментация пакетов, разрешение отправителю задавать максимальное число хопов для своих пакетов. Однако, в деталях реализации протокола IPv6 имеются существенные отличия от IPv4. Эти отличия коротко можно описать следующим образом.
* Использование более длинных адресов. Новый размер адреса - наиболее заметное отличие IPv6 от IPv4. Версия 6 использует 128-битные адреса.
* Гибкий формат заголовка. Вместо заголовка с фиксированными полями фиксированного размера (за исключением поля Резерв), IPv6 использует базовый заголовок фиксированного формата плюс набор необязательных заголовков различного формата.
* Поддержка резервирования пропускной способности. В IPv6 механизм резервирования пропускной способности заменяет механизм классов сервиса версии IPv4.
* Поддержка расширяемости протокола. Это одно из наиболее значительных изменений в подходе к построению протокола - от полностью детализированного описания протокола к протоколу, который разрешает поддержку дополнительных функций.
Адресация в IPv6
Адреса назначения и источника в IPv6 имеют длину 128 бит или 16 байт. Версия 6 обобщает специальные типы адресов версии 4 в следующих типах адресов:
* Unicast - индивидуальный адрес. Определяет отдельный узел - компьютер или порт маршрутизатора. Пакет должен быть доставлен узлу по кратчайшему маршруту.
* Cluster - адрес кластера. Обозначает группу узлов, которые имеют общий адресный префикс (например, присоединенных к одной физической сети). Пакет должен быть маршрутизирован группе узлов по кратчайшему пути, а затем доставлен только одному из членов группы (например, ближайшему узлу).
* Multicast - адрес набора узлов, возможно в различных физических сетях. Копии пакета должны быть доставлены каждому узлу набора, используя аппаратные возможности групповой или широковещательной доставки, если это возможно.
Как и в версии IPv4, адреса в версии IPv6 делятся на классы, в зависимости от значения нескольких старших бит адреса.
Большая часть классов зарезервирована для будущего применения. Наиболее интересным для практического использования является класс, предназначенный для провайдеров услуг Internet, названный Provider-Assigned Unicast.
Каждому провайдеру услуг Internet назначается уникальный идентификатор, которым помечаются все поддерживаемые им сети. Далее провайдер назначает своим абонентам уникальные идентификаторы, и использует оба идентификатора при назначении блока адресов абонента. Абонент сам назначает уникальные идентификаторы своим подсетям и узлам этих сетей.
Абонент может использовать технику подсетей, применяемую в версии IPv4, для дальнейшего деления поля идентификатора подсети на более мелкие поля.
Описанная схема приближает схему адресации IPv6 к схемам, используемым в территориальных сетях, таких как телефонные сети или сети Х.25. Иерархия адресных полей позволит магистральным маршрутизаторам работать только со старшими частями адреса, оставляя обработку менее значимых полей маршрутизаторам абонентов.
Под поле идентификатора узла требуется выделения не менее 6 байт, для того чтобы можно было использовать в IP-адресах МАС-адреса локальных сетей непосредственно.
Для обеспечения совместимости со схемой адресации версии IPv4, в версии IPv6 имеется класс адресов, имеющих 0000 0000 в старших битах адреса. Младшие 4 байта адреса этого класса должны содержать адрес IPv4. Маршрутизаторы, поддерживающие обе версии адресов, должны обеспечивать трансляцию при передаче пакета из сети, поддерживающей адресацию IPv4, в сеть, поддерживающую адресацию IPv6, и наоборот.
Все протоколы обмена маршрутной информацией стека TCP/IP относятся к классу адаптивных протоколов, которые в свою очередь делятся на две группы, каждая из которых связана с одним из следующих типов алгоритмов:
* дистанционно-векторный алгоритм (Distance Vector Algorithms, DVA),
* алгоритм состояния связей (Link State Algorithms, LSA).
В алгоритмах дистанционно-векторного типа каждый маршрутизатор периодически и широковещательно рассылает по сети вектор расстояний от себя до всех известных ему сетей. Под расстоянием обычно понимается число промежуточных маршрутизаторов через которые пакет должен пройти прежде, чем попадет в соответствующую сеть. Может использоваться и другая метрика, учитывающая не только число перевалочных пунктов, но и время прохождения пакетов по связи между соседними маршрутизаторами.
Получив вектор от соседнего маршрутизатора, каждый маршрутизатор добавляет к нему информацию об известных ему других сетях, о которых он узнал непосредственно (если они подключены к его портам) или из аналогичных объявлений других маршрутизаторов, а затем снова рассылает новое значение вектора по сети. В конце-концов, каждый маршрутизатор узнает информацию об имеющихся в интерсети сетях и о расстоянии до них через соседние маршрутизаторы.
Дистанционно-векторные алгоритмы хорошо работают только в небольших сетях. В больших сетях они засоряют линии связи интенсивным широковещательным трафиком, к тому же изменения конфигурации могут отрабатываться по этому алгоритму не всегда корректно, так как маршрутизаторы не имеют точного представления о топологии связей в сети, а располагают только обобщенной информацией - вектором дистанций, к тому же полученной через посредников. Работа маршрутизатора в соответствии с дистанционно-векторным протоколом напоминает работу моста, так как точной топологической картины сети такой маршрутизатор не имеет.
Наиболее распространенным протоколом, основанным на дистанционно-векторном алгоритме, является протокол RIP.
Алгоритмы состояния связей обеспечивают каждый маршрутизатор информацией, достаточной для построения точного графа связей сети. Все маршрутизаторы работают на основании одинаковых графов, что делает процесс маршрутизации более устойчивым к изменениям конфигурации. Широковещательная рассылка используется здесь только при изменениях состояния связей, что происходит в надежных сетях не так часто.
Для того, чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами со своими ближайшими соседями. Этот трафик также широковещательный, но он циркулирует только между соседями и поэтому не так засоряет сеть.
Протоколом, основанным на алгоритме состояния связей, в стеке TCP/IP является протокол OSPF.
Дистанционно-векторный протокол RIP
Протокол RIP (Routing Information Protocol) представляет собой один из старейших протоколов обмена маршрутной информацией, однако он до сих пор чрезвычайно распространен в вычислительных сетях. Помимо версии RIP для сетей TCP/IP, существует также версия RIP для сетей IPX/SPX компании Novell.
В этом протоколе все сети имеют номера (способ образования номера зависит от используемого в сети протокола сетевого уровня), а все маршрутизаторы - идентификаторы. Протокол RIP широко использует понятие "вектор расстояний". Вектор расстояний представляет собой набор пар чисел, являющихся номерами сетей и расстояниями до них в хопах.
Вектора расстояний итерационно распространяются маршрутизаторами по сети, и через несколько шагов каждый маршрутизатор имеет данные о достижимых для него сетях и о расстояниях до них. Если связь с какой-либо сетью обрывается, то маршрутизатор отмечает этот факт тем, что присваивает элементу вектора, соответствующему расстоянию до этой сети, максимально возможное значение, которое имеет специальный смысл - "связи нет". Таким значением в протоколе RIP является число 16.
При необходимости отправить пакет в сеть D маршрутизатор просматривает свою базу данных маршрутов и выбирает порт, имеющий наименьшее расстояния до сети назначения (в данном случае порт, связывающий его с маршрутизатором 3).
Для адаптации к изменению состояния связей и оборудования с каждой записью таблицы маршрутизации связан таймер. Если за время тайм-аута не придет новое сообщение, подтверждающее этот маршрут, то он удаляется из маршрутной таблицы.
При использовании протокола RIP работает эвристический алгоритм динамического программирования Беллмана-Форда, и решение, найденное с его помощью является не оптимальным, а близким к оптимальному. Преимуществом протокола RIP является его вычислительная простота, а недостатками - увеличение трафика при периодической рассылке широковещательных пакетов и неоптимальность найденного маршрута.
При обрыве связи с сетью 1 маршрутизатор М1 отмечает, что расстояние до этой сети приняло значение 16. Однако получив через некоторое время от маршрутизатора М2 маршрутное сообщение о том, что от него до сети 1 расстояние составляет 2 хопа, маршрутизатор М1 наращивает это расстояние на 1 и отмечает, что сеть 1 достижима через маршрутизатор 2. В результате пакет, предназначенный для сети 1, будет циркулировать между маршрутизаторами М1 и М2 до тех пор, пока не истечет время хранения записи о сети 1 в маршрутизаторе 2, и он не передаст эту информацию маршрутизатору М1.
Для исключения подобных ситуаций маршрутная информация об известной маршрутизатору сети не передается тому маршрутизатору, от которого она пришла.
Существуют и другие, более сложные случаи нестабильного поведения сетей, использующих протокол RIP, при изменениях в состоянии связей или маршрутизаторов сети.
Комбинирование различных протоколов обмена. Протоколы EGP и BGP сети Internet
Большинство протоколов маршрутизации, применяемых в современных сетях с коммутацией пакетов, ведут свое происхождение от сети Internet и ее предшественницы - сети ARPANET. Для того, чтобы понять их назначение и особенности, полезно сначала познакомится со структурой сети Internet, которая наложила отпечаток на терминологию и типы протоколов.
Internet изначально строилась как сеть, объединяющая большое количество существующих систем. С самого начала в ее структуре выделяли магистральную сеть (core backbone network), а сети, присоединенные к магистрали, рассматривались как автономные системы (autonomous systems). Магистральная сеть и каждая из автономных систем имели свое собственное административное управление и собственные протоколы маршрутизации. Далее маршрутизаторы будут называться шлюзами для следования традиционной терминологии Internet.
Шлюзы, которые используются для образования подсетей внутри автономной системы, называются внутренними шлюзами (interior gateways), а шлюзы, с помощью которых автономные системы присоединяются к магистрали сети, называются внешними шлюзами (exterior gateways). Непосредственно друг с другом автономные системы не соединяются. Соответственно, протоколы маршрутизации, используемые внутри автономных систем, называются протоколами внутренних шлюзов (interior gateway protocol, IGP), а протоколы, определяющие обмен маршрутной информацией между внешними шлюзами и шлюзами магистральной сети - протоколами внешних шлюзов (exterior gateway protocol, EGP). Внутри магистральной сети также может использоваться любой собственный внутренний протокол IGP.
Смысл разделения всей сети Internet на автономные системы в ее многоуровневом представлении, что необходимо для любой крупной системы, способной к расширению в больших масштабах. Внутренние шлюзы могут использовать для внутренней маршрутизации достаточно подробные графы связей между собой, чтобы выбрать наиболее рациональный маршрут. Однако, если информация такой степени детализации будет храниться во всех маршрутизаторах сети, то топологические базы данных так разрастутся, что потребуют наличия памяти гигантских размеров, а время принятия решений о маршрутизации непременно возрастет.
Поэтому детальная топологическая информация остается внутри автономной системы, а автономную систему как единое целое для остальной части Internet представляют внешние шлюзы, которые сообщают о внутреннем составе автономной системы минимально необходимые сведения - количество IP-сетей, их адреса и внутреннее расстояние до этих сетей от данного внешнего шлюза.
При инициализации внешний шлюз узнает уникальный идентификатор обслуживаемой им автономной системы, а также таблицу достижимости (reachability table), которая позволяет ему взаимодействовать с другими внешними шлюзами через магистральную сеть.
Затем внешний шлюз начинает взаимодействовать по протоколу EGP с другими внешними шлюзами и обмениваться с ними маршрутной информацией, состав которой описан выше. В результате, при отправке пакета из одной автономной системы в другую, внешний шлюз данной системы на основании маршрутной информации, полученной от всех внешних шлюзов, с которыми он общается по протоколу EGP, выбирает наиболее подходящий внешний шлюз и отправляет ему пакет.
Каждая функция работает на основе обмена сообщениями запрос-ответ.
Так как каждая автономная система работает под контролем своего административного штата, то перед началом обмена маршрутной информацией внешние шлюзы должны согласиться на такой обмен. Сначала один из шлюзов посылает запрос на установление соседских отношений (acquisition request) другому шлюзу. Если тот согласен на это, то он отвечает сообщением подтверждение установления соседских отношений (acquisition confirm), а если нет - то сообщением отказ от установления соседских отношений (acquisition refuse), которое содержит также причину отказа.
После установления соседских отношений шлюзы начинают периодически проверять состояние достижимости друг друга. Это делается либо с помощью специальных сообщений (привет (hello) и Я-услышал-тебя (I-heard-you)), либо встраиванием подтверждающей информации непосредственно в заголовок обычного маршрутного сообщения.
Обмен маршрутной информацией начинается с посылки одним из шлюзов другому сообщения запрос данных (poll request) о номерах сетей, обслуживаемых другим шлюзом и расстояниях до них от него. Ответом на это сообщение служит сообщение обновленная маршрутная информация (routing ). Если же запрос оказался некорректным, то в ответ на него отсылается сообщение об ошибке.
Все сообщения протокола EGP передаются в поле данных IP-пакетов. Сообщения EGP имеют заголовок фиксированного формата.
Поля Тип и Код совместно определяют тип сообщения, а поле Статус - информацию, зависящую от типа сообщения. Поле Номер автономной системы - это номер, назначенный той автономной системе, к которой присоединен данный внешний шлюз. Поле Номер последовательности служит для синхронизации процесса запросов и ответов.
[pagebreak]
Поле IP-адрес исходной сети в сообщениях запроса и обновления маршрутной информации обозначает сеть, соединяющую два внешних шлюза.
Сообщение об обновленной маршрутной информации содержит список адресов сетей, которые достижимы в данной автономной системе. Этот список упорядочен по внутренним шлюзам, которые подключены к исходной сети и через которые достижимы данные сети, а для каждого шлюза он упорядочен по расстоянию до каждой достижимой сети от исходной сети, а не от данного внутреннего шлюза. Для примера внешний шлюз R2 в своем сообщении указывает, что сеть 4 достижима с помощью шлюза R3 и расстояние ее равно 2, а сеть 2 достижима через шлюз R2 и ее расстояние равно 1 (а не 0, как если бы шлюз измерял ее расстояние от себя, как в протоколе RIP).
Протокол EGP имеет достаточно много ограничений, связанных с тем, что он рассматривает магистральную сеть как одну неделимую магистраль.
Развитием протокола EGP является протокол BGP (Border Gateway Protocol), имеющий много общего с EGP и используемый наряду с ним в магистрали сети Internet.
Протокол состояния связей OSPF
Протокол OSPF (Open Shortest Path Firs) является достаточно современной реализацией алгоритма состояния связей (он принят в 1991 году) и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях.
Протокол OSPF вычисляет маршруты в IP-сетях, сохраняя при этом другие протоколы обмена маршрутной информацией.
Непосредственно связанные (то есть достижимые без использования промежуточных маршрутизаторов) маршрутизаторы называются "соседями". Каждый маршрутизатор хранит информацию о том, в каком состоянии по его мнению находится сосед. Маршрутизатор полагается на соседние маршрутизаторы и передает им пакеты данных только в том случае, если он уверен, что они полностью работоспособны. Для выяснения состояния связей маршрутизаторы-соседи достаточно часто обмениваются короткими сообщениями HELLO.
Для распространения по сети данных о состоянии связей маршрутизаторы обмениваются сообщениями другого типа. Эти сообщения называются router links advertisement - объявление о связях маршрутизатора (точнее, о состоянии связей). OSPF-маршрутизаторы обмениваются не только своими, но и чужими объявлениями о связях, получая в конце-концов информацию о состоянии всех связей сети. Эта информация и образует граф связей сети, который, естественно, один и тот же для всех маршрутизаторов сети.
Кроме информации о соседях, маршрутизатор в своем объявлении перечисляет IP-подсети, с которыми он связан непосредственно, поэтому после получения информации о графе связей сети, вычисление маршрута до каждой сети производится непосредственно по этому графу по алгоритму Дэйкстры. Более точно, маршрутизатор вычисляет путь не до конкретной сети, а до маршрутизатора, к которому эта сеть подключена. Каждый маршрутизатор имеет уникальный идентификатор, который передается в объявлении о состояниях связей. Такой подход дает возможность не тратить IP-адреса на связи типа "точка-точка" между маршрутизаторами, к которым не подключены рабочие станции.
Маршрутизатор вычисляет оптимальный маршрут до каждой адресуемой сети, но запоминает только первый промежуточный маршрутизатор из каждого маршрута. Таким образом, результатом вычислений оптимальных маршрутов является список строк, в которых указывается номер сети и идентификатор маршрутизатора, которому нужно переслать пакет для этой сети. Указанный список маршрутов и является маршрутной таблицей, но вычислен он на основании полной информации о графе связей сети, а не частичной информации, как в протоколе RIP.
Описанный подход приводит к результату, который не может быть достигнут при использовании протокола RIP или других дистанционно-векторных алгоритмов. RIP предполагает, что все подсети определенной IP-сети имеют один и тот же размер, то есть, что все они могут потенциально иметь одинаковое число IP-узлов, адреса которых не перекрываются. Более того, классическая реализация RIP требует, чтобы выделенные линии "точка-точка" имели IP-адрес, что приводит к дополнительным затратам IP-адресов.
В OSPF такие требования отсутствуют: сети могут иметь различное число хостов и могут перекрываться. Под перекрытием понимается наличие нескольких маршрутов к одной и той же сети. В этом случае адрес сети в пришедшем пакете может совпасть с адресом сети, присвоенным нескольким портам.
Если адрес принадлежит нескольким подсетям в базе данных маршрутов, то продвигающий пакет маршрутизатор использует наиболее специфический маршрут, то есть адрес подсети, имеющей более длинную маску.
Например, если рабочая группа ответвляется от главной сети, то она имеет адрес главной сети наряду с более специфическим адресом, определяемым маской подсети. При выборе маршрута к хосту в подсети этой рабочей группы маршрутизатор найдет два пути, один для главной сети и один для рабочей группы. Так как последний более специфичен, то он и будет выбран. Этот механизм является обобщением понятия "маршрут по умолчанию", используемого во многих сетях.
Использование подсетей с различным количеством хостов является вполне естественным. Например, если в здании или кампусе на каждом этаже имеются локальные сети, и на некоторых этажах компьютеров больше, чем на других, то администратор может выбрать размеры подсетей, отражающие ожидаемые требования каждого этажа, а не соответствующие размеру наибольшей подсети.
В протоколе OSPF подсети делятся на три категории:
* "хост-сеть", представляющая собой подсеть из одного адреса,
* "тупиковая сеть", которая представляет собой подсеть, подключенную только к одному маршрутизатору,
* "транзитная сеть", которая представляет собой подсеть, подключенную к более чем одному маршрутизатору.
Транзитная сеть является для протокола OSPF особым случаем. В транзитной сети несколько маршрутизаторов являются взаимно и одновременно достижимыми. В широковещательных локальных сетях, таких как Ethernet или Token Ring, маршрутизатор может послать одно сообщение, которое получат все его соседи. Это уменьшает нагрузку на маршрутизатор, когда он посылает сообщения для определения существования связи или обновленные объявления о соседях.
Однако, если каждый маршрутизатор будет перечислять всех своих соседей в своих объявлениях о соседях, то объявления займут много места в памяти маршрутизатора. При определении пути по адресам транзитной подсети может обнаружиться много избыточных маршрутов к различным маршрутизаторам. На вычисление, проверку и отбраковку этих маршрутов уйдет много времени.
Когда маршрутизатор начинает работать в первый раз (то есть инсталлируется), он пытается синхронизировать свою базу данных со всеми маршрутизаторами транзитной локальной сети, которые по определению имеют идентичные базы данных. Для упрощения и оптимизации этого процесса в протоколе OSPF используется понятие "выделенного" маршрутизатора, который выполняет две функции.
Во-первых, выделенный маршрутизатор и его резервный "напарник" являются единственными маршрутизаторами, с которыми новый маршрутизатор будет синхронизировать свою базу. Синхронизировав базу с выделенным маршрутизатором, новый маршрутизатор будет синхронизирован со всеми маршрутизаторами данной локальной сети.
Во-вторых, выделенный маршрутизатор делает объявление о сетевых связях, перечисляя своих соседей по подсети. Другие маршрутизаторы просто объявляют о своей связи с выделенным маршрутизатором. Это делает объявления о связях (которых много) более краткими, размером с объявление о связях отдельной сети.
Для начала работы маршрутизатора OSPF нужен минимум информации - IP-конфигурация (IP-адреса и маски подсетей), некоторая информация по умолчанию (default) и команда на включение. Для многих сетей информация по умолчанию весьма похожа. В то же время протокол OSPF предусматривает высокую степень программируемости.
Интерфейс OSPF (порт маршрутизатора, поддерживающего протокол OSPF) является обобщением подсети IP. Подобно подсети IP, интерфейс OSPF имеет IP-адрес и маску подсети. Если один порт OSPF поддерживает более, чем одну подсеть, протокол OSPF рассматривает эти подсети так, как если бы они были на разных физических интерфейсах, и вычисляет маршруты соответственно.
Интерфейсы, к которым подключены локальные сети, называются широковещательными (broadcast) интерфейсами, так как они могут использовать широковещательные возможности локальных сетей для обмена сигнальной информацией между маршрутизаторами. Интерфейсы, к которым подключены глобальные сети, не поддерживающие широковещание, но обеспечивающие доступ ко многим узлам через одну точку входа, например сети Х.25 или frame relay, называются нешироковещательными интерфейсами с множественным доступом или NBMA (non-broadcast multi-access).
Они рассматриваются аналогично широковещательным интерфейсам за исключением того, что широковещательная рассылка эмулируется путем посылки сообщения каждому соседу. Так как обнаружение соседей не является автоматическим, как в широковещательных сетях, NBMA-соседи должны задаваться при конфигурировании вручную. Как на широковещательных, так и на NBMA-интерфейсах могут быть заданы приоритеты маршрутизаторов для того, чтобы они могли выбрать выделенный маршрутизатор.
Интерфейсы "точка-точка", подобные PPP, несколько отличаются от традиционной IP-модели. Хотя они и могут иметь IP-адреса и подмаски, но необходимости в этом нет.
В простых сетях достаточно определить, что пункт назначения достижим и найти маршрут, который будет удовлетворительным. В сложных сетях обычно имеется несколько возможных маршрутов. Иногда хотелось бы иметь возможности по установлению дополнительных критериев для выбора пути: например, наименьшая задержка, максимальная пропускная способность или наименьшая стоимость (в сетях с оплатой за пакет). По этим причинам протокол OSPF позволяет сетевому администратору назначать каждому интерфейсу определенное число, называемое метрикой, чтобы оказать нужное влияние на выбор маршрута.
Число, используемое в качестве метрики пути, может быть назначено произвольным образом по желанию администратора. Но по умолчанию в качестве метрики используется время передачи бита в 10-ти наносекундных единицах (10 Мб/с Ethernet'у назначается значение 10, а линии 56 Кб/с - число 1785). Вычисляемая протоколом OSPF метрика пути представляет собой сумму метрик всех проходимых в пути связей; это очень грубая оценка задержки пути. Если маршрутизатор обнаруживает более, чем один путь к удаленной подсети, то он использует путь с наименьшей стоимостью пути.
В протоколе OSPF используется несколько временных параметров, и среди них наиболее важными являются интервал сообщения HELLO и интервал отказа маршрутизатора (router dead interval).
HELLO - это сообщение, которым обмениваются соседние, то есть непосредственно связанные маршрутизаторы подсети, с целью установить состояние линии связи и состояние маршрутизатора-соседа. В сообщении HELLO маршрутизатор передает свои рабочие параметры и говорит о том, кого он рассматривает в качестве своих ближайших соседей. Маршрутизаторы с разными рабочими параметрами игнорируют сообщения HELLO друг друга, поэтому неверно сконфигурированные маршрутизаторы не будут влиять на работу сети.
Каждый маршрутизатор шлет сообщение HELLO каждому своему соседу по крайней мере один раз на протяжении интервала HELLO. Если интервал отказа маршрутизатора истекает без получения сообщения HELLO от соседа, то считается, что сосед неработоспособен, и распространяется новое объявление о сетевых связях, чтобы в сети произошел пересчет маршрутов.
Пример маршрутизации по алгоритму OSPF
Представим себе один день из жизни транзитной локальной сети. Пусть у нас имеется сеть Ethernet, в которой есть три маршрутизатора - Джон, Фред и Роб (имена членов рабочей группы Internet, разработавшей протокол OSPF). Эти маршрутизаторы связаны с сетями в других городах с помощью выделенных линий.
Пусть произошло восстановление сетевого питания после сбоя. Маршрутизаторы и компьютеры перезагружаются и начинают работать по сети Ethernet. После того, как маршрутизаторы обнаруживают, что порты Ethernet работают нормально, они начинают генерировать сообщения HELLO, которые говорят о их присутствии в сети и их конфигурации. Однако маршрутизация пакетов начинает осуществляться не сразу - сначала маршрутизаторы должны синхронизировать свои маршрутные базы.
На протяжении интервала отказа маршрутизаторы продолжают посылать сообщения HELLO. Когда какой-либо маршрутизатор посылает такое сообщение, другие его получают и отмечают, что в локальной сети есть другой маршрутизатор. Когда они посылают следующее HELLO, они перечисляют там и своего нового соседа.
Когда период отказа маршрутизатора истекает, то маршрутизатор с наивысшим приоритетом и наибольшим идентификатором объявляет себя выделенным (а следующий за ним по приоритету маршрутизатор объявляет себя резервным выделенным маршрутизатором) и начинает синхронизировать свою базу данных с другими маршрутизаторами.
[pagebreak]
С этого момента времени база данных маршрутных объявлений каждого маршрутизатора может содержать информацию, полученную от маршрутизаторов других локальных сетей или из выделенных линий. Роб, например, вероятно получил информацию от Мило и Робина об их сетях, и он может передавать туда пакеты данных. Они содержат информацию о собственных связях маршрутизатора и объявления о связях сети.
Базы данных теперь синхронизированы с выделенным маршрутизатором, которым является Джон. Джон суммирует свою базу данных с каждой базой данных своих соседей - базами Фреда, Роба и Джеффа - индивидуально. В каждой синхронизирующейся паре объявления, найденные только в какой-либо одной базе, копируются в другую. Выделенный маршрутизатор, Джон, распространяет новые объявления среди других маршрутизаторов своей локальной сети.
Например, объявления Мило и Робина передаются Джону Робом, а Джон в свою очередь передает их Фреду и Джеффри. Обмен информацией между базами продолжается некоторое время, и пока он не завершится, маршрутизаторы не будут считать себя работоспособными. После этого они себя таковыми считают, потому что имеют всю доступную информацию о сети.
Посмотрим теперь, как Робин вычисляет маршрут через сеть. Две из связей, присоединенных к его портам, представляют линии T-1, а одна - линию 56 Кб/c. Робин сначала обнаруживает двух соседей - Роба с метрикой 65 и Мило с метрикой 1785. Из объявления о связях Роба Робин обнаружил наилучший путь к Мило со стоимостью 130, поэтому он отверг непосредственный путь к Мило, поскольку он связан с большей задержкой, так как проходит через линии с меньшей пропускной способностью. Робин также обнаруживает транзитную локальную сеть с выделенным маршрутизатором Джоном. Из объявлений о связях Джона Робин узнает о пути к Фреду и, наконец, узнает о пути к маршрутизаторам Келли и Джеффу и к их тупиковым сетям.
После того, как маршрутизаторы полностью входят в рабочий режим, интенсивность обмена сообщениями резко падает. Обычно они посылают сообщение HELLO по своим подсетям каждые 10 секунд и делают объявления о состоянии связей каждые 30 минут (если обнаруживаются изменения в состоянии связей, то объявление передается, естественно, немедленно). Обновленные объявления о связях служат гарантией того, что маршрутизатор работает в сети. Старые объявления удаляются из базы через определенное время.
Представим, однако, что какая-либо выделенная линия сети отказала. Присоединенные к ней маршрутизаторы распространяют свои объявления, в которых они уже не упоминают друг друга. Эта информация распространяется по сети, включая маршрутизаторы транзитной локальной сети. Каждый маршрутизатор в сети пересчитывает свои маршруты, находя, может быть, новые пути для восстановления утраченного взаимодействия.
Сравнение протоколов RIP и OSPF по затратам на широковещательный трафик
В сетях, где используется протокол RIP, накладные расходы на обмен маршрутной информацией строго фиксированы. Если в сети имеется определенное число маршрутизаторов, то трафик, создаваемый передаваемой маршрутной информацией, описываются формулой (1):
(1) F = (число объявляемых маршрутов/25) x 528 (байтов в сообщении) x
(число копий в единицу времени) x 8 (битов в байте)
В сети с протоколом OSPF загрузка при неизменном состоянии линий связи создается сообщениями HELLO и обновленными объявлениями о состоянии связей, что описывается формулой (2):
(2) F = { [ 20 + 24 + 20 + (4 x число соседей)] x
(число копий HELLO в единицу времени) }x 8 +
[(число объявлений x средний размер объявления) x
(число копий объявлений в единицу времени)] x 8,
где 20 - размер заголовка IP-пакета,
24 - заголовок пакета OSPF,
20 - размер заголовка сообщения HELLO,
4 - данные на каждого соседа.
Интенсивность посылки сообщений HELLO - каждые 10 секунд, объявлений о состоянии связей - каждые полчаса. По связям "точка-точка" или по широковещательным локальным сетям в единицу времени посылается только одна копия сообщения, по NBMA сетям типа frame relay каждому соседу посылается своя копия сообщения. В сети frame relay с 10 соседними маршрутизаторами и 100 маршрутами в сети (подразумевается, что каждый маршрут представляет собой отдельное OSPF-обобщение о сетевых связях и что RIP распространяет информацию о всех этих маршрутах) трафик маршрутной информации определяется соотношениями (3) и (4):
(3) RIP: (100 маршрутов / 25 маршрутов в объявлении) x 528 x
(10 копий / 30 сек) = 5 632 б/с
(4) OSPF: {[20 + 24 + 20 + (4 x 10) x (10 копий / 10 сек)] +
[100 маршрутов x (32 + 24 + 20) + (10 копий / 30 x 60 сек]} x 8 = 1 170 б/с
Как видно из полученных результатов, для нашего гипотетического примера трафик, создаваемый протоколом RIP, почти в пять раз интенсивней трафика, создаваемого протоколом OSPF.
Использование других протоколов маршрутизации
Случай использования в сети только протокола маршрутизации OSPF представляется маловероятным. Если сеть присоединена к Internet'у, то могут использоваться такие протоколы, как EGP (Exterior Gateway protocol), BGP (Border Gateway Protocol, протокол пограничного маршрутизатора), старый протокол маршрутизации RIP или собственные протоколы производителей.
Когда в сети начинает применяться протокол OSPF, то существующие протоколы маршрутизации могут продолжать использоваться до тех пор, пока не будут полностью заменены. В некоторых случаях необходимо будет объявлять о статических маршрутах, сконфигурированных вручную.
В OSPF существует понятие автономных систем маршрутизаторов (autonomous systems), которые представляют собой домены маршрутизации, находящиеся под общим административным управлением и использующие единый протокол маршрутизации. OSPF называет маршрутизатор, который соединяет автономную систему с другой автономной системой, использующей другой протокол маршрутизации, пограничным маршрутизатором автономной системы (autonomous system boundary router, ASBR).
В OSPF маршруты (именно маршруты, то есть номера сетей и расстояния до них во внешней метрике, а не топологическая информация) из одной автономной системы импортируются в другую автономную систему и распространяются с использованием специальных внешних объявлений о связях.
Внешние маршруты обрабатываются за два этапа. Маршрутизатор выбирает среди внешних маршрутов маршрут с наименьшей внешней метрикой. Если таковых оказывается больше, чем 2, то выбирается путь с меньшей стоимостью внутреннего пути до ASBR.
Область OSPF - это набор смежных интерфейсов (территориальных линий или каналов локальных сетей). Введение понятия "область" служит двум целям - управлению информацией и определению доменов маршрутизации.
Для понимания принципа управления информацией рассмотрим сеть, имеющую следующую структуру: центральная локальная сеть связана с помощью 50 маршрутизаторов с большим количеством соседей через сети X.25 или frame relay. Эти соседи представляют собой большое количество небольших удаленных подразделений, например, отделов продаж или филиалов банка.
Из-за большого размера сети каждый маршрутизатор должен хранить огромное количество маршрутной информации, которая должна передаваться по каждой из линий, и каждое из этих обстоятельств удорожает сеть. Так как топология сети проста, то большая часть этой информации и создаваемого ею трафика не имеют смысла.
Для каждого из удаленных филиалов нет необходимости иметь детальную маршрутную информацию о всех других удаленных офисах, в особенности, если они взаимодействуют в основном с центральными компьютерами, связанными с центральными маршрутизаторами. Аналогично, центральным маршрутизаторам нет необходимости иметь детальную информацию о топологии связей с удаленными офисами, соединенными с другими центральными маршрутизаторами.
В то же время центральные маршрутизаторы нуждаются в информации, необходимой для передачи пакетов следующему центральному маршрутизатору. Администратор мог бы без труда разделить эту сеть на более мелкие домены маршрутизации для того, чтобы ограничить объемы хранения и передачи по линиям связи не являющейся необходимой информации. Обобщение маршрутной информации является главной целью введения областей в OSPF.
В протоколе OSPF определяется также пограничный маршрутизатор области (ABR, area border router). ABR - это маршрутизатор с интерфейсами в двух или более областях, одна из которых является специальной областью, называемой магистральной (backbone area). Каждая область работает с отдельной базой маршрутной информации и независимо вычисляет маршруты по алгоритму OSPF.
Пограничные маршрутизаторы передают данные о топологии области в соседние области в обобщенной форме - в виде вычисленных маршрутов с их весами. Поэтому в сети, разбитой на области, уже не действует утверждение о том, что все маршрутизаторы оперируют с идентичными топологическими базами данных.
Маршрутизатор ABR берет информацию о маршрутах OSPF, вычисленную в одной области, и транслирует ее в другую область путем включения этой информации в обобщенное суммарное объявление (summary) для базы данных другой области. Суммарная информация описывает каждую подсеть области и дает для нее метрику. Суммарная информация может быть использована тремя способами: для объявления об отдельном маршруте, для обобщения нескольких маршрутов или же служить маршрутом по умолчанию.
Дальнейшее уменьшение требований к ресурсам маршрутизаторов происходит в том случае, когда область представляет собой тупиковую область (stub area). Этот атрибут администратор сети может применить к любой области, за исключением магистральной. ABR в тупиковой области не распространяет внешние объявления или суммарные объявления из других областей. Вместо этого он делает одно суммарное объявление, которое будет удовлетворять любой IP-адрес, имеющий номер сети, отличный от номеров сетей тупиковой области. Это объявление называется маршрутом по умолчанию.
Маршрутизаторы тупиковой области имеют информацию, необходимую только для вычисления маршрутов между собой плюс указания о том, что все остальные маршруты должны проходить через ABR. Такой подход позволяет уменьшить в нашей гипотетической сети количество маршрутной информации в удаленных офисах без уменьшения способности маршрутизаторов корректно передавать пакеты.
Сетевой уровень в первую очередь должен предоставлять средства для решения следующих задач:
* доставки пакетов в сети с произвольной топологией,
* структуризации сети путем надежной локализации трафика,
* согласования различных протоколов канального уровня.
Локализация трафика и изоляция сетей
Трафик в сети складывается случайным образом, однако в нем отражены и некоторые закономерности. Как правило, некоторые пользователи, работающие над общей задачей, (например, сотрудники одного отдела) чаще всего обращаются с запросами либо друг к другу, либо к общему серверу, и только иногда они испытывают необходимость доступа к ресурсам компьютеров другого отдела.
Желательно, чтобы структура сети соответствовала структуре информационных потоков. В зависимости от сетевого трафика компьютеры в сети могут быть разделены на группы (сегменты сети). Компьютеры объединяются в группу, если большая часть порождаемых ими сообщений, адресована компьютерам этой же группы.
Для разделения сети на сегменты используются мосты и коммутаторы. Они экранируют локальный трафик внутри сегмента, не передавая за его пределы никаких кадров, кроме тех, которые адресованы компьютерам, находящимся в других сегментах. Тем самым, сеть распадается на отдельные подсети. Это позволяет более рационально выбирать пропускную способность имеющихся линий связи, учитывая интенсивность трафика внутри каждой группы, а также активность обмена данными между группами.
Однако локализация трафика средствами мостов и коммутаторов имеет существенные ограничения.
С одной стороны, логические сегменты сети, расположенные между мостами, недостаточно изолированы друг от друга, а именно, они не защищены от, так называемых, широковещательных штормов. Если какая-либо станция посылает широковещательное сообщение, то это сообщение передается всем станциям всех логических сегментов сети. Защита от широковещательных штормов в сетях, построенных на основе мостов, имеет количественный, а не качественный характер: администратор просто ограничивает количество широковещательных пакетов, которое разрешается генерировать некоторому узлу.
С другой стороны, использование механизма виртуальных сегментов, реализованного в коммутаторах локальных сетей, приводит к полной локализации трафика - такие сегменты полностью изолированы друг от друга, даже в отношении широковещательных кадров. Поэтому в сетях, построенных только на мостах и коммутаторах, компьютеры, принадлежащие разным виртуальным сегментам, не образуют единой сети.
Приведенные недостатки мостов и коммутаторов связаны с тем, что они работают по протоколам канального уровня, в которых в явном виде не определяется понятие части сети (или подсети, или сегмента), которое можно было бы использовать при структуризации большой сети. Вместо того, чтобы усовершенствовать канальный уровень, разработчики сетевых технологий решили поручить задачу построения составной сети новому уровню - сетевому.
Согласование протоколов канального уровня
Современные вычислительные сети часто строятся с использованием нескольких различных базовых технологий - Ethernet, Token Ring или FDDI. Такая неоднородность возникает либо при объединении уже существовавших ранее сетей, использующих в своих транспортных подсистемах различные протоколы канального уровня, либо при переходе к новым технологиям, таким, как Fast Ethernet или 100VG-AnyLAN.
Именно для образования единой транспортной системы, объединяющей несколько сетей с различными принципами передачи информации между конечными узлами, и служит сетевой уровень. Когда две или более сетей организуют совместную транспортную службу, то такой режим взаимодействия обычно называют межсетевым взаимодействием (internetworking). Для обозначения составной сети в англоязычной литературе часто также используется термин интерсеть (internetwork или internet).
Создание сложной структурированной сети, интегрирующей различные базовые технологии, может осуществляться и средствами канального уровня: для этого могут быть использованы некоторые типы мостов и коммутаторов. Однако возможностью трансляции протоколов канального уровня обладают далеко не все типы мостов и коммутаторов, к тому же возможности эти ограничены. В частности, в объединяемых сетях должны совпадать максимальные размеры полей данных в кадрах, так как канальные протоколы, как правило, не поддерживают функции фрагментации пакетов.
Маршрутизация в сетях с произвольной топологией
Среди протоколов канального уровня некоторые обеспечивают доставку данных в сетях с произвольной топологией, но только между парой соседних узлов (например, протокол PPP), а некоторые - между любыми узлами (например, Ethernet), но при этом сеть должна иметь топологию определенного и весьма простого типа, например, древовидную.
При объединении в сеть нескольких сегментов с помощью мотов или коммутаторов продолжают действовать ограничения на ее топологию: в получившейся сети должны отсутствовать петли. Действительно, мост или его функциональный аналог - коммутатор - могут решать задачу доставки пакета адресату только тогда, когда между отправителем и получателем существует единственный путь. В то же время наличие избыточных связей, которые и образуют петли, часто необходимо для лучшей балансировки нагрузки, а также для повышения надежности сети за счет существования альтернативного маршрута в дополнение к основному.
Сетевой уровень позволяет передавать данные между любыми, произвольно связанными узлами сети.
Реализация протокола сетевого уровня подразумевает наличие в сети специального устройства - маршрутизатора. Маршрутизаторы объединяют отдельные сети в общую составную сеть. Внутренняя структура каждой сети не показана, так как она не имеет значения при рассмотрении сетевого протокола. К каждому маршрутизатору могут быть присоединены несколько сетей (по крайней мере две).
В сложных составных сетях почти всегда существует несколько альтернативных маршрутов для передачи пакетов между двумя конечными узлами. Задачу выбора маршрутов из нескольких возможных решают маршрутизаторы, а также конечные узлы.
Маршрут - это последовательность маршрутизаторов, которые должен пройти пакет от отправителя до пункта назначения.
Маршрутизатор выбирает маршрут на основании своего представления о текущей конфигурации сети и соответствующего критерия выбора маршрута. Обычно в качестве критерия выступает время прохождения маршрута, которое в локальных сетях совпадает с длиной маршрута, измеряемой в количестве пройденных узлов маршрутизации (в глобальных сетях принимается в расчет и время передачи пакета по каждой линии связи).
[pagebreak]
Сетевой уровень и модель OSI
В модели OSI, называемой также моделью взаимодействия открытых систем (Open Systems Interconnection - OSI) и разработанной Международной Организацией по Стандартам (International Organization for Standardization - ISO), средства сетевого взаимодействия делятся на семь уровней, для которых определены стандартные названия и функции.
Сетевой уровень занимает в модели OSI промежуточное положение: к его услугам обращаются протоколы прикладного уровня, сеансового уровня и уровня представления. Для выполнения своих функций сетевой уровень вызывает функции канального уровня, который в свою очередь обращается к средствам физического уровня.
Рассмотрим коротко основные функции уровней модели OSI.
Физический уровень выполняет передачу битов по физическим каналам, таким, как коаксиальный кабель, витая пара или оптоволоконный кабель. На этом уровне определяются характеристики физических сред передачи данных и параметров электрических сигналов.
Канальный уровень обеспечивает передачу кадра данных между любыми узлами в сетях с типовой топологией либо между двумя соседними узлами в сетях с произвольной топологией. В протоколах канального уровня заложена определенная структура связей между компьютерами и способы их адресации. Адреса, используемые на канальном уровне в локальных сетях, часто называют МАС-адресами.
Сетевой уровень обеспечивает доставку данных между любыми двумя узлами в сети с произвольной топологией, при этом он не берет на себя никаких обязательств по надежности передачи данных.
Транспортный уровень обеспечивает передачу данных между любыми узлами сети с требуемым уровнем надежности. Для этого на транспортном уровне имеются средства установления соединения, нумерации, буферизации и упорядочивания пакетов.
Сеансовый уровень предоставляет средства управления диалогом, позволяющие фиксировать, какая из взаимодействующих сторон является активной в настоящий момент, а также предоставляет средства синхронизации в рамках процедуры обмена сообщениями.
Уровень представления. В отличии от нижележащих уровней, которые имеют дело с надежной и эффективной передачей битов от отправителя к получателю, уровень представления имеет дело с внешним представлением данных. На этом уровне могут выполняться различные виды преобразования данных, такие как компрессия и декомпрессия, шифровка и дешифровка данных.
Прикладной уровень - это в сущности набор разнообразных сетевых сервисов, предоставляемых конечным пользователям и приложениям. Примерами таких сервисов являются, например, электронная почта, передача файлов, подключение удаленных терминалов к компьютеру по сети.
При построении транспортной подсистемы наибольший интерес представляют функции физического, канального и сетевого уровней, тесно связанные с используемым в данной сети оборудованием: сетевыми адаптерами, концентраторами, мостами, коммутаторами, маршрутизаторами. Функции прикладного и сеансового уровней, а также уровня представления реализуются операционными системами и системными приложениями конечных узлов. Транспортный уровень выступает посредником между этими двумя группами протоколов.
Функции сетевого уровня
Протоколы канального уровня не позволяют строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Для того, чтобы, с одной стороны, сохранить простоту процедур передачи пакетов для типовых топологий, а с другой стороны, допустить использование произвольных топологий, вводится дополнительный сетевой уровень.
Прежде, чем приступить к рассмотрению функций сетевого уровня , уточним, что понимается под термином "сеть". В протоколах сетевого уровня термин "сеть" означает совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи пакетов общую базовую сетевую технологию. Внутри сети сегменты не разделяются маршрутизаторами, иначе это была бы не одна сеть, а несколько сетей. Маршрутизатор соединят несколько сетей в интерсеть.
Основная идея введения сетевого уровня состоит в том, чтобы оставить технологии, используемые в объединяемых сетях в неизменном в виде, но добавить в кадры канального уровня дополнительную информацию - заголовок сетевого уровня, на основании которой можно было бы находить адресата в сети с любой базовой технологией. Заголовок пакета сетевого уровня имеет унифицированный формат, не зависящий от форматов кадров канального уровня тех сетей, которые могут входить в объединенную сеть.
Заголовок сетевого уровня должен содержать адрес назначения и другую информацию, необходимую для успешного перехода пакета из сети одного типа в сеть другого типа. К такой информации может относиться, например:
* номер фрагмента пакета, нужный для успешного проведения операций сборки-разборки фрагментов при соединении сетей с разными максимальными размерами кадров канального уровня,
* время жизни пакета, указывающее, как долго он путешествует по интерсети, это время может использоваться для уничтожения "заблудившихся" пакетов,
* информация о наличии и о состоянии связей между сетями, помогающая узлам сети и маршрутизаторам рационально выбирать межсетевые маршруты,
* информация о загруженности сетей, также помогающая согласовать темп посылки пакетов в сеть конечными узлами с реальными возможностями линий связи на пути следования пакетов,
* качество сервиса - критерий выбора маршрута при межсетевых передачах - например, узел-отправитель может потребовать передать пакет с максимальной надежностью, возможно в ущерб времени доставки.
В качестве адресов отправителя и получателя в составной сети используется не МАС-адрес, а пара чисел - номер сети и номер компьютера в данной сети. В канальных протоколах поле "номер сети" обычно отсутствует - предполагается, что все узлы принадлежат одной сети. Явная нумерация сетей позволяет протоколам сетевого уровня составлять точную карту межсетевых связей и выбирать рациональные маршруты при любой их топологии, используя альтернативные маршруты, если они имеются, что не умеют делать мосты.
Таким образом, внутри сети доставка сообщений регулируется канальным уровнем. А вот доставкой пакетов между сетями занимается сетевой уровень.
Существует два подхода к назначению номера узла в заголовке сетевого пакета. Первый основан на использовании для каждого узла нового адреса, отличного от того, который использовался на канальном уровне. Преимуществом такого подхода является его универсальность и гибкость - каков бы ни был формат адреса на канальном уровне, формат адреса узла на сетевом уровне выбирается единым. Однако, здесь имеются и некоторые неудобства, связанные с необходимостью заново нумеровать узлы, причем чаще всего вручную.
Второй подход состоит в использовании на сетевом уровне того же адреса узла, что был дан ему на канальном уровне. Это избавляет администратора от дополнительной работы по присвоению новых адресов, снимает необходимость в установлении соответствия между сетевым и канальным адресом одного и того же узла, но может породить сложную задачу интерпретации адреса узла при соединении сетей с разными форматами адресов.
Протоколы передачи данных и протоколы обмена маршрутной информацией
Для того, чтобы иметь информацию о текущей конфигурации сети, маршрутизаторы обмениваются маршрутной информацией между собой по специальному протоколу. Протоколы этого типа называются протоколами обмена маршрутной информацией (или протоколами маршрутизации). Протоколы обмена маршрутной информацией следует отличать от, собственно, протоколов сетевого уровня. В то время как первые несут чисто служебную информацию, вторые предназначены для передачи пользовательских данных, также, как это делают протоколы канального уровня.
Для того, чтобы доставить удаленному маршрутизатору пакет протокола обмена маршрутной информацией, используется протокол сетевого уровня, так как только он может передать информацию между маршрутизаторами, находящимися в разных сетях. Пакет протокола обмена маршрутной информацией помещается в поле данных пакета сетевого уровня, поэтому с точки зрения вложенности пакетов протоколы маршрутизации следует отнести к более высокому уровню, чем сетевой. Но функционально они решают общую задачу с пакетами сетевого уровня - доставляют кадры адресату через разнородную составную сеть.
С помощью протоколов обмена маршрутной информацией маршрутизаторы составляют карту межсетевых связей той или иной степени подробности и принимают решение о том, какому следующему маршрутизатору нужно передать пакет для образования рационального пути.
На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов - Address Resolution Protocol, ARP. Иногда их относят не к сетевому уровню, а к канальному, хотя тонкости классификации не изменяют их сути.
Данный пример позволяет производить множественный выбор записей
в табличной сетке и отображать второе поле
набора данных.
Метод DisableControls применяется для того, чтобы
DBGrid не обновлялся во время изменения набора данных.
Последняя позиция набора данных сохраняется как
TBookmark.
Метод IndexOf вызывается для проверки
существования закладки.
Решение использовать метод IndexOf, а не метод
Refresh должно определяться
спецификой приложения.