Книга представляет собой сборник статей выдающегося математика и инженера, члена Национальной академии наук США, Клода Эльвуда Шеннона. Многие из включенных в сборник работ, опубликованных проф. Шенноном в различных журналах в 1938-1962 годах, положили начало новым областям исследований в области общей теории связи, теории автоматов, электротехники, теории информации и лингвистики, таким, как теория анализа и синтеза релейных устройств, теория вероятностных схем, теория передачи информации и т.д.
Статьи расположены в сборнике по тематическому принципу: в первой части помещены работы по теории управляющих систем, во второй - по теории информации, в третьей - все остальные. В конце книги приводится библиография работ по теории информации.
Книга представляет интерес для широкого круга математиков и специалистов, работающих в области автоматического управления, теории связи, радиотехники, теории надежности и в смежных областях, так иили инае связанных с использованием результатов теории информации. Она будет полезна также студентам страших курсов университетов и технических вузов инженерам и научным работникам различных специальностей, занимающимся вопросами, связанными с математическими аспектами кибернетики.
От автора: "Этот документ для тех, кто хочет писать модули ядра. Хотя я буду касаться в нескольких местах того, как многие задачи выполнены в ядре, это не моя цель. Имеется достаточно много хороших источников, авторы которых проделали работу лучшую чем та, которую я мог бы сделать.
Этот документ также для людей, которые знают как писать модули ядра, но еще не адаптировались к версии 2.2. Если Вы такой человек, я предлагаю, Вам прочитать приложение A, чтобы увидеть все различия, с которыми я столкнулся при модифицировании примеров. Список не всесторонний, но я думаю, что он покрывает большинство базисных функциональных возможностей и его будет достаточно для начала.
Ядро имеет большое количество программирования, и я полагаю, что программисты должны читать по крайней мере некоторые его исходные файлы и понимать их. Сказав это, я также верю в значение игры с системой сначала и выяснением вопросов позже. Когда я узнаю новый язык программирования, я не начинаю с чтения библиотечного кода, а пишу маленькую программу "hello, world". Я не вижу, почему начинающий разбираться с ядром должен быть действовать иначе."
Книга, которую вы держите в руках, возникла из курса лекций, читаемых автором в течение последних лет для студентов младших курсов. Подобные книги рождаются после того, как студенты в сотый раз зададут один и тот же вопрос, который лектор уже несколько раз разъяснял в разных вариациях. Возникает желание отослать их к какой-нибудь литературе. Пересмотрев еще раз несколько десятков книг, использованных при подготовке лекций, порывшись в библиотеке и на прилавках книжных магазинов, лектор с удивлением обнаруживает, что не может предложить студентам ничего подходящего. Остается сесть за стол и написать книгу самому. Такое происхождение книги накладывает на нее определенные особенности.
Она представляет собой сгусток практического опыта, накопленного автором и его студентами с 1996 г.;
содержит ответы на часто задаваемые вопросы, последние "компьютерщики" называют FAQ (Frequency Asked Questions);
написана кратко и сжато, как конспект лекций, в ней нет лишних слов (за исключением, может быть, тех, что вы только что прочитали);
рассчитана на читателей, стремящихся быстро и всерьез ознакомиться с новинками компьютерных технологий;
содержит много примеров применения конструкций Java, которые можно использовать как фрагменты больших производственных разработок в качестве "How to?";
включает материал, являющийся обязательной частью подготовки специалиста по информационным технологиям;
не предполагает знание какого-либо языка программирования, а для знатоков выделяются особенности языка Java среди других языков;
предлагает обсуждение вопросов русификации Java.
Прочитав эту книгу, вы вступите в ряды программистов на Java — разработчиков технологии начала XXI века.
Создание языка Java - это один из самых значительных шагов вперед в области разработки сред программирования за последние 20 лет. Язык HTML (Hypertext Markup Language - язык разметки гипертекста) был необходим для статического размещения страниц во `Всемирной паутине` WWW (World Wide Web). Язык Java потребовался для качественного скачка в создании интерактивных продуктов для Internet.
Автор: П. Карабин
Издательство: Бук-пресс
Год: 2006
Страниц: 224
Формат: Pdf
Размер: 1.24 Mb (rar/+5%)
Качество: Отличное
Язык: Русский
Автором языка C++ является Бьерн Страуструп,сотрудник известной фирмы AT&T. C++(а точнее, его предшественник, С with classes) был создан под влиянием языка Simula (надо сказать, что этот язык программирования появился еще в 1967 году). Собственно, к тому моменту, когда появился C++, С уже заработал себе популярность; профессиональные программисты уважают его за возможность использовать преимущества конкретной архитектуры, создавая при этом программы на языке относительно высокого уровня.
В настоящее время C++ — один из самых популярных (если не самый популярный) языков программирования. Именно С++ позволяет написать программу с использованием объектно ориентированных подходов (а программы, которые этого требуют, обычно очень большие) и при этом достаточно «быструю». Эта книга познакомит читателя с «философией » и основами программирования на языке С++. В книге приводится множество примеров, скомпилированных и проверенных автором.
Какие данные можно получить о посетителе сайта при помощи php (браузер, ip, url и другое) или сервере (имя, почта и другое)?
Как расшифровываются переменные окружения в PHP (SERVER, REDIRECT и др) и что они передают?
DOCUMENT_ROOT - Путь к корневой папке сайта. Для локального веб-сервера значение может принимать вид z:/home/htmlbook.ru/www, а в других случаях зависит от операционной системы сервера и используемого программного обеспечения. GATEWAY_INTERFACE - Версия CGI (Common Gateway Interface, общий шлюзовый интерфейс). Значение обычно равно CGI/1.1. HTTP_ACCEPT - Типы файлов, которые способен принять браузер. В качестве значения возвращается список поддерживаемых MIME-типов разделенных между собой запятой, например: text/html, application/xhtml+xml. HTTP_CONNECTION - Тип соединения браузера с веб-сервером. Так, значение keep-alive означает, что браузер поддерживает постоянное соединение с сервером. При этом в течение одного сеанса соединения разрешено делать несколько запросов. Повторного соединения в таком случае уже не происходит. HTTP_HOST - Доменное имя сайта. Обычно различают имена с префиксом www (www.tradebenefit.ru) и без него (tradebenefit.ru). Переменная вернёт тот адрес сайта, который указан в адресной строке браузера. HTTP_REFERER - Адрес страницы, с которой пользователь перешел на данный сайт, он еще называется реферер. HTTP_USER_AGENT - Идентификатор используемого браузера и операционной системы. В качестве значения возвращается строка, содержащая ключевые слова. Например, следующая строка
говорит, что пользователь использует браузер Firefox 6.0.2 под операционной системой Windows 7.
QUERY_STRING - Запрос, который указан в адресной строке после вопросительного знака (?). Обычно пишется в форме «переменная=значение», где переменные разделяются между собой амперсантом. Рассмотрим пример.
REMOTE_ADDR - IP-адрес посетителя сайта. REQUEST_METHOD - Метод отправки данных на сервер. По умолчанию применяется метод GET. REQUEST_URI - Адрес запрашиваемого документа. Отсчёт ведётся от корня сайта, т.е. для полного адреса http://site.ru/1.html вернется значение 1.html. SERVER_ADDR - IP-адрес компьютера, на котором размещается сайт. SERVER_ADMIN - Адрес электронной почты администратора сайта. SERVER_NAME - Имя сервера. SERVER_PORT - Порт, по которому ожидается получение данных. SERVER_PROTOCOL - Протокол для получения и отправки данных. Значение обычно равно HTTP/1.1. SERVER_SOFTWARE - Программное обеспечение установленное на сервере. Для веб-сервера Apache возвращается номер версии (Apache/2.2.4), а также версия PHP (PHP/5.3.3).
Чаще всего изображения со случайным кодом (так называемая captcha) используются для защиты от флуда (автоматизированного ввода сообщений), некоторые сервисы находят им применнение в качестве раздражителя (для перехода на платный вариант).
В общем, может пригодиться. PHP код следующий:
Это максимально упрощенный вариант с использованием только одного шрифта и небольшого количества символов и цветов, хотя и этого бывает достаточно, чтобы оградиться от незатейливых спамеров и флудеров.
Через HTML такое изображение вызывается стандартно:
Скачать скрипт генерации защитного кода с полным набором символов и возможностью подключения своих шрифтов можно здесь [url=/uploads/files/public/secpic.rar]secpic.zip[/url]
Чтобы упростить ориентирование во все более разрастающемся Интернете, была разработана система DNS (Domain Name System - система именования доменов сети). Дело в том, что каждому компьютеру или компьютерной сети, подключенной к Интернету, назначается уникальная последовательность цифр, называемая IP-адресом.
IP-адрес состоит из четырех чисел, от 0 до 255 каждое, например 198.105.232.001. Зная IP-адрес, пользователь одного компьютера с легкостью находит другой компьютер в Интернете, и может к нему подключиться, если у него есть на это соответствующие права. Все просто, когда вам нужно получать доступ к одному-двум компьютерам, но если их количество переваливает за десяток или даже за сотню, а, тем более, если вам необходимо сообщать определенный IP-адрес многим людям, ситуация становится поистине кошмарной.
Избавиться от подобных проблем помогает система имен DNS. Она позволяет заменять цифровые IP-адреса на благозвучные буквенные, например: «microsoft.com» или «yandex.ru». Как же работает DNS? Все Интернет-пространство можно разделить на несколько групп, называемых «доменными зонами». Эти зоны называются доменами первого уровня. Разделение по зонам может проводиться как по географическому, так и по тематическому признаку. Географическая доменная зона определяет расположение компьютера в том или ином государстве. Вот несколько примеров географических доменов первого уровня: ru - Россия, fr - Франция, uk - Великобритания, jp - Япония, su - бывший Советский Союз. Тематические доменные зоны группируют компьютеры по информации, содержащейся на них, либо по типу организаций, ими владеющих, вне зависимости от их географического расположения.
Два компьютера, зарегистрированные в одной тематической доменной зоне, могут находиться в противоположных концах земного шара. Вот примеры тематических доменных зон: com - коммерческое предприятие, net - что-то связанное с сетевыми технологиями, edu - образовательное учреждение, info - информационный проект, gov - государственное учреждение, biz - бизнес-проект, mil - военная организация. Несмотря на обилие доменных зон, далеко не все из них пользуются большой популярностью. Основная часть компьютеров в Интернете зарегистрирована в доменных зонах com и net. Некоторые доменные зоны используются и вовсе не по прямому назначению. Например, островное государство Тувалу стало обладателем географической доменной зоны tv, которую сейчас облюбовали организации, так или иначе связанные с телевидением: телеканалы, производители бытовой техники, киноделы, рекламщики и прочие...
Каждая доменная зона делится на поддомены, или домены второго уровня, и каждому из этих поддоменов присваивается свое имя, например совпадающее с названием организации, владеющей доменом. Это имя приписывается к имени домена верхнего уровня слева, в виде суффикса, и отделяется точкой. Например, в имени microsoft.com строка com означает доменную зону, а суффикс microsoft - имя домена второго уровня. Как нетрудно догадаться, по этому адресу находится сеть, принадлежащая корпорации Microsoft. Однако сеть корпорации Microsoft весьма велика, поэтому каждый домен второго уровня, в свою очередь, может делиться еще на несколько подподдоменов, или доменов третьего уровня. Это записывается так - mail.microsoft.com. В этом примере mail - это суффикс домена третьего уровня. Такое деление может продолжаться до бесконечности, но обычно ограничивается доменами третьего-четвертого уровня.
Общее руководство и контроль над доменными зонами, осуществляет организация ICANN (The Internet Corporation for Assigned Names and Number - Интернет-ассоциация по выдаче имен и чисел). Она передает полномочия на выдачу адресов в той или иной доменной зоне другим организациям и следит за соблюдением основных правил. Организации, уполномоченные выдавать доменные адреса в той или иной доменной зоне, торгуют доменными адресами второго уровня. То есть, если кто-то хочет, чтобы у его компьютера в Интернет был адрес vasya-pupkin.com, он должен обратиться к организации, выдающей доменные имена в зоне com. Затем попросить зарегистрировать в ней домен второго уровня vasya-pupkin, предоставить IP-адрес своего компьютера в Сети и, разумеется, уплатить некоторую сумму денег. В результате, компьютер Васи в Интернете можно будет отыскать не только по малопонятному набору цифр IP-адреса, но и по звучному текстовому адресу.
При желании, одному IP-адресу можно сопоставить даже несколько доменных имен, например vasya-pupkin.com и vasiliy.ru. Адреса в Российской доменной зоне выдает организации РосНИИРОС, Российский НИИ развития общественных сетей.
Современный Интернет представляет собой сложнейшую систему из тысяч компьютерных сетей, объединенных между собой. Состоит эта система из двух основных элементов: узлов сети Интернет и соединяющих их информационных магистралей. Узлом Интернета называют любое устройство, имеющее свой IP-адрес и подключенное к Сети. Несмотря на кажущуюся мешанину межкомпыотерных соединений и отсутствие централизованного руководства, Интернет имеет определенную иерархическую структуру.
В самом низу иерархии находится многочисленная армия конечных пользователей. Часто не имеющие даже постоянного IP-адреса подключаются к Интернету по низкоскоростным каналам. Тем не менее, пользователи являются одними из основных потребителей услуг Сети и главными «спонсорами» коммерческой части Интернета. Причем на одного «физического» пользователя, т. е. реального человека, пользующегося услугами Сети, может приходиться несколько пользователей «логических», т. е. различных подключений к Интернету.
Так, кроме компьютера, возможность подключения к Интернету может иметь мобильный телефон, карманный компьютер, бытовая техника, автомобиль и даже кондиционер. Конечные пользователи подключаются к компьютерам Интернет-провайдера, или, как их еще называют, ISP (Internet Service Provider - провайдер Интернет). ISP - это организация, основная деятельность которой связана с предоставлением услуг Интернета пользователям.
У провайдера есть своя компьютерная сеть, размеры которой могут варьироваться от сотен десятков узлов в нескольких городах до многих тысяч, раскиданных по целому континенту. Эта сеть называется магистральной сетью, или бэкбоном (от слова backbone - стержень, магистраль). Сети отдельных провайдеров соединяются между собой и другими сетями. Среди ISP есть «монстры», которые обеспечивают соединение между собой сетей различных стран и континентов, являясь своего рода «провайдерами для провайдеров». Весь этот конгломерат компьютерных сетей и образует то, что называется Интернетом.
Особняком стоят DNS-серверы - компьютеры, отвечающие за функционирование системы DNS. Для подключения конечных пользователей к ISP служат так называемые «точки доступа» - компьютеры или специальные устройства, содержащие оборудование для подключения «извне».
Подключившись к точке доступа провайдера, пользователь становится частью магистральной сети провайдера и, соответственно, получает доступ к ее ресурсам, а также к ресурсам сетей, соединенных с бэкбоном провайдера, т. е. ко всему Интернету. Кроме конечных пользователей, к сети провайдеров подключаются различного рода серверы, или «хосты» (от слова host - хозяин). Это узлы сети, на которых работает программное обеспечение, обеспечивающее практически все услуги, предоставляемые сетью Интернет.
В данной статье приведены общие сведения об организации работы системы 1С:Предприятие с распределенной информационной базой (ИБ). Также описаны внутренние особенности организации механизма работы с распределенными данными для того, чтобы специалисты, осуществляющие конфигурирование и администрирование распределенных систем могли лучшее понимать выполняемые системой действия. Данная информация может также быть использована для оценки дополнительных затрат ресурсов системы, расходуемых на поддержание распределенной информационной базы.
Так как средства системы 1С:Предприятие для работы с распределенными информационными базами поставляются отдельно, сначала кратко остановимся на назначении и основных принципах организации работы системы 1С:Предприятие с территориально удаленными подразделениями.
Назначение и основные принципы
В тех случаях, когда предприятие представляет собой территориально распределенную структуру, зачастую сохраняется потребность в ведении единой системы учета. То есть необходимо иметь возможность работать в едином пространстве документов, получать отчеты, отражающие состояние дел как в территориально удаленных подразделениях предприятия, так и на предприятии в целом и т.п. При этом не всегда имеется возможность организовать работу всех подразделений с единой информационной базой в режиме он-лайн.
Для решения подобных задач предназначена компонента "Управление распределенными ИБ". С помощью указанной компоненты можно организовать двухуровневую структуру информационных баз (ИБ) системы 1С:Предприятие, состоящую из одной центральной и нескольких периферийных информационных баз, работающих с единой конфигурацией. При этом система будет стремиться поддерживать одинаковое состояние объектов данных во всех узлах распределенной ИБ.
Содержимое информационных баз синхронизируется путем переноса измененных объектов данных между каждой из периферийных и центральной ИБ. Для переноса данных используются так называемые файлы переноса данных. Перенос изменений выполняется только между центральной и периферийными ИБ. Перенос данных непосредственно между периферийными ИБ невозможен. Поэтому изменения данных, произведенные в одном из периферийных узлов распределенной ИБ попадают в другие периферийные узлы только через центральную ИБ.
В простейшем случае (по умолчанию) областью распространения изменений для всех объектов является вся распределенная ИБ. Таким образом, в случае если в течение какого-то времени изменения данных системы не будут производиться, и, в то же время, будут произведены все необходимые действия по обмену изменениями между узлами распределенной ИБ, то все узлы будут содержать абсолютно одинаковые данные.
В некоторых случаях может возникнуть необходимость в том, чтобы объекты того или иного типа никогда не попадали в те или иные узлы распределенной ИБ или никогда не покидали места своего создания. Для обеспечения такой возможности предназначен механизм настройки параметров миграции объектов. С его помощью можно ограничить распространение изменений объектов того или иного вида. Кроме того, в версии 7.7 системы 1С:Предприятие можно создавать периферийные ИБ, которые будут принимать информацию о измененных объектах из центральной ИБ, но не будут передавать изменения, сделанные в них самих.
Механизмы распространения изменений объектов работают полностью автоматически. Разработчик конфигурации лишен возможности вмешиваться в функционирование этих механизмов. Для того, чтобы механизмы распределенной ИБ начали работать, не нужно производить никаких специальных действий по конфигурированию системы.
Однако, для того, чтобы документы, элементы справочников и другие объекты, созданные в разных узлах распределенной ИБ, имели заведомо непересекающиеся пространства номеров, кодов и т. п., может потребоваться внести в конфигурацию некоторые изменения. Также изменения в конфигурации должны вноситься при необходимости обеспечить специальные ограничения работы пользователей на периферийных информационных базах.
Для переноса измененных объектов в распределенной ИБ и для первичного создания периферийной ИБ используется файл переноса данных. Он представляет собой упакованный (сжатый) файл, содержащий объекты информационной базы (все при создании периферийной ИБ или измененные при передаче изменений) в специальном формате. Формат данного файла не предназначен для использования его способами отличными от тех, которые предусмотрены механизмами выгрузки/загрузки и передачи изменений. Файл переноса фактически отражает содержимое объектов информационной базы в формате, не зависящем от формата базы данных. Это позволяет использовать в распределенной информационной системе в различных узлах различные форматы хранения данных, поддерживаемые системой 1С:Предприятие (DBF/CDX и MS SQL Server).
Регистрация изменений
Перенос измененных данных производится "пообъектно". То есть единицей переноса данных является так называемый ведущий объект. С точки зрения работы в распределенной информационной базе в 1С:Предприятии существуют следующие типы ведущих объектов:
константа,
элемент справочника,
документ,
календарь,
счет бухгалтерского учета,
типовая операция.
Вместе с документами переносятся все действия, выполняемые ими в процессе проведения: движения регистров, акты расчета, бухгалтерская операция, проводки. В случае, если при проведении документа производятся изменения периодических реквизитов элемента справочника, то производится перенос всего элемента справочника.
Регистрация изменений объектов производится автоматически при любом изменении объекта, независимо от того каким способом это изменение производилось (интерактивно или из встроенного языка). Кроме того в версии 7.7 системы 1С:Предприятие для таких объектов как элементы справочников и документы появилась возможность управления регистрацией изменений. Для этого у соответствующих объектов метаданных введен признак "Автоматическая регистрация изменений". Если этот признак установлен (значение по умолчанию), то автоматическая регистрация производится, а если признак сброшен, то регистрация не производится и изменения объектов в распределенной ИБ не распространяются. Но и в данном случае, при выполнении записи изменений объектов из встроенного языка можно управлять регистрацией изменений с помощью метода встроенного языка РегистрацияИзменений().
Регистрация изменений ведущих объектов производится в специальной служебной таблице. При этом фиксируются следующие данные об изменении объекта:
Сам ведущий объект;
Идентификатор той ИБ, в которую должно быть передано изменение;
Идентификатор ИБ, в которую должно быть передано изменение, служит для отслеживания переноса данных в каждую из ИБ, с которой данная ИБ обменивается данными. Таким образом, при изменении какого-либо объекта в центральной ИБ в таблицу будет помещено по одной записи для каждой из зарегистрированных периферийных информационных баз. Если же изменение объекта происходит в периферийной ИБ, то в таблицу будет занесена только одна запись, соответствующая центральной ИБ, так как каждая из периферийных ИБ непосредственно взаимодействует только с центральной.
Заметим, что удаление объекта является частным случаем изменения. Оно также помечается в таблице регистрации изменений и передается при выгрузке.
Выгрузка и загрузка изменений
Каждая выгрузка изменений осуществляется в адрес конкретной ИБ. В файл переноса, создаваемый при выгрузке попадают все объекты, записи об изменениях которых содержатся в таблице регистрации изменений для данной ИБ.
Заметим, что выгружаются не изменения объектов, а сами измененные объекты. То есть, если в документе изменилось значение одного реквизита, то будет передаваться весь документ и он будет полностью перезаписан на той ИБ, в которую переносится. Как уже отмечалось, вместе с документом будут перенесены и сделанные им движения регистров, операция и проводки. Если изменяется любой реквизит справочника, то передается полностью весь элемент. При этом история периодических реквизитов передается целиком. Последнее означает, что изменения сделанные в истории периодического реквизита элемента на в двух ИБ не будут сливаться вместе.
В процессе выгрузки в таблице регистрации изменений отмечается выгрузка изменений объектов.
При загрузке файла переноса данных помимо загрузки измененных данных выполняется так называемый прием подтверждений.
В случае, когда пришло подтверждение на получение выгрузки, содержащей последнее изменение объекта, запись об изменении удаляется из таблицы регистрации. То есть записи об изменении объектов данных хранятся в таблице регистрации до тех пор, пока не будет получено подтверждение о доставке измененного объекта по назначению.
Причем выгрузка измененного объекта будет производиться до тех пор, пока не будет получено подтверждение, о доставке изменения. Это значит, что если выполнять перенос все время в одном направлении и не выполнять обратного переноса то объем файла переноса данных будет все время расти, так как каждый раз будут передаваться все объекты, измененные после последнего полученного подтверждения.
При загрузке изменений объектов из периферийной ИБ в центральную, в таблицу регистрации изменений (если, конечно, параметры миграции настроены соответствующим образом) заносятся записи, указывающие, что загруженные из периферийной ИБ изменения объектов должны быть переданы в другие периферийные ИБ.
Изменения конфигурации
Как уже отмечалось, при работе с распределенной ИБ, конфигурация системы может быть изменена только в центральном узле.
Для регистрации изменений конфигурации и передачи ее на периферийные ИБ используется тот же механизм, что и для объектов данных. При записи измененной конфигурации, в таблицу регистрации изменений объектов по числу известных периферийных ИБ заносятся записи, фиксирующие факт изменения конфигурации.
После записи измененной конфигурации в распределенной ИБ складывается такая ситуация, что центральная и периферийные ИБ работают фактически с разными конфигурациями. В таком состоянии созданные на периферийной ИБ файлы переноса данных не могут быть загружены на центральной ИБ по той причине, что в условиях различных конфигураций содержащаяся в файле информация не может быть правильно интерпретирована. Обмен будет восстановлен только после того, как в периферийную ИБ будет загружена измененная конфигурация с центральной ИБ. То есть после изменения конфигурации требуется выполнить перенос из центральной ИБ в каждую из периферийных, а уже затем выполнять перенос из периферийных ИБ в центр.
Перенос измененной конфигурации в периферийные ИБ осуществляется тем же способом, что и перенос измененных объектов данных. В процессе очередной выгрузки из центральной ИБ, в файл переноса данных целиком включается измененная конфигурация, если, конечно, в таблице регистрации изменений содержится запись о том, что измененную конфигурацию следует передать в соответствующую периферийную ИБ. Выгрузка конфигурации также будет производиться до получения извещения о приеме измененной конфигурации.
Заметим, что конфигурация считается измененной при любых изменениях метаданных, форм, модулей, таблиц конфигурации, наборов прав, пользовательских интерфейсов, описаний. В состав конфигурации не входит список пользователей, а также внешние по отношению к файлу конфигурации (1CV7.MD) файлы (внешние отчеты, отдельно записанные таблицы и тексты). И эти внешние файлы не переносятся механизмом управления распределенной ИБ. Поэтому при конфигурировании распределенной системы не рекомендуется использовать в конфигурации находящиеся в отдельных файлах модули, таблицы и отчеты.
Для изменения уже работающей конфигурации можно рекомендовать использовать механизм загрузки измененной конфигурации. Он позволяет специалисту скопировать конфигурацию, выполнить в ней все необходимые изменения, отладить внесенные изменения (этот процесс может занять и несколько дней), а затем загрузить измененную конфигурацию в центральную ИБ, после чего изменения будут распространены на все периферийные ИБ с очередной передачей изменений. Такая последовательность позволит избежать многократной передачи измененной конфигурации в периферийные ИБ в процессе ее модернизации.
При загрузке файла переноса данных на периферийной ИБ, этап загрузки измененной конфигурации (если, конечно, она содержится в файле переноса данных) предшествует этапу загрузки измененных объектов данных. В случае неудачного завершения загрузки конфигурации, загрузка объектов данных производиться не будет и информационная база останется в том же состоянии, что и была до начала загрузки.
Загрузка измененной конфигурации может завершиться неудачей, если измененная конфигурация не соответствует существующим данным. Например, было уменьшено число уровней справочника, а новое число уровней оказывается меньшим, чем фактически содержащееся в справочнике или в других подобных случаях. Если такое произошло, то следует привести данные в соответствие с новой конфигурацией или изменить конфигурацию в центральной ИБ и заново произвести выгрузку, чтобы ликвидировать возникшее противоречие.
Коллизии
При работе в реальных распределенных ИБ один и тот же объект может изменяться одновременно в различных узлах распределенной ИБ. И при переносе измененных объектов из одной ИБ в другую может случиться так, что в какую-либо ИБ будет загружаться объект, зарегистрированный в самой этой ИБ как измененный. Такая ситуация носит название коллизии. Приведем описание действий системы в наиболее типовых вариантах коллизий.
Один и тот же объект изменен более чем в одной ИБ.
Общий принцип здесь состоит в том, что "главным" считается изменение, произведенное в центральной ИБ. Отработка ситуации различается в зависимости от того, на какой ИБ - центральной или периферийной коллизия обнаружена. Если коллизия обнаружена на центральной ИБ, то есть при загрузке файла переноса из периферийной ИБ обнаружено, что один из измененных объектов также изменен и в центральной ИБ, то изменения объекта в центральную ИБ не загружаются. При этом гарантируется, что при очередной выгрузке в адрес периферийной ИБ будет передано состояние объекта как оно есть в центральной ИБ. Если же коллизия обнаружена на периферийной ИБ, то изменения объекта, прибывшие из центральной ИБ загружаются.
Объект, измененный в одной ИБ, удален в другой.
В данном случае принцип заключается в том, что изменение всегда "главнее" удаления. В случае, если на центральную ИБ прибывает файл переноса, в котором содержится информация, что некоторый объект удален на периферийной ИБ, то в центральной ИБ объект не удаляется, а в записи таблицы регистрации изменений данный объект помечается как измененный. То есть при очередном обмене объект будет восстановлен в той ИБ, в которой он был удален, причем само содержание объекта будет соответствовать той ИБ, которая "отвергла" удаление.
Аналогичные действия производятся, если коллизия обнаружена на периферийной ИБ.
Объект, удаленный в одной ИБ, не может быть удален в другой по причине наличия ссылок на него.
При загрузке изменений, если загружается информация об удалении объектов, автоматически включается механизм контроля ссылочной целостности и выполняется проверка наличия ссылок в данной ИБ на объекты, которые переданы как удаленные.
В случае обнаружения коллизии такого рода, вне зависимости от того на какой из ИБ она была обнаружена, выполняется следующее: удаление не выполняется, а в таблицу регистрации изменений заносится запись о том, что объект должен быть перенесен в адрес той ИБ, из которой была прислана информация о его удалении.
При очередном обмене объект восстанавливается в той ИБ, в которой он был удален, однако само содержание объекта будет соответствовать той ИБ, которая "отвергла" удаление.
Таким образом, управление распределенной информационной базой имеет определенную стратегию автоматического разрешения любых коллизий с описанными приоритетами. Однако, в реальных условиях рекомендуется средствами конфигурации определить возможные действия пользователей на различных узлах таким образом, чтобы исключить или минимизировать вероятность возникновения коллизий. Основным путем является определения средствами конфигурации "ответственного" узла за каждый ведущий объект в распределенной ИБ и ограничение всем остальным возможности его редактирования и удаления. Определение "ответственных" должно происходить исходя из логики работы предприятия. Очевидно, что многие виды объектов можно разрешить изменять только в центральной ИБ (например, список складов). Для многих объектов можно рекомендовать средствами встроенного языка установить возможность изменения только на той ИБ, на которой они созданы, например для документов.
Параметры миграции
С помощью настройки параметров миграции можно ограничивать области распространения изменений объектов. Настройка параметров миграции происходит по видам "ведущих" объектов. То есть для каждого вида "ведущих" объектов можно определить конкретную настройку параметров миграции. В настройке параметров миграции объектов ведущую роль играет выбор того или иного варианта области распространения изменений объектов данного вида. Существуют три варианта настройки области распространения:
Все информационные базы. Данный вариант настройки используется по умолчанию для всех объектов. В этом случае любые изменения объектов данного типа будут распространяться по всем узлам распределенной ИБ. Этот вариант обеспечивает полную синхронизацию объектов данного вида во всей распределенной ИБ. Очевидно, что этот вариант наиболее прост для конфигурирования.
Место создания. Данный вариант настройки также является довольно простым. В этом случае изменения объекта не передаются в другие ИБ. При такой настройке параметров миграции, объект данного вида никогда не "покидает" места своего создания и не появляется в других ИБ. Однако при выборе данного варианта следует учитывать возможные ссылки на объекты данного вида из объектов других видов, имеющих другие параметры миграции. Например, если установить такой вариант для справочника, и в документах, которые участвуют в обмене, будет содержаться реквизит типа справочник данного вида, то при переносе документа получится неразрешенная ссылка.
Место создания и центр. При таком варианте настройки области распространения объектов существенную роль играет понятие места создания объекта. Местом создания объекта считается ИБ, в которой был создан конкретный объект. Естественно, что различные объекты одного вида могут быть созданы в различных ИБ. Однако место создания объекта может быть определено не для всех видов "ведущих" объектов. Для таких объектов как константы, календари или корректные проводки место создания не определено. Поэтому для этих видов объектов вариант настройки "Место создания и центр" не может быть установлен.
В случае выбора такого варианта области распространения, объекты данного вида помимо места их создания попадают еще и на центральную ИБ. То есть, в случае, если для некоторого вида объектов установлена область распространения "Место создания и центр", то для объектов этого вида, созданных на периферийной ИБ, их изменения будут передаваться между местом их создания и центральной ИБ. Для объектов того же вида, созданных на центральной ИБ, изменения не будут передаваться никуда. С помощью такого варианта области распространения можно добиться такого эффекта, что все объекты того или иного вида будут "собираться" на центральной ИБ, а на любой из периферийных ИБ будут находиться только те объекты, для которых она является местом создания.
В случае выбора области распространения "Место создания и центр", для вида объекта можно задать перечень периферийных узлов распределенной ИБ, которые дополнительно включаются в область распространения всех объектов данного вида. Этот перечень задается как список кодов периферийных ИБ, разделенный запятыми. При задании кодов ИБ допускается использование символов-заменителей '*'. Символ-заменитель должен завершать последовательность символов, образующих код одной или нескольких периферийных ИБ. Таким образом, "A*" представляет собой обозначение всех периферийных ИБ, коды которых начинаются символом 'А'. Последовательность "A*B" является ошибочной, так как символ '*' не завершает последовательность символов, представляющих код периферийной ИБ.
Кроме того, как отмечалось выше, дополнительной возможностью управлять распространением изменений объектов в версии 7.7 системы 1С:Предприятие является особый вид периферийных ИБ, которые получают изменения из центральной ИБ, а сами информацию о сделанных в них изменениях не передают. Для создания периферийной ИБ такого рода, надо при ее инициализации указать признак "Только получатель".
Отдельно стоит рассмотреть случай, когда параметры миграции объектов изменяются в процессе изменения конфигурации уже работающей системы. Изменения параметров миграции для каждого из объектов производится независимо от других. То есть, Конфигуратор не отслеживает ссылки между объектами при настройке параметров миграции. Таким образом, при определенных вариантах настройки параметров миграции у некоторых объектов могут появиться ссылки, указывающие "никуда". Ответственность за сохранение ссылочной целостности в распределенных ИБ возлагается на лицо, занимающееся конфигурированием системы. Общим правилом настройки параметров миграции является определение области миграции для конкретного вида объектов равной более широкой, чем область миграции ссылающихся на него объектов. Например, для справочника область миграции должна быть определена не уже, чем области миграции документов и справочников, в которых есть реквизиты типа "справочник" данного вида. Если, например, измерение регистра имеет тип "справочник" данного вида, то область миграции справочника должна покрывать области миграции всех документов, которые могут записать движения данного регистра.
При изменении параметров миграции того или иного объекта система старается привести имеющиеся данные в соответствие с новыми параметрами. Общим принципом здесь является то, что при изменении параметров миграции объекты никогда ни в каком узле распределенной ИБ не удаляются. Даже в том случае, если в соответствии с вновь установленными параметрами миграции их там быть не должно. Изменения производятся лишь в таблице регистрации изменений. Рассмотрим случаи изменения параметров миграции объектов подробнее.
Наиболее простой случай - это смена любого из вариантов области распространения на вариант "Место создания". В этом случае из таблицы регистрации изменений удаляются все записи по данному виду объектов. То есть все изменения объектов, еще не переданные в другие ИБ, не будут переданы. При этом, все объекты для которых данная ИБ не является местом создания, не будут удалены. Просто их изменения (как и изменения других объектов данного вида) не будут больше передаваться в другие ИБ.
Следующий случай - это смена области распространения "Место создания" на варианты "Все информационные базы" или "Место создания и центр". В этом случае в таблицу регистрации изменений заносятся записи для передачи всех объектов, для которых текущая ИБ является местом создания во все ИБ, в которые должны передаваться изменения в соответствии с вновь заданной настройкой. В случае, если такая смена производится для объектов, для которых место создания не определено (константы, календари, корректные проводки), то записи в таблицу регистрации изменений будут произведены только в центральной ИБ. Этими двумя вариантами и ограничиваются возможные случаи изменения параметров миграции для такого рода объектов. Все остальные случаи возможны только для тех объектов, для которых место создания можно определить.
При изменении области распространения объектов с "Место создания и центр" на "Все информационные базы", какие-либо действия предпринимаются только в центральной ИБ. В этом случае определяется список периферийных ИБ, попавших в список дополнительно включаемых в область распространения, но ранее в него не входивших. После этого производится обход всех объектов данного вида и для каждого из объектов в таблицу регистрации изменений вносятся записи для передачи состояния объекта в каждую из попавших в список периферийных ИБ, за исключением ИБ места создания объекта.
Последний и самый сложный случай - это изменение области распространения объектов с "Все информационные базы" на "Место создания и центр" или изменение списка дополнительных ИБ в варианте "Место создания и центр". Действия, производимые в данном случае различаются в зависимости от того, производятся они в центральной ИБ или в периферийной. В центральной ИБ для каждой из периферийных ИБ, не попавших в новый перечень дополнительно включаемых в область распространения, выполняется удаление из таблицы регистрации изменений записей соответствующих данному виду объектов, но только для тех объектов, для которых эта периферийная ИБ не является местом создания. Затем определяется список периферийных ИБ, попавших в список дополнительно включаемых в область распространения, но ранее в него не входивших. Естественно, что в случае, если предыдущим вариантом настройки области распространения было "Все информационные базы", то этот список окажется пустым. Затем, как и в предыдущем случае, производится обход всех объектов данного вида и для каждого из объектов в таблицу регистрации изменений вносятся записи для передачи объекта в каждую из попавших в список периферийных ИБ, за исключением ИБ места создания объекта.
Проблемы конфигурирования и администрирования
При разработке конфигурации для распределенной ИБ проявляется ряд объективно существующих проблем, которые решаются как средствами конфигурации, так и административными решениями.
Очевидной проблемой, которая уже упоминалась выше, является уникальная и последовательная нумерация документов и элементов справочников. Для организации уникальной нумерации используется механизм префиксов. Для его включения в конфигурацию, прежде всего, следует выработать некоторую дисциплину, зависимости префикса от ИБ, в которой создается объект. В простейшем случае это может быть собственно код ИБ. Однако часто префикс может автоматически определяться на каждой ИБ, но не являться ее кодом, так как он может участвовать в печатных формах документов и должен быть понятным для пользователей системы. Более сложной задачей является обеспечение сквозной нумерации объектов без префиксов в случае, когда такая нумерация регламентируется нормативными документами. Особенно сложным является обеспечение строго последовательной нумерации. Очевидно, что полного решения данной проблемы не может быть в принципе, так как объекты создаваемые динамически в независимых системах не могут иметь строгой сквозной нумерации. Отчасти данная проблема решается с помощью введения диапазонов номеров, выделяемых для каждой ИБ. Следует заметить, что номера документов и коды справочников не являются внутренними идентификаторами и их уникальность для системы не обязательна. Это значит, что поддержку уникальность номеров и кодов можно отключить для тех видов, объектов, для которых она не нужна. Кроме того, средствами конфигурации можно организовать перенумерацию объектов, например в центральной ИБ. Однако следует иметь ввиду, что эти изменения будут передаваться как и любые другие изменения, что может вызвать достаточно большой объем передаваемых между узлами данных.
Более сложной проблемой является ситуация, когда возникает необходимость использования некоторого нового объекта в двух и более узлах одновременно, до осуществления передачи данных. Например, новый товар должен быть введен и на центральной ИБ и на периферийной. Важно понимать, что созданный ведущий объект системы 1С:Предприятие обладает некоторой сущностью - внутренним идентификатором, который уникален во всей распределенной системе. То есть один и тот же объект не может быть введен в двух узлах. Даже при полном соответствии кодов, номеров и всех данных это будут два разных объекта. Такой принцип необходим для четкой работы системы со всех точек зрения.
Заметим, что возможные варианты ввода двух объектов и затем автоматической замены на центральной ИБ всех ссылок на один из объектов, достаточно сложны в реализации и весьма ненадежны.
Поэтому, на наш взгляд, решение проблемы должно лежать в области администрирования системы. Технология работы пользователей должна быть построена таким образом, чтобы ввод объекта производился на одном узле.
В отдельных случаях может использоваться следующее решение. В справочник заранее вносится некоторое количество новых элементов со специальными кодами или в специальную группу. При появлении необходимости ввода нового товара реально не вводится новый элемент, а изменяется один этих элементов. При этом административными силами должно быть обеспечено идентичное изменение одного и того же "зарезервированного" объекта в тех узлах распределенной ИБ, в которой он должен быть использован до обмена данными. При обмене данными сами реквизиты элемента будут системой синхронизированы, а ссылки в других объектах, разумеется будут идентичными, так как использовался один и тот же объект.
В любых случаях следует учитывать, что раздельный ввод и использование объектов потребует от пользователей правильного ввода данных. Так, например, при вводе нового товара в двух узлах с разными ценами могут иметь место серьезные ошибки в оформлении документов.
Еще одна проблема, с которой приходится сталкиваться при конфигурировании распределенной ИБ, это правильное поддержание механизмов учета компонент при неполной миграции объектов. Следует учитывать, что итоги оперативного и бухгалтерского учета не являются самостоятельными объектами. Они не переносятся, а рассчитываются на основании перенесенных движений регистров и проводок. Движения регистров и проводки переносятся соответственно только вместе с документами. Таким образом, для правильного состояния итогов на некоторой ИБ, на нее должны переноситься все документы, осуществляющие движения регистров или записывающие проводки влияющие на эти итоги. С другой стороны, это не означает, что переноситься должны все документы, записывающие движения конкретного регистра и проводки. Например, если на периферийной ИБ вводятся документы, выполняющие движения по одному складу, и итоги регистра учета товарного запаса в данной ИБ нужны только по данному складу, то, разумеется, в данном узле будет достаточно наличия всех документов выполняющих движения регистров по данному складу. Это достигается установкой параметра миграции "Место создания и центр".
Для воспроизведения видео в Delphi есть компонент TMediaPlayer. Но как быть если необходимо воспроизвести флэш-ролик? Оказывается в Delphi можно воспроизвести Flash ролики. Как же это сделать?
Для начала необходимо импортировать компонент ActiveX: для этого в главном меню выберите Component -> Immport ActiveX Control... Появляется окно. Найдите и выделите в списке Shockwave Flash (Version 1.0). Можно выбрать вкладку на панели инструментов - раздел Palette page. Не будем менять. Нажмите Install... Появится еще одно окно, в котором вам нужно будет выбрать в какой пакет будет установлен компонент. Нажмите ОК. Появится окно с подтверждением. Нажмите YES. И, наконец, появляется сообщение об успешной установке. Нажмите ОК. На экране остается еще одно окно - "Package - dclusr.dpk". Закройте его и подтвердите сохранение.
Компонент установили. Он появится во вкладке ActiveX на панели инструментов.
Для того, чтобы понять как с ним работать напишим простейший плеер. Выложите на форму: TShockwaveFlash(для удобства назовите его просто Flash1), TTrackBar, TOpenDialog, TTimer и 3 кнопки TButton. Измените Caption кнопок на "Открыть", "Воспроизведение", "Стоп".
Изменим следующие свойства OpenDialog'a:
Свойство Filter измените на Флэш-ролики|*.swf;
Свойство DefaultExt на *.swf;
У Timer1 установите свойство Interval на 1.
Теперь напишем обработчик события OnClick для кнопки, которая будет вызывать OpenDialog. Это кнопка с Caption="Открыть":
По клику на кнопку "Воспроизведение" будем выполнять следующий код:
А по клику на кнопку "Стоп" будем выполнять следующий код:
И осталось еще автоматически двигать TrackBar. Для этого и нужен таймер.
Данная статья предназначена для начинающих программистов, которые никогда не работали с потоками, и хотели бы узнать основы работы с ними. Желательно, чтоб читатель знал основы ООП и имел какой-нибудь опыт работы в Delphi.
Для начала давайте определимся, что под словом "поток" я подразумеваю именно Thread, который еще имеет название "нить". Нередко встречал на форумах мнения, что потоки не нужны вообще, любую программу можно написать так, что она будет замечательно работать и без них. Конечно, если не делать ничего серьёзней "Hello World" это так и есть, но если постепенно набирать опыт, рано или поздно любой начинающий программист упрётся в возможности "плоского" кода, возникнет необходимость распараллелить задачи. А некоторые задачи вообще нельзя реализовать без использования потоков, например работа с сокетами, COM-портом, длительное ожидание каких-либо событий, и т.д.
Всем известно, что Windows система многозадачная. Попросту говоря, это означает, что несколько программ могут работать одновременно под управлением ОС. Все мы открывали диспетчер задач и видели список процессов. Процесс - это экземпляр выполняемого приложения. На самом деле сам по себе он ничего не выполняет, он создаётся при запуске приложения, содержит в себе служебную информацию, через которую система с ним работает, так же ему выделяется необходимая память под код и данные. Для того, чтобы программа заработала, в нём создаётся поток. Любой процесс содержит в себе хотя бы один поток, и именно он отвечает за выполнение кода и получает на это процессорное время. Этим и достигается мнимая параллельность работы программ, или, как её еще называют, псевдопараллельность. Почему мнимая? Да потому, что реально процессор в каждый момент времени может выполнять только один участок кода. Windows раздаёт процессорное время всем потокам в системе по очереди, тем самым создаётся впечатление, что они работают одновременно. Реально работающие параллельно потоки могут быть только на машинах с двумя и более процессорами.
Для создания дополнительных потоков в Delphi существует базовый класс TThread, от него мы и будем наследоваться при реализации своих потоков. Для того, чтобы создать "скелет" нового класса, можно выбрать в меню File - New - Thread Object, Delphi создаст новый модуль с заготовкой этого класса. Я же для наглядности опишу его в модуле формы. Как видите, в этой заготовке добавлен один метод - Execute. Именно его нам и нужно переопределить, код внутри него и будет работать в отдельном потоке. И так, попробуем написать пример - запустим в потоке бесконечный цикл:
Запустите пример на выполнение и нажмите кнопку. Вроде ничего не происходит - форма не зависла, реагирует на перемещения. На самом деле это не так - откройте диспетчер задач и вы увидите, что процессор загружен по-полной. Сейчас в процессе вашего приложения работает два потока - один был создан изначально, при запуске приложения. Второй, который так грузит процессор - мы создали по нажатию кнопки. Итак, давайте разберём, что же означает код в Button1Click:
тут мы создали экземпляр класса TNewThread. Конструктор Create имеет всего один параметр - CreateSuspended типа boolean, который указывает, запустить новый поток сразу после создания (если false), или дождаться команды (если true).
свойство FreeOnTerminate определяет, что поток после выполнения автоматически завершится, объект будет уничтожен, и нам не придётся его уничтожать вручную. В нашем примере это не имеет значения, так как сам по себе он никогда не завершится, но понадобится в следующих примерах.
Свойство Priority, если вы еще не догадались из названия, устанавливает приоритет потока. Да да, каждый поток в системе имеет свой приоритет. Если процессорного времени не хватает, система начинает распределять его согласно приоритетам потоков. Свойство Priority может принимать следующие значения:
tpTimeCritical - критический
tpHighest - очень высокий
tpHigher - высокий
tpNormal - средний
tpLower - низкий
tpLowest - очень низкий
tpIdle - поток работает во время простоя системы
Ставить высокие приоритеты потокам не стоит, если этого не требует задача, так как это сильно нагружает систему.
Ну и собственно, запуск потока.
Думаю, теперь вам понятно, как создаются потоки. Заметьте, ничего сложного. Но не всё так просто. Казалось бы - пишем любой код внутри метода Execute и всё, а нет, потоки имеют одно неприятное свойство - они ничего не знают друг о друге. И что такого? - спросите вы. А вот что: допустим, вы пытаетесь из другого потока изменить свойство какого-нибудь компонента на форме. Как известно, VCL однопоточна, весь код внутри приложения выполняется последовательно. Допустим, в процессе работы изменились какие-то данные внутри классов VCL, система отбирает время у основного потока, передаёт по кругу остальным потокам и возвращает обратно, при этом выполнение кода продолжается с того места, где приостановилось. Если мы из своего потока что-то меняем, к примеру, на форме, задействуется много механизмов внутри VCL (напомню, выполнение основного потока пока "приостановлено"), соответственно за это время успеют измениться какие-либо данные. И тут вдруг время снова отдаётся основному потоку, он спокойно продолжает своё выполнение, но данные уже изменены! К чему это может привести - предугадать нельзя. Вы можете проверить это тысячу раз, и ничего не произойдёт, а на тысяча первый программа рухнет. И это относится не только к взаимодействию дополнительных потоков с главным, но и к взаимодействию потоков между собой. Писать такие ненадёжные программы конечно нельзя.
Синхронизации потоков
Если вы создали шаблон класса автоматически, то, наверное, заметили комментарий, который дружелюбная Delphi поместила в новый модуль. Он гласит: "Methods and properties of objects in visual components can only be used in a method called using Synchronize". Это значит, что обращение к визуальным компонентам возможно только путём вызова процедуры Synchronize. Давайте рассмотрим пример, но теперь наш поток не будет разогревать процессор впустую, а будет делать что-нибудь полезное, к примеру, прокручивать ProgressBar на форме. В качестве параметра в процедуру Synchronize передаётся метод нашего потока, но сам он передаётся без параметров. Параметры можно передать, добавив поля нужного типа в описание нашего класса. У нас будет одно поле - тот самый прогресс:
Вот теперь ProgressBar двигается, и это вполне безопасно. А безопасно вот почему: процедура Synchronize на время приостанавливает выполнение нашего потока, и передаёт управление главному потоку, т.е. SetProgress выполняется в главном потоке. Это нужно запомнить, потому что некоторые допускают ошибки, выполняя внутри Synchronize длительную работу, при этом, что очевидно, форма зависает на длительное время. Поэтому используйте Synchronize для вывода информации - то самое двигание прогресса, обновления заголовков компонентов и т.д.
Вы наверное заметили, что внутри цикла мы используем процедуру Sleep. В однопоточном приложении Sleep используется редко, а вот в потоках его использовать очень удобно. Пример - бесконечный цикл, пока не выполнится какое-нибудь условие. Если не вставить туда Sleep мы будем просто нагружать систему бесполезной работой.
Надеюсь, вы поняли как работает Synchronize. Но есть еще один довольно удобный способ передать информацию форме - посылка сообщения. Давайте рассмотрим и его. Для этого объявим константу:
В объявление класса формы добавим новый метод, а затем и его реализацию:
Используя функцию SendMessage, мы посылаем окну приложения сообщение, один из параметров которого содержит нужный нам прогресс. Сообщение становится в очередь, и согласно этой очереди будет обработано главным потоком, где и выполнится метод SetProgressPos. Но тут есть один нюанс: SendMessage, как и в случае с Synchronize, приостановит выполнение нашего потока, пока основной поток не обработает сообщение. Если использовать PostMessage этого не произойдёт, наш поток отправит сообщение и продолжит свою работу, а уж когда оно там обработается - неважно. Какую из этих функций использовать - решать вам, всё зависит от задачи.
Вот, в принципе, мы и рассмотрели основные способы работы с компонентами VCL из потоков. А как быть, если в нашей программе не один новый поток, а несколько? И нужно организовать работу с одними и теми же данными? Тут нам на помощь приходят другие способы синхронизации. Один из них мы и рассмотрим. Для его реализации нужно добавить в проект модуль SyncObjs.
Критические секции
Работают они следующим образом: внутри критической секции может работать только один поток, другие ждут его завершения. Чтобы лучше понять, везде приводят сравнение с узкой трубой: представьте, с одной стороны "толпятся" потоки, но в трубу может "пролезть" только один, а когда он "пролезет" - начнёт движение второй, и так по порядку. Еще проще понять это на примере и тем же ProgressBar'ом. Итак, запустите один из примеров, приведённых ранее. Нажмите на кнопку, подождите несколько секунд, а затем нажмите еще раз. Что происходит? ProgressBar начал прыгать. Прыгает потому, что у нас работает не один поток, а два, и каждый из них передаёт разные значения прогресса. Теперь немного переделаем код, в событии onCreate формы создадим критическую секцию:
У TCriticalSection есть два нужных нам метода, Enter и Leave, соответственно вход и выход из неё. Поместим наш код в критическую секцию:
Попробуйте запустить приложение и нажать несколько раз на кнопку, а потом посчитайте, сколько раз пройдёт прогресс. Понятно, в чем суть? Первый раз, нажимая на кнопку, мы создаём поток, он занимает критическую секцию и начинает работу. Нажимаем второй - создаётся второй поток, но критическая секция занята, и он ждёт, пока её не освободит первый. Третий, четвёртый - все пройдут только по-очереди.
Критические секции удобно использовать при обработке одних и тех же данных (списков, массивов) разными потоками. Поняв, как они работают, вы всегда найдёте им применение.
В этой небольшой статье рассмотрены не все способы синхронизации, есть еще события (TEvent), а так же объекты системы, такие как мьютексы (Mutex), семафоры (Semaphore), но они больше подходят для взаимодействия между приложениями. Остальное, что касается использования класса TThread, вы можете узнать самостоятельно, в help'е всё довольно подробно описано. Цель этой статьи - показать начинающим, что не всё так сложно и страшно, главное разобраться, что есть что. И побольше практики - самое главное опыт!
Environmental Audio (дословно окружающий звук)- это новый стандарт звука, разработанный фирмой Creative Labs, создающий эффекты окружающей среды реального мира на компьютере. Environmental Audio сегодня ужк много больше простого surround -звука и 3D моделирования. Это и настоящее моделирование окружающей среды с помощью мощных эффектов с учётом размеров комнаты, её звуковых особенностей, реверберации, эхо и многих других эффектов, создающих ощущение реального аудио мира.
Как работает Environmental Audio
Эффекты окружающей среды моделируются при помощи технологии E-mu Environmental Modeling, поддерживаемой аудиопроцессором EMU10K1, установленного на серии звуковых карт SBLive! Технология Environmental Audio разработана с учётом работы на наушниках, двух или четырёх колонках. Чип EMU10K1 раскладывает любой звуковой поток на множество каналов, где накладывает эффекты в реальном времени. За счёт этого создаются уже новые звуки, такие, как они должны быть в природе. На стадии обработки звука кроме его пололжения в пространстве должны быть учтены, как минимум, два фактора: размер помещения и реверберация, так как человеческое ухо слышит не просто оригинальный звук, а звук с учётом дистанции, местоположения и громкости. Стандарт Environmental Audio обрабатывает все эти условия для получения высококачественного реального звука.
Environmental Audio использует координаты X, Y, Z, а также реверберацию и отражения звука. Эти координаты используются при базовой подготовки каналов аудио источника и эффектов "окраски" звуковой сцены. Основная мощность аудиопроцессора расходуется на обработку каждого звукового источника по всем каналам и на добаление эффектов в реальном времени. Как уже говорилось, для создания ощущения реального звука нужно учитывать как минимум 3 фактора: расстояние до источника звука, размер звукового помещения и реверберацию.
Environmental Audio Extensions (EAX)
Это API, разработанный фирмой Creative Labs для достижения реальных звуковых эффектов в компьютерных играх. EAX- это расширение API DirectSound3D от фирмы Microsoft На 18 Октября 1999 года единственной звуковой картой, поддерживающей этот стандарт является Sound Blaster Live! (в разных модификациях). На сегодня Creative выпустила три версии этого стандарта.
DirectSound3D управляет местоположением в 3D пространстве игры источников звука и слушателя. Например, игра может использовать DirectSound3D для создания раздельных источников звука для каждого существа в игре, получая, таким образом, звуки выстрелов и голоса в разных местах 3D-мира. Эти звуки, также как и слушатель, могут перемещаться в пространстве. Разработчики игр могут использовать такие звуковые возможности, как палитра направлений (звук в одном направлении может идти громче, чем в другом), эффект Допплера (звук может нарастать, достигнув слушателя, и потом спадать, как бы удаляясь в пространство).
EAX улучшает DirectSound3D созданием виртуального окружающего аудио мира вокруг источников звука и слушателя. Эта технология эмулирует реверберации и отражения, идущие со всех сторон от слушателя. Эти эффекты создают впечатление, что вокруг слушателя существует реальный мир со своими параметрами, как то: размер помещения, отражающие и поглощающие свойства стен и другие. Программисты игр могут создавать различные акустические эффекты для разных помещений. Таким образом, игрок, который играет в EAX игру может слышать разницу в звуке при переходе из коридора в пещеру.
В дополнении к созданию окружающих эффектов, EAX 1.0 может изменять параметры различных источников звука. При изменении местоположения источника звука относительно слушателя автоматически изменяются параметры реверберации.
Что касается программирования, то здесь EAX предоставляет следующие возможности.
* Выбор среди большого числа "пресетов" для моделирования эффектов окружающей среды.
* Возможность изменять параметры пресетов окружающей среды для каждого источника в отдельности.
* Автоматическое изменение критических параметров, применяемых к позиции. Когда источник звука движется по отношению к слушателю, EAX автоматически изменяет параметры отражения звука и реверберации для создания более реальных звуковых эффектов при движении источника звука через 3D звуковой мир.
Occlusions и Obstructions
Эффект occlusions создаёт впечатление, что источник звука находится в другой комнате, в другом месте, за стеной. Это свойство позволяет изменять параметры передачи звуковой характеристики для получения эффекта различных материалов стен и их толщину. Например, программа может использовать это свойство для создания звука, идущего из-за двери, или из-за стены.
Эффект obstructions позволяет эмулировать звуковые препятствия, создавая ощущение, что источник звука находится в той же комнате, но за препятствием. Например, можно сделать так, что звук будет идти из-за большого камня, находящегося в той же пещере, что и слушатель.
Геометрическое моделирование и EAX
Геометрическая модель сцены используется как в графических целях, так и для создания 3D звука. Для создания геометрической модели компьютер должен иметь данные о физических свойствах мира: какие объекты где расположены, какие звуконепроницаемые, какие звукопоглощающие и так далее. После того, как эта информация получена, производится расчёт некоторого количества слышимых отражений и поглощений звука от этих объектов для каждого источника звука. Это приводит к затуханиям звука, из-за препятствий, звуконепроницаемых стен и так далее. Расчёты отражений методом "зеркала" широко используются для создания акустики зданий. Этот метод подразумевает, что звук отражается прямо (как от зеркала) без преломлений и поглощений. На самом же деле, вместо того, чтобы в реальном времени рассчитывать все отражения и особенности среды (что на самом деле процесс трудоёмкий) используются заранее рассчитанные упрощённые модели геометрических аудио сред, которые отличаются от графических представлений о среде. То есть в игре используются одновременно отдельная среда для визуальных эффектов и более простая для звуковых эффектов. Это создаёт проблемы, как, например, если бы вы захотели передвинуть часть стены в комнате, то вам пришлось бы создавать новую среду для звука. В настоящее время над геометрическим моделирование звука ведутся работы во многих звуковых лабораториях.
EAX для разработчиков
EAX не требует того, чтобы источники звука привязывались к графическому представлению об окружающей среде. Но при желании разработчик, который хочет создать звуковые эффекты "повышенной реальности", которые максимально близки к графическому представлению о сцене может использовать дополнительное управление ранними отражениями, преломлениями и поглощениями. При создании своих эффектов EAX использует статические модели среды, а не её геометрические параметры. Эти модели автоматически рассчитывают реверберации и отражения относительно слушателя с учётом размеров помещения, направления звука и других параметров, которые программист может добавлять, для каждого источника звука. Поэтому EAX намного проще других стандартов, так как он не требует описания геометрической среды сцены, а использует подготовленные заранее модели. Игра может менять звуковые модели при переходе от одного места к другому для создания реальных эффектов. Я хочу рассмотреть это подробней. Допустим, у вас есть сцена в игре ввиде каменной пещеры. Есть два способа получить высокореалистичные эффекты. Первый из них- рассчитать геометрическую модель и использовать её как аудио маску для сцены, причём новые технологии будут позволять делать это в реальном времени. Второй способ- взять готовый пресет и, при необходимости, изменить его для получения более качественных эффектов. Разумеется, первый способ даст больший реализм, чем второй, но и потратит ресурсов в несколько раз больше. А если учитывать лень программистов, то в этом случае EAX наиболее благоприятный вариант.
Различия между EAX 1.0, 2.0 и 3.0
EAX 1.0
* Поддерживает изменение места в игре реверберации и отражений.
* Имеет большое количество пресетов.
* Позволяет (ограниченно) изменять реверберацию окружения.
* Позволяет автоматически изменять интенсивность реверберации, в зависимости от положения источника звука относительно слушателя.
EAX 1.0 строит звуковую сцену на основе заранее созданных пресетов, учитывая дистанцию между источниками звука и слушателем. Соответственно, EAX 1.0 предоставляет большой набор пресетов "на каждый случай жизни". Также имеется возможность изменять параметры поздней реверберации (дэмпинг, уровень) и автоматическое изменение уровня в зависимости от расстояния. Благодаря этому происходит улучшенное восприятие расстояния до источника.
EAX 2.0
* Обновлена реверберационная модель.
* Добавлены эффекты звуковых преград (Obstructions) и поглощений (Occlusions).
* Отдельное управление начальными отражениями и поздними реверберациями. Продолжительный контроль размеров помещений. Улучшенная дистанционная модель для автоматического управления реверберациями и начальными отражениями, основанными на местоположении источника звука относительно слушателя.
* Возможность учитывать звуковые свойства воздуха (поглощение звука).
* Теперь для использования эффектов Environmental Audio не не требуется описание геометрии помещения.
EAX 2.0 построен на возможностях первой версии и создаёт ещё более реалистичные эффекты засчёт поддержки преграждения и отражения звука, а также на улучшенной технологии определения направления звука.
EAX 3.0
* Контроль за ранними реверберациями и отражениями для каждого источника звука.
* Динамический переход между окружающими моделями.
* Улучшенная дистанционная модель для автоматического управления реверберацией и начальными отражениями в зависимости от положения источников звука относительно слушателя.
* Расчёты Ray-Tracing (отражение лучей) для получения параметров отражения для каждого источника звука.
* Отдельные отражения для дальних эхо.
* Улучшенное дистанционное представление, призванное заменить статические реверберационные модели.
EAX 3.0 совмещает вторую версию с более мощными возможностями. Новый уровень реализма достигается засчёт поддержки местных отражений, изолированных отражений, продолжительных переходов между звуковыми сценами и другими особенностями.
Вывод: по всему вышесказанному можно судить о том, что на сегодня EAX является очень перспективным и конкурентоспособным стандартом. Любой программист, несведующий в особенностях 3D звука сможет создавать реальные эффекты для своих игр с помощью пресетов. Что касается качества 3D звука, то оно вне конкуренции. Сейчас большинство игр не поддерживает (или поддерживает криво) такие эффекты, как преграждение и поглощение звука. Первой игрой, полностью поддерживающей EAX 2.0 обещает быть Unreal Tournament, если его не опередят. Там будет видно.
P.S. Я специально не стал сравнивать EAX с другими стандартами, как, например, A3D. Для этого нужны игры, поддерживающие одновременно и то и другое в полной форме. На сегодня таких игр нет.
Лазерные диски – не слишком-то надежные носители информации. Даже при бережном обращении с ними вы не застрахованы от появления царапин и загрязнения поверхности (порой диск фрезерует непосредственно сам привод и вы бессильны этому противостоять). Но даже вполне нормальный на вид диск может содержать внутренние дефекты, приводящие к его полной или частичной нечитаемости на штатных приводах.
Особенно это актуально для CD-R/CD-RW дисков, качество изготовления которых все еще оставляет желать лучшего, а процесс записи сопряжен с появлением различного рода ошибок. Однако даже при наличии физических разрушений поверхности лазерный диск может вполне нормально читаться за счет огромной избыточности хранящихся на нем данных, но затем, по мере разрастания дефектов, корректирующей способности кодов Рида-Соломона неожиданно перестает хватать, и диск безо всяких видимых причин отказывается читаться, а то и вовсе не опознается приводом.
К счастью, в подавляющем большинстве случаев хранимую на диске информацию все еще можно спасти, и эта статья рассказывает как.
Общие рекомендации по восстановлению
Не всякий не читающийся (нестабильно читающийся) диск – дефектный. Зачастую в этом виновен отнюдь не сам диск, а операционная система или привод. Прежде чем делать какие-либо заключения, попробуйте прочесть диск на всех доступных вам приводах, установленных на компьютерах девственно-чистой операционной системой. Многие приводы, даже вполне фирменные и дорогие (например, мой PHILIPS CD-RW 2400), после непродолжительной эксплуатации становятся крайне капризными и раздражительными, отказывая в чтении тем дискам, которые все остальные приводы читают безо всяких проблем. А операционная система по мере обрастания свежим софтом склонна подхватывать различные глюки подчас проявляющиеся самым загадочным образом (в частности, привод TEAC, установленный в систему с драйвером CDR4_2K.SYS, доставшемся ему в наследство от PHILIPS'a, конфликтует с CD Player'ом, не соглашаясь отображать содержимое дисков с данными, если тот активен, после удаления же CDR4_2K.SYS все идет как по маслу).
Также не стоит забывать и о том, что корректирующая способность различных моделей приводов очень и очень неодинакова. Как пишет инженер-исследователь фирмы ЕПОС Павел Хлызов в своей статье "Проблема: неисправный CD-ROM": "…в зависимости от выбранной для конкретной модели CD-ROM стратегии коррекции ошибок и, соответственно, сложности процессора и устройства в целом, на практике тот или иной CD-ROM может либо исправлять одну-две мелкие ошибки в кадре информации (что соответствует дешевым моделям), либо в несколько этапов восстанавливать, с вероятностью 99,99%, серьезные и длинные разрушения информации. Как правило, такими корректорами ошибок оснащены дорогостоящие модели CD-ROM. Это и есть ответ на часто задаваемый вопрос: "Почему вот этот диск читается на машине товарища, а мой ПК его даже не видит?".
Вообще-то, не совсем понятно, что конкретно господином инженером-исследователем имелось ввиду: корректирующие коды C1, C2, Q- и P- уровней корректно восстанавливают все известные мне приводы, и их корректирующая способность равна: до двух 2 ошибок на каждый из C1 и C2 уровней и до 86- и 52-ошибок на Q- и P- уровни соответственно. Правда, количество обнаруживаемых, но уже математически неисправимых ошибок составляет до 4 ошибок на C1 и C2 уровней и до 172/104 ошибок на Q/P, но… гарантированно определяется лишь позиция сбойных байт во фрейме/секторе, а не их значение. Впрочем, зная позицию сбойных байт и имея в своем распоряжении исходный HF-сигнал (т. е. аналоговый сигнал, снятый непосредственно со считывающей головки), кое-какие крохи информации можно и вытянуть, по крайней мере теоретически… так что приведенная выше цитата в принципе может быть и верна, однако, по наблюдениям автора данной статьи, цена привода очень слабо коррелирует с его "читабельной" способностью. Так, относительно дешевые ASUS читают практически все, а дорогие PHILIPS'ы даже свои родные диски с драйверами опознают через раз.
Другая немаловажная характеристика – доступный диапазон скоростей чтения. В общем случае – чем ниже скорость вращения диска, тем мягче требования, предъявляемые к его качеству. Правда, зависимость эта не всегда линейна. Большинство приводов имеют одну или несколько наиболее предпочтительных скоростей вращения, на которых их читабельная способность максимальна. Например, на скорости 8x дефектный диск читается на ура, а на всех остальных скоростях (скажем, 2x, 4x, 16x, 32x) – не читается вообще. Предпочтительная скорость легко определяется экспериментально, необходимо лишь перебрать полный диапазон доступных скоростей.
При покупке CD-ROM'a выбирайте тот привод, у которого скоростной диапазон максимален. Например, уже упомянутый выше PHILIPS CDRW 2400 умеет работать лишь на: 16x, 24x, 38x и 42x. Отсутствие скоростей порядка 4x – 8x ограничивает "рацион" привода только высококачественными дисками.
По непонятным причинам, штатные средства операционной системы Windows не позволяют управлять скоростью диска и потому приходится прибегать к помощи сторонних утилит, на недостаток которых, впрочем, жаловаться не приходится. Вы можете использовать Slow CD, Ahead Nero Drive Speed и т. д. Вообще-то, большинство приводов самостоятельно снижают скорость, натолкнувшись на не читающиеся сектора, однако качество заложенных в них алгоритмов все еще оставляет желать лучшего, поэтому "ручное" управление скоростью дает значительно лучший результат.
Если же ни на одном из доступных вам приводов диск все равно не читается, можно попробовать отшлифовать его какой-нибудь полировальной пастой. Технике полирования оптических поверхностей (и лазерных дисков в частности) посвящено огромное количество статей, опубликованных как в печатных изданиях, так и в Интернете (особенно полезны в этом смысле астрономические книги по телескопостроению), поэтому здесь этот вопрос будет рассмотрен лишь кратко. Да, действительно, поцарапанный диск в большинстве случав можно отполировать, и если все сделать правильно, диск с высокой степенью вероятности возвратится из небытия, но… Во-первых, полировка восстанавливает лишь царапины нижней поверхности диска и бессильна противостоять разрушениям отражающего слоя. Во-вторых, устраняя одни царапины, вы неизбежно вносите другие - после иной полировки лазерному диску может очень сильно поплохеть. В-третьих, полировке дисков невозможно научиться за раз, – вам понадобиться уйма времени и куча "подопытных" дисков. Нет уж, благодарю покорно! Лучше мы пойдем другим путем!
А вот что вашему диску действительно не помешает – так это протирка обычными салфетками, пропитанными антистатиком (ищите их в компьютерных магазинах). Прежде чем вытирать диск, сдуйте все частицы пыли, осевшие на него (иначе вы его только больше поцарапаете) и ни в коем случае не двигайтесь концентрическими мазками! Вытирать поверхность диска следует радиальными движениями от центра к краям, заменяя салфетку на каждом проходе.
Увы, жесткий диск компьютера почему-то всегда оказывается забит под завязку “самыми нужными” программами и данными, а цифровой аппарат всенепременно сообщит о том, что память переполнена, в тот момент, когда фотограф, вскинув фотокамеру, уже готов нажать кнопку спуска, чтобы сделать “главный кадр всей жизни”. Столкнувшись с подобным, поневоле приходится признать за информацией уникальную особенность, присущую кроме нее разве что только газам – обе эти субстанции (и газ, и информация) способны нацело заполнять весь предоставленный им объем, сколь бы велик он ни был…
Однако ученые и изобретатели постоянно ищут возможности сохранения все больших объемов информации и думают над тем, как можно расширить уже имеющиеся хранилища данных в существующих цифровых устройствах. Что касается настольных систем, то тут все понятно: жесткие диски становятся объемистее, а количество микросхем оперативной памяти, втискиваемых в корпус компьютера, постепенно стремится к бесконечности. Труднее обстоит дело с наладонными устройствами. В данном случае габариты имеют не последнее значение, так что подцепить, к примеру, к цифровому фотоаппарату винчестер не так-то просто (хотя видеокамеры со встроенным жестким диском уже выпускаются серийно). Приходится довольствоваться твердотельными устройствами хранения данных на основе микросхем flash-памяти, которые, впрочем, по объемам вполне могут сравниться с жесткими дисками 5-7-летней давности.
И не ОЗУ, и не ПЗУ
flash-память ведет свою родословную от постоянного запоминающего устройства (ПЗУ) компьютера, но при этом может работать как оперативное запоминающее устройство (ОЗУ). Для тех, кто подзабыл, наверное, стоит напомнить, в чем же собственно состоит разница между ПЗУ и ОЗУ. Так вот, главное преимущество постоянного запоминающего устройства – возможность хранить данные даже при отключении питания компьютера (от того-то в термине и присутствует слово “постоянное”). Правда, чтобы записать информацию в недра микросхемы flash-памяти, требуется специальный программатор, а сами данные записываются один раз и навсегда – возможности перезаписи данных в “классическом” ПЗУ нет (еще говорят, что микросхема “прожигается”, что в общем-то верно отражает физическую суть записи в ПЗУ). Что касается оперативной памяти, ОЗУ то есть, то этот тип накопителя данных, наоборот, не в состоянии хранить информацию при отключении питания, зато позволяет мгновенно записывать и считывать данные в процессе текущей работы компьютера. Flash-микросхема объединяет в себе качества обоих типов памяти: она позволяет сравнительно быстро записывать и считывать данные, да еще плюс к тому “не забывает” записанное после выключения питания. Именно эта способность к “долговременной памяти” и позволяет использовать flash-микросхемы в качестве альтернативы дискетам, компакт-дискам и жестким дискам, то есть устройствам хранения данных, которые могут годами, если не столетиями, сохранять информацию без какого-либо изменения и без всяких потерь.
Появилась же flash-память благодаря усилиям японских ученых. В 1984 г. компания Toshiba объявила о создании нового типа запоминающих устройств, а годом позже начала производство микросхем емкостью 256 Кbit. Правда, событие это, вероятно в силу малой востребованности в то время подобной памяти, не всколыхнуло мировую общественность. Второе рождение flash-микросхем произошло уже под брэндом Intel в 1988 г., когда мировой гигант радиоэлектронной промышленности разработал собственный вариант flash-памяти. Однако в течение почти целого десятилетия новинка оставалась вещью, широко известной лишь в узких кругах инженеров-компьютерщиков. И только появление малогабаритных цифровых устройств, требовавших для своей работы значительных объемов памяти, стало началом роста популярности flash-устройств. Начиная с 1997 г. flash-накопители стали использоваться в цифровых фотоаппаратах, потом “ареал обитания” твердотельной памяти с возможностью хранения и многократной перезаписи данных стал охватывать MP3-плейеры, наладонные компьютеры, цифровые видеокамеры и прочие миниатюрные “игрушки” для взрослых любителей цифрового мира.
Такое странное слово flash
Кстати сказать, как до сих пор идут споры о том, какой же все-таки год, 1984 или 1988-й, нужно считать временем появления “настоящей” flash-памяти, точно так же споры вызывает и происхождение самого термина flash, применяемого для обозначения этого класса устройств. Если обратиться к толковому словарю, то выяснится многозначность слова flash. Оно может обозначать короткий кадр фильма, вспышку, мелькание или отжиг стекла.
Согласно основной версии, термин flash появился в лабораториях компании Toshiba как характеристика скорости стирания и записи микросхемы флэш-памяти “in a flash”, то есть в мгновение ока. С другой стороны, причиной появления термина может быть слово, используемое для обозначения процесса “прожигания” памяти ПЗУ, который достался новинке в наследство от предшественников. В английском языке “засвечивание” или “прожигание” микросхемы постоянного запоминающего устройства обозначается словом flashing.
По третьей версии слово flash отражает особенность процесса записи данных в микросхемах этого типа. Дело в том, что, в отличие от прежнего ПЗУ, запись и стирание данных во flash-памяти производится блоками-кадрами, а термин flash как раз и имеет в качестве одного из значений – короткий кадр фильма.
Хотя надежность современных компьютерных систем в целом достаточно высока, время от времени в них происходят сбои, вызванные неисправностью аппаратных средств, ошибками в программном обеспечении, компьютерными вирусами, а также ошибками пользователей, системных администраторов и технического персонала.
Анализируя причины возникновения встречавшихся в нашей практике аварийных ситуаций, приводивших к потере данных, можно сказать, что все перечисленные сбои случаются примерно с одинаковой вероятностью.
Отказы аппаратных средств
Исчезновение данных может быть вызвано отказом различных устройств - жестких дисков и дисковых контроллеров, соединительных кабелей, оперативной памяти или центрального процессора компьютера. Внезапное отключение электропитания при отсутствии источника бесперебойного питания - также одна из наиболее распространенных причин исчезновения данных. В зависимости от того, что происходило в компьютере на момент отказа, последствия могут оказаться более или менее тяжелыми.
Отказы дисковых контроллеров
Чаще всего нам встречались случаи потерь данных при отказах дисковых контроллеров. При этом в момент аварии контроллер выполнял операцию записи, которая завершалась с ошибками. Как следствие, оказывались разрушенными системные области диска, после чего все данные или часть их становились недоступны.
Заметим, что дисковые контроллеры современных файловых серверов, таких, как Compaq Proliant, протоколируют сбои аппаратных средств и позволяют выполнять диагностику. Это дает возможность обнаружить опасные симптомы еще до того, как они приведут к отказу. Например, в одной компании на протяжении нескольких недель контроллер диска записывал в системный журнал сообщения о возможном отказе кэш-памяти, встроенной в контроллер. И когда эта память, наконец, отказала, пропало несколько гигабайт важных данных.
Зеркальные диски
Наиболее простой способ увеличения надежности хранения данных - подключить к одному контроллеру два жестких диска и средствами ОС выполнить их зеркальное отображение. При этом один диск играет роль основного, а другой дублирует всю информацию, записываемую на основной диск. При выходе из строя основного диска его функции автоматически переходят к зеркальному диску, в результате чего система продолжает работать без аварийной остановки.
К сожалению, зеркальные диски не помогут при сбое контроллера или ПО. Фактически данная технология поможет вам застраховаться только от такой неприятности, как поломка одного жесткого диска из зеркальной пары.
Если каждый из зеркальных дисков будет подключен к своему контроллеру, то надежность возрастет. Теперь система продолжит работу при выходе из строя не только одного диска, но и одного дискового контроллера.
Такие ОС, как Microsoft Windows NT и Novell NetWare способны создавать зеркальные диски программным путем без применения дополнительного оборудования.
Отказы кэш-памяти
Как вы, вероятно, знаете, кэш-память значительно ускоряет операции записи данных на диск и чтения с диска за счет временного хранения данных в очень быстрой оперативной памяти. Если данные кэшируются при чтении, то отказ кэш-памяти не приведет к их потере, так как на диске они останутся в неизменном виде. Что же касается кэширования при записи, то эта операция несет в себе потенциальную опасность.
Кэширование при записи предполагает, что данные вначале записываются в оперативную память, а затем, когда для этого возникает подходящий случай, переписываются на жесткий диск. Программа, сохраняющая данные на диске, получает подтверждение окончания процесса записи, когда данные оказываются в кэш-памяти. При этом фактическая запись их на диск произойдет позже. Так вот, если отказ кэш-памяти случится в "неподходящий" момент, то программа (или ОС) будет полагать, что данные уже записаны на диск, хотя фактически это не так. В результате могут оказаться разрушенными важнейшие внутренние структуры файловой системы.
Операционные системы обычно выполняют дополнительное кэширование данных, записываемых на диск или считываемых с диска, в основной оперативной памяти компьютера. Поэтому отказы оперативной памяти, а также внезапное отключение электропитания могут привести (и обычно приводят!) к возникновению фатальных неисправностей файловой системы. Именно поэтому так важно снабжать компьютеры, и особенно серверы, устройствами бесперебойного питания. Кроме того, такие устройства должны быть в состоянии корректно завершать работу ОС компьютера без вмешательства человека. Только в этом случае отключения электропитания не приведут к потере данных.
Неисправности электроники в дисках
Несколько слов заслуживают неисправности, возникающие в самих дисковых устройствах. Помимо механических повреждений, вызванных небрежным обращением с дисками, возникают отказы электронных схем, расположенных как вне, так и внутри герметичного корпуса диска. Отказы таких электронных схем могут привести, а могут и не привести к потере данных. В нашей практике встречались случаи, когда после замены электроники удавалось полностью восстановить данные, переписав их на другой диск.
Замена контроллера диска
Иногда данные пропадают после замены дискового контроллера на контроллер другого типа (такая проблема обычно возникает с контроллерами SCSI). Операционная система в этих случаях просто отказывается монтировать диск. Выбрав правильный тип контроллера, обычно удается легко ликвидировать данную проблему, однако так бывает не всегда.
Сбои, возникающие из-за пыли
Несмотря на то что корпуса современных серверов специальным образом защищены от проникновения пыли (для этого на вентиляторы устанавливают специальные воздушные фильтры), пыль все же проникает в компьютер. Она оседает на системной плате, конструктивных элементах корпуса и контроллерах. Так как в пыли есть металлические частички, она может вызывать замыкания между соединительными линиями, расположенными на системной плате или на платах контроллеров.
Когда компьютер переносят с одного места на другое, комочки пыли перекатываются внутри корпуса и могут привести к замыканию. Именно так пропали данные на сервере у одного из наших клиентов после перестановки сервера из одной стойки в другую.
Чтобы уменьшить вероятность возникновения сбоев из-за пыли, используйте в ответственных случаях специальные пылезащищенные корпуса и периодически выполняйте профилактические работы, удаляя пыль при помощи специального "компьютерного" пылесоса.