Hotlinking - это когда владелец другого веб-сайта привязывается к одному или нескольким вашим изображениям или мультимедийным файлам и помещает их на свою страницу. Это не только кража вашей интеллектуальной собственности, но вы также оплачиваете трафик другого сайта.
CPanel может помешать hotlinking, позволяя лишь указанным сайтам (таким, как ваш собственный веб-сайт) получить доступ к файлам на вашем сайте.
Чтобы предотвратить hotlinking:
1. Кликните на кнопку HotLink Protection (Хотлинк защита), расположенную на главной странице.
2. Введите все другие адреса, которым будет позволено получить доступ к вашему сайту и которые не включены в установленные по умолчанию адреса, помещенные в центральной зоне.
3. В поле Extensions to allow (Расширения файлов к которым разрешен доступ) введите те расширения, которые вы хотите защитить. Не забудьте отделить расширения заптыми.
4. Введите адрес на который вы хотите перенаправить hotlinking в поле Url to Redirect (Перенаправлять хотлинк запросы в).
5. Установите флажок в поле Allow direct requests (Разрешить прямые запросы), если вы хотите чтобы URL имели доступ непосредственно к не-HTML файлам, таким как изображения.
6. Кликните на кнопку Activate (Активировать).
Выключите защиту от hotlink, если Вы думаете, что владелец другого веб-сайта больше не связан с Вашими файлами.
Чтобы дезактивировать защиту от hotlink:
1. Кликните на кнопку HotLink Protection (Хотлинк защита), расположенную на главной странице.
2. Кликните на кнопку Disable (Выключить).
Технология стека TCP/IP сложилась в основном в конце 1970-х годов и с тех пор основные принципы работы базовых протоколов, таких как IP, TCP, UDP и ICMP, практически не изменились. Однако, сам компьютерный мир за эти годы значительно изменился, поэтому долго назревавшие усовершенствования в технологии стека TCP/IP сейчас стали необходимостью.
Основными обстоятельствами, из-за которых требуется модификация базовых протоколов стека TCP/IP, являются следующие.
* Повышение производительности компьютеров и коммуникационного оборудования. За время существования стека производительность компьютеров возросла на два порядка, объемы оперативной памяти выросли более чем в 30 раз, пропускная способность магистрали Internet в Соединенных Штатах выросла в 800 раз.
* Появление новых приложений. Коммерческий бум вокруг Internet и использование ее технологий при создании intranet привели к появлению в сетях TCP/IP, ранее использовавшихся в основном в научных целях, большого количества приложений нового типа, работающих с мультимедийной информацией. Эти приложения чувствительны к задержкам передачи пакетов, так как такие задержки приводят к искажению передаваемых в реальном времени речевых сообщений и видеоизображений. Особенностью мультимедийных приложений является также передача очень больших объемов информации. Некоторые технологии вычислительных сетей, например, frame relay и ATM, уже имеют в своем арсенале механизмы для резервирования полосы пропускания для определенных приложений. Однако эти технологии еще не скоро вытеснят традиционные технологии локальных сетей, не поддерживающие мультимедийные приложения (например, Ethernet). Следовательно, необходимо компенсировать такой недостаток средствами сетевого уровня, то есть средствами протокола IP.
* Бурное расширение сети Internet. В начале 90-х годов сеть Internet расширялась очень быстро, новый узел появлялся в ней каждые 30 секунд, но 95-й год стал переломным - перспективы коммерческого использования Internet стали отчетливыми и сделали ее развитие просто бурным. Первым следствием такого развития стало почти полное истощение адресного пространства Internet, определяемого полем адреса IP в четыре байта.
* Новые стратегии администрирования. Расширение Internet связано с его проникновением в новые страны и новые отрасли промышленности. При этом в сети появляются новые органы администрирования, которые начинают использовать новые методы администрирования. Эти методы требуют появления новых средств в базовых протоколах стека TCP/IP.
Сообщество Internet уже несколько лет работает над разработкой новой спецификации для базового протокола стека - протокола IP. Выработано уже достаточно много предложений, от простых, предусматривающих только расширения адресного пространства IP, до очень сложных, приводящих к существенному увеличению стоимости реализации IP в высокопроизводительных (и так недешевых) маршрутизаторах.
Основным предложением по модернизации протокола IP является предложение, разработанное группой IETF. Сейчас принято называть ее предложение версией 6 - IPv6, а все остальные предложения группируются под названием IP Next Generation, IPng.
В предложении IETF протокол IPv6 оставляет основные принципы IPv4 неизменными. К ним относятся дейтаграммный метод работы, фрагментация пакетов, разрешение отправителю задавать максимальное число хопов для своих пакетов. Однако, в деталях реализации протокола IPv6 имеются существенные отличия от IPv4. Эти отличия коротко можно описать следующим образом.
* Использование более длинных адресов. Новый размер адреса - наиболее заметное отличие IPv6 от IPv4. Версия 6 использует 128-битные адреса.
* Гибкий формат заголовка. Вместо заголовка с фиксированными полями фиксированного размера (за исключением поля Резерв), IPv6 использует базовый заголовок фиксированного формата плюс набор необязательных заголовков различного формата.
* Поддержка резервирования пропускной способности. В IPv6 механизм резервирования пропускной способности заменяет механизм классов сервиса версии IPv4.
* Поддержка расширяемости протокола. Это одно из наиболее значительных изменений в подходе к построению протокола - от полностью детализированного описания протокола к протоколу, который разрешает поддержку дополнительных функций.
Адресация в IPv6
Адреса назначения и источника в IPv6 имеют длину 128 бит или 16 байт. Версия 6 обобщает специальные типы адресов версии 4 в следующих типах адресов:
* Unicast - индивидуальный адрес. Определяет отдельный узел - компьютер или порт маршрутизатора. Пакет должен быть доставлен узлу по кратчайшему маршруту.
* Cluster - адрес кластера. Обозначает группу узлов, которые имеют общий адресный префикс (например, присоединенных к одной физической сети). Пакет должен быть маршрутизирован группе узлов по кратчайшему пути, а затем доставлен только одному из членов группы (например, ближайшему узлу).
* Multicast - адрес набора узлов, возможно в различных физических сетях. Копии пакета должны быть доставлены каждому узлу набора, используя аппаратные возможности групповой или широковещательной доставки, если это возможно.
Как и в версии IPv4, адреса в версии IPv6 делятся на классы, в зависимости от значения нескольких старших бит адреса.
Большая часть классов зарезервирована для будущего применения. Наиболее интересным для практического использования является класс, предназначенный для провайдеров услуг Internet, названный Provider-Assigned Unicast.
Каждому провайдеру услуг Internet назначается уникальный идентификатор, которым помечаются все поддерживаемые им сети. Далее провайдер назначает своим абонентам уникальные идентификаторы, и использует оба идентификатора при назначении блока адресов абонента. Абонент сам назначает уникальные идентификаторы своим подсетям и узлам этих сетей.
Абонент может использовать технику подсетей, применяемую в версии IPv4, для дальнейшего деления поля идентификатора подсети на более мелкие поля.
Описанная схема приближает схему адресации IPv6 к схемам, используемым в территориальных сетях, таких как телефонные сети или сети Х.25. Иерархия адресных полей позволит магистральным маршрутизаторам работать только со старшими частями адреса, оставляя обработку менее значимых полей маршрутизаторам абонентов.
Под поле идентификатора узла требуется выделения не менее 6 байт, для того чтобы можно было использовать в IP-адресах МАС-адреса локальных сетей непосредственно.
Для обеспечения совместимости со схемой адресации версии IPv4, в версии IPv6 имеется класс адресов, имеющих 0000 0000 в старших битах адреса. Младшие 4 байта адреса этого класса должны содержать адрес IPv4. Маршрутизаторы, поддерживающие обе версии адресов, должны обеспечивать трансляцию при передаче пакета из сети, поддерживающей адресацию IPv4, в сеть, поддерживающую адресацию IPv6, и наоборот.
Все протоколы обмена маршрутной информацией стека TCP/IP относятся к классу адаптивных протоколов, которые в свою очередь делятся на две группы, каждая из которых связана с одним из следующих типов алгоритмов:
* дистанционно-векторный алгоритм (Distance Vector Algorithms, DVA),
* алгоритм состояния связей (Link State Algorithms, LSA).
В алгоритмах дистанционно-векторного типа каждый маршрутизатор периодически и широковещательно рассылает по сети вектор расстояний от себя до всех известных ему сетей. Под расстоянием обычно понимается число промежуточных маршрутизаторов через которые пакет должен пройти прежде, чем попадет в соответствующую сеть. Может использоваться и другая метрика, учитывающая не только число перевалочных пунктов, но и время прохождения пакетов по связи между соседними маршрутизаторами.
Получив вектор от соседнего маршрутизатора, каждый маршрутизатор добавляет к нему информацию об известных ему других сетях, о которых он узнал непосредственно (если они подключены к его портам) или из аналогичных объявлений других маршрутизаторов, а затем снова рассылает новое значение вектора по сети. В конце-концов, каждый маршрутизатор узнает информацию об имеющихся в интерсети сетях и о расстоянии до них через соседние маршрутизаторы.
Дистанционно-векторные алгоритмы хорошо работают только в небольших сетях. В больших сетях они засоряют линии связи интенсивным широковещательным трафиком, к тому же изменения конфигурации могут отрабатываться по этому алгоритму не всегда корректно, так как маршрутизаторы не имеют точного представления о топологии связей в сети, а располагают только обобщенной информацией - вектором дистанций, к тому же полученной через посредников. Работа маршрутизатора в соответствии с дистанционно-векторным протоколом напоминает работу моста, так как точной топологической картины сети такой маршрутизатор не имеет.
Наиболее распространенным протоколом, основанным на дистанционно-векторном алгоритме, является протокол RIP.
Алгоритмы состояния связей обеспечивают каждый маршрутизатор информацией, достаточной для построения точного графа связей сети. Все маршрутизаторы работают на основании одинаковых графов, что делает процесс маршрутизации более устойчивым к изменениям конфигурации. Широковещательная рассылка используется здесь только при изменениях состояния связей, что происходит в надежных сетях не так часто.
Для того, чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами со своими ближайшими соседями. Этот трафик также широковещательный, но он циркулирует только между соседями и поэтому не так засоряет сеть.
Протоколом, основанным на алгоритме состояния связей, в стеке TCP/IP является протокол OSPF.
Дистанционно-векторный протокол RIP
Протокол RIP (Routing Information Protocol) представляет собой один из старейших протоколов обмена маршрутной информацией, однако он до сих пор чрезвычайно распространен в вычислительных сетях. Помимо версии RIP для сетей TCP/IP, существует также версия RIP для сетей IPX/SPX компании Novell.
В этом протоколе все сети имеют номера (способ образования номера зависит от используемого в сети протокола сетевого уровня), а все маршрутизаторы - идентификаторы. Протокол RIP широко использует понятие "вектор расстояний". Вектор расстояний представляет собой набор пар чисел, являющихся номерами сетей и расстояниями до них в хопах.
Вектора расстояний итерационно распространяются маршрутизаторами по сети, и через несколько шагов каждый маршрутизатор имеет данные о достижимых для него сетях и о расстояниях до них. Если связь с какой-либо сетью обрывается, то маршрутизатор отмечает этот факт тем, что присваивает элементу вектора, соответствующему расстоянию до этой сети, максимально возможное значение, которое имеет специальный смысл - "связи нет". Таким значением в протоколе RIP является число 16.
При необходимости отправить пакет в сеть D маршрутизатор просматривает свою базу данных маршрутов и выбирает порт, имеющий наименьшее расстояния до сети назначения (в данном случае порт, связывающий его с маршрутизатором 3).
Для адаптации к изменению состояния связей и оборудования с каждой записью таблицы маршрутизации связан таймер. Если за время тайм-аута не придет новое сообщение, подтверждающее этот маршрут, то он удаляется из маршрутной таблицы.
При использовании протокола RIP работает эвристический алгоритм динамического программирования Беллмана-Форда, и решение, найденное с его помощью является не оптимальным, а близким к оптимальному. Преимуществом протокола RIP является его вычислительная простота, а недостатками - увеличение трафика при периодической рассылке широковещательных пакетов и неоптимальность найденного маршрута.
При обрыве связи с сетью 1 маршрутизатор М1 отмечает, что расстояние до этой сети приняло значение 16. Однако получив через некоторое время от маршрутизатора М2 маршрутное сообщение о том, что от него до сети 1 расстояние составляет 2 хопа, маршрутизатор М1 наращивает это расстояние на 1 и отмечает, что сеть 1 достижима через маршрутизатор 2. В результате пакет, предназначенный для сети 1, будет циркулировать между маршрутизаторами М1 и М2 до тех пор, пока не истечет время хранения записи о сети 1 в маршрутизаторе 2, и он не передаст эту информацию маршрутизатору М1.
Для исключения подобных ситуаций маршрутная информация об известной маршрутизатору сети не передается тому маршрутизатору, от которого она пришла.
Существуют и другие, более сложные случаи нестабильного поведения сетей, использующих протокол RIP, при изменениях в состоянии связей или маршрутизаторов сети.
Комбинирование различных протоколов обмена. Протоколы EGP и BGP сети Internet
Большинство протоколов маршрутизации, применяемых в современных сетях с коммутацией пакетов, ведут свое происхождение от сети Internet и ее предшественницы - сети ARPANET. Для того, чтобы понять их назначение и особенности, полезно сначала познакомится со структурой сети Internet, которая наложила отпечаток на терминологию и типы протоколов.
Internet изначально строилась как сеть, объединяющая большое количество существующих систем. С самого начала в ее структуре выделяли магистральную сеть (core backbone network), а сети, присоединенные к магистрали, рассматривались как автономные системы (autonomous systems). Магистральная сеть и каждая из автономных систем имели свое собственное административное управление и собственные протоколы маршрутизации. Далее маршрутизаторы будут называться шлюзами для следования традиционной терминологии Internet.
Шлюзы, которые используются для образования подсетей внутри автономной системы, называются внутренними шлюзами (interior gateways), а шлюзы, с помощью которых автономные системы присоединяются к магистрали сети, называются внешними шлюзами (exterior gateways). Непосредственно друг с другом автономные системы не соединяются. Соответственно, протоколы маршрутизации, используемые внутри автономных систем, называются протоколами внутренних шлюзов (interior gateway protocol, IGP), а протоколы, определяющие обмен маршрутной информацией между внешними шлюзами и шлюзами магистральной сети - протоколами внешних шлюзов (exterior gateway protocol, EGP). Внутри магистральной сети также может использоваться любой собственный внутренний протокол IGP.
Смысл разделения всей сети Internet на автономные системы в ее многоуровневом представлении, что необходимо для любой крупной системы, способной к расширению в больших масштабах. Внутренние шлюзы могут использовать для внутренней маршрутизации достаточно подробные графы связей между собой, чтобы выбрать наиболее рациональный маршрут. Однако, если информация такой степени детализации будет храниться во всех маршрутизаторах сети, то топологические базы данных так разрастутся, что потребуют наличия памяти гигантских размеров, а время принятия решений о маршрутизации непременно возрастет.
Поэтому детальная топологическая информация остается внутри автономной системы, а автономную систему как единое целое для остальной части Internet представляют внешние шлюзы, которые сообщают о внутреннем составе автономной системы минимально необходимые сведения - количество IP-сетей, их адреса и внутреннее расстояние до этих сетей от данного внешнего шлюза.
При инициализации внешний шлюз узнает уникальный идентификатор обслуживаемой им автономной системы, а также таблицу достижимости (reachability table), которая позволяет ему взаимодействовать с другими внешними шлюзами через магистральную сеть.
Затем внешний шлюз начинает взаимодействовать по протоколу EGP с другими внешними шлюзами и обмениваться с ними маршрутной информацией, состав которой описан выше. В результате, при отправке пакета из одной автономной системы в другую, внешний шлюз данной системы на основании маршрутной информации, полученной от всех внешних шлюзов, с которыми он общается по протоколу EGP, выбирает наиболее подходящий внешний шлюз и отправляет ему пакет.
Каждая функция работает на основе обмена сообщениями запрос-ответ.
Так как каждая автономная система работает под контролем своего административного штата, то перед началом обмена маршрутной информацией внешние шлюзы должны согласиться на такой обмен. Сначала один из шлюзов посылает запрос на установление соседских отношений (acquisition request) другому шлюзу. Если тот согласен на это, то он отвечает сообщением подтверждение установления соседских отношений (acquisition confirm), а если нет - то сообщением отказ от установления соседских отношений (acquisition refuse), которое содержит также причину отказа.
После установления соседских отношений шлюзы начинают периодически проверять состояние достижимости друг друга. Это делается либо с помощью специальных сообщений (привет (hello) и Я-услышал-тебя (I-heard-you)), либо встраиванием подтверждающей информации непосредственно в заголовок обычного маршрутного сообщения.
Обмен маршрутной информацией начинается с посылки одним из шлюзов другому сообщения запрос данных (poll request) о номерах сетей, обслуживаемых другим шлюзом и расстояниях до них от него. Ответом на это сообщение служит сообщение обновленная маршрутная информация (routing ). Если же запрос оказался некорректным, то в ответ на него отсылается сообщение об ошибке.
Все сообщения протокола EGP передаются в поле данных IP-пакетов. Сообщения EGP имеют заголовок фиксированного формата.
Поля Тип и Код совместно определяют тип сообщения, а поле Статус - информацию, зависящую от типа сообщения. Поле Номер автономной системы - это номер, назначенный той автономной системе, к которой присоединен данный внешний шлюз. Поле Номер последовательности служит для синхронизации процесса запросов и ответов.
[pagebreak]
Поле IP-адрес исходной сети в сообщениях запроса и обновления маршрутной информации обозначает сеть, соединяющую два внешних шлюза.
Сообщение об обновленной маршрутной информации содержит список адресов сетей, которые достижимы в данной автономной системе. Этот список упорядочен по внутренним шлюзам, которые подключены к исходной сети и через которые достижимы данные сети, а для каждого шлюза он упорядочен по расстоянию до каждой достижимой сети от исходной сети, а не от данного внутреннего шлюза. Для примера внешний шлюз R2 в своем сообщении указывает, что сеть 4 достижима с помощью шлюза R3 и расстояние ее равно 2, а сеть 2 достижима через шлюз R2 и ее расстояние равно 1 (а не 0, как если бы шлюз измерял ее расстояние от себя, как в протоколе RIP).
Протокол EGP имеет достаточно много ограничений, связанных с тем, что он рассматривает магистральную сеть как одну неделимую магистраль.
Развитием протокола EGP является протокол BGP (Border Gateway Protocol), имеющий много общего с EGP и используемый наряду с ним в магистрали сети Internet.
Протокол состояния связей OSPF
Протокол OSPF (Open Shortest Path Firs) является достаточно современной реализацией алгоритма состояния связей (он принят в 1991 году) и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях.
Протокол OSPF вычисляет маршруты в IP-сетях, сохраняя при этом другие протоколы обмена маршрутной информацией.
Непосредственно связанные (то есть достижимые без использования промежуточных маршрутизаторов) маршрутизаторы называются "соседями". Каждый маршрутизатор хранит информацию о том, в каком состоянии по его мнению находится сосед. Маршрутизатор полагается на соседние маршрутизаторы и передает им пакеты данных только в том случае, если он уверен, что они полностью работоспособны. Для выяснения состояния связей маршрутизаторы-соседи достаточно часто обмениваются короткими сообщениями HELLO.
Для распространения по сети данных о состоянии связей маршрутизаторы обмениваются сообщениями другого типа. Эти сообщения называются router links advertisement - объявление о связях маршрутизатора (точнее, о состоянии связей). OSPF-маршрутизаторы обмениваются не только своими, но и чужими объявлениями о связях, получая в конце-концов информацию о состоянии всех связей сети. Эта информация и образует граф связей сети, который, естественно, один и тот же для всех маршрутизаторов сети.
Кроме информации о соседях, маршрутизатор в своем объявлении перечисляет IP-подсети, с которыми он связан непосредственно, поэтому после получения информации о графе связей сети, вычисление маршрута до каждой сети производится непосредственно по этому графу по алгоритму Дэйкстры. Более точно, маршрутизатор вычисляет путь не до конкретной сети, а до маршрутизатора, к которому эта сеть подключена. Каждый маршрутизатор имеет уникальный идентификатор, который передается в объявлении о состояниях связей. Такой подход дает возможность не тратить IP-адреса на связи типа "точка-точка" между маршрутизаторами, к которым не подключены рабочие станции.
Маршрутизатор вычисляет оптимальный маршрут до каждой адресуемой сети, но запоминает только первый промежуточный маршрутизатор из каждого маршрута. Таким образом, результатом вычислений оптимальных маршрутов является список строк, в которых указывается номер сети и идентификатор маршрутизатора, которому нужно переслать пакет для этой сети. Указанный список маршрутов и является маршрутной таблицей, но вычислен он на основании полной информации о графе связей сети, а не частичной информации, как в протоколе RIP.
Описанный подход приводит к результату, который не может быть достигнут при использовании протокола RIP или других дистанционно-векторных алгоритмов. RIP предполагает, что все подсети определенной IP-сети имеют один и тот же размер, то есть, что все они могут потенциально иметь одинаковое число IP-узлов, адреса которых не перекрываются. Более того, классическая реализация RIP требует, чтобы выделенные линии "точка-точка" имели IP-адрес, что приводит к дополнительным затратам IP-адресов.
В OSPF такие требования отсутствуют: сети могут иметь различное число хостов и могут перекрываться. Под перекрытием понимается наличие нескольких маршрутов к одной и той же сети. В этом случае адрес сети в пришедшем пакете может совпасть с адресом сети, присвоенным нескольким портам.
Если адрес принадлежит нескольким подсетям в базе данных маршрутов, то продвигающий пакет маршрутизатор использует наиболее специфический маршрут, то есть адрес подсети, имеющей более длинную маску.
Например, если рабочая группа ответвляется от главной сети, то она имеет адрес главной сети наряду с более специфическим адресом, определяемым маской подсети. При выборе маршрута к хосту в подсети этой рабочей группы маршрутизатор найдет два пути, один для главной сети и один для рабочей группы. Так как последний более специфичен, то он и будет выбран. Этот механизм является обобщением понятия "маршрут по умолчанию", используемого во многих сетях.
Использование подсетей с различным количеством хостов является вполне естественным. Например, если в здании или кампусе на каждом этаже имеются локальные сети, и на некоторых этажах компьютеров больше, чем на других, то администратор может выбрать размеры подсетей, отражающие ожидаемые требования каждого этажа, а не соответствующие размеру наибольшей подсети.
В протоколе OSPF подсети делятся на три категории:
* "хост-сеть", представляющая собой подсеть из одного адреса,
* "тупиковая сеть", которая представляет собой подсеть, подключенную только к одному маршрутизатору,
* "транзитная сеть", которая представляет собой подсеть, подключенную к более чем одному маршрутизатору.
Транзитная сеть является для протокола OSPF особым случаем. В транзитной сети несколько маршрутизаторов являются взаимно и одновременно достижимыми. В широковещательных локальных сетях, таких как Ethernet или Token Ring, маршрутизатор может послать одно сообщение, которое получат все его соседи. Это уменьшает нагрузку на маршрутизатор, когда он посылает сообщения для определения существования связи или обновленные объявления о соседях.
Однако, если каждый маршрутизатор будет перечислять всех своих соседей в своих объявлениях о соседях, то объявления займут много места в памяти маршрутизатора. При определении пути по адресам транзитной подсети может обнаружиться много избыточных маршрутов к различным маршрутизаторам. На вычисление, проверку и отбраковку этих маршрутов уйдет много времени.
Когда маршрутизатор начинает работать в первый раз (то есть инсталлируется), он пытается синхронизировать свою базу данных со всеми маршрутизаторами транзитной локальной сети, которые по определению имеют идентичные базы данных. Для упрощения и оптимизации этого процесса в протоколе OSPF используется понятие "выделенного" маршрутизатора, который выполняет две функции.
Во-первых, выделенный маршрутизатор и его резервный "напарник" являются единственными маршрутизаторами, с которыми новый маршрутизатор будет синхронизировать свою базу. Синхронизировав базу с выделенным маршрутизатором, новый маршрутизатор будет синхронизирован со всеми маршрутизаторами данной локальной сети.
Во-вторых, выделенный маршрутизатор делает объявление о сетевых связях, перечисляя своих соседей по подсети. Другие маршрутизаторы просто объявляют о своей связи с выделенным маршрутизатором. Это делает объявления о связях (которых много) более краткими, размером с объявление о связях отдельной сети.
Для начала работы маршрутизатора OSPF нужен минимум информации - IP-конфигурация (IP-адреса и маски подсетей), некоторая информация по умолчанию (default) и команда на включение. Для многих сетей информация по умолчанию весьма похожа. В то же время протокол OSPF предусматривает высокую степень программируемости.
Интерфейс OSPF (порт маршрутизатора, поддерживающего протокол OSPF) является обобщением подсети IP. Подобно подсети IP, интерфейс OSPF имеет IP-адрес и маску подсети. Если один порт OSPF поддерживает более, чем одну подсеть, протокол OSPF рассматривает эти подсети так, как если бы они были на разных физических интерфейсах, и вычисляет маршруты соответственно.
Интерфейсы, к которым подключены локальные сети, называются широковещательными (broadcast) интерфейсами, так как они могут использовать широковещательные возможности локальных сетей для обмена сигнальной информацией между маршрутизаторами. Интерфейсы, к которым подключены глобальные сети, не поддерживающие широковещание, но обеспечивающие доступ ко многим узлам через одну точку входа, например сети Х.25 или frame relay, называются нешироковещательными интерфейсами с множественным доступом или NBMA (non-broadcast multi-access).
Они рассматриваются аналогично широковещательным интерфейсам за исключением того, что широковещательная рассылка эмулируется путем посылки сообщения каждому соседу. Так как обнаружение соседей не является автоматическим, как в широковещательных сетях, NBMA-соседи должны задаваться при конфигурировании вручную. Как на широковещательных, так и на NBMA-интерфейсах могут быть заданы приоритеты маршрутизаторов для того, чтобы они могли выбрать выделенный маршрутизатор.
Интерфейсы "точка-точка", подобные PPP, несколько отличаются от традиционной IP-модели. Хотя они и могут иметь IP-адреса и подмаски, но необходимости в этом нет.
В простых сетях достаточно определить, что пункт назначения достижим и найти маршрут, который будет удовлетворительным. В сложных сетях обычно имеется несколько возможных маршрутов. Иногда хотелось бы иметь возможности по установлению дополнительных критериев для выбора пути: например, наименьшая задержка, максимальная пропускная способность или наименьшая стоимость (в сетях с оплатой за пакет). По этим причинам протокол OSPF позволяет сетевому администратору назначать каждому интерфейсу определенное число, называемое метрикой, чтобы оказать нужное влияние на выбор маршрута.
Число, используемое в качестве метрики пути, может быть назначено произвольным образом по желанию администратора. Но по умолчанию в качестве метрики используется время передачи бита в 10-ти наносекундных единицах (10 Мб/с Ethernet'у назначается значение 10, а линии 56 Кб/с - число 1785). Вычисляемая протоколом OSPF метрика пути представляет собой сумму метрик всех проходимых в пути связей; это очень грубая оценка задержки пути. Если маршрутизатор обнаруживает более, чем один путь к удаленной подсети, то он использует путь с наименьшей стоимостью пути.
В протоколе OSPF используется несколько временных параметров, и среди них наиболее важными являются интервал сообщения HELLO и интервал отказа маршрутизатора (router dead interval).
HELLO - это сообщение, которым обмениваются соседние, то есть непосредственно связанные маршрутизаторы подсети, с целью установить состояние линии связи и состояние маршрутизатора-соседа. В сообщении HELLO маршрутизатор передает свои рабочие параметры и говорит о том, кого он рассматривает в качестве своих ближайших соседей. Маршрутизаторы с разными рабочими параметрами игнорируют сообщения HELLO друг друга, поэтому неверно сконфигурированные маршрутизаторы не будут влиять на работу сети.
Каждый маршрутизатор шлет сообщение HELLO каждому своему соседу по крайней мере один раз на протяжении интервала HELLO. Если интервал отказа маршрутизатора истекает без получения сообщения HELLO от соседа, то считается, что сосед неработоспособен, и распространяется новое объявление о сетевых связях, чтобы в сети произошел пересчет маршрутов.
Пример маршрутизации по алгоритму OSPF
Представим себе один день из жизни транзитной локальной сети. Пусть у нас имеется сеть Ethernet, в которой есть три маршрутизатора - Джон, Фред и Роб (имена членов рабочей группы Internet, разработавшей протокол OSPF). Эти маршрутизаторы связаны с сетями в других городах с помощью выделенных линий.
Пусть произошло восстановление сетевого питания после сбоя. Маршрутизаторы и компьютеры перезагружаются и начинают работать по сети Ethernet. После того, как маршрутизаторы обнаруживают, что порты Ethernet работают нормально, они начинают генерировать сообщения HELLO, которые говорят о их присутствии в сети и их конфигурации. Однако маршрутизация пакетов начинает осуществляться не сразу - сначала маршрутизаторы должны синхронизировать свои маршрутные базы.
На протяжении интервала отказа маршрутизаторы продолжают посылать сообщения HELLO. Когда какой-либо маршрутизатор посылает такое сообщение, другие его получают и отмечают, что в локальной сети есть другой маршрутизатор. Когда они посылают следующее HELLO, они перечисляют там и своего нового соседа.
Когда период отказа маршрутизатора истекает, то маршрутизатор с наивысшим приоритетом и наибольшим идентификатором объявляет себя выделенным (а следующий за ним по приоритету маршрутизатор объявляет себя резервным выделенным маршрутизатором) и начинает синхронизировать свою базу данных с другими маршрутизаторами.
[pagebreak]
С этого момента времени база данных маршрутных объявлений каждого маршрутизатора может содержать информацию, полученную от маршрутизаторов других локальных сетей или из выделенных линий. Роб, например, вероятно получил информацию от Мило и Робина об их сетях, и он может передавать туда пакеты данных. Они содержат информацию о собственных связях маршрутизатора и объявления о связях сети.
Базы данных теперь синхронизированы с выделенным маршрутизатором, которым является Джон. Джон суммирует свою базу данных с каждой базой данных своих соседей - базами Фреда, Роба и Джеффа - индивидуально. В каждой синхронизирующейся паре объявления, найденные только в какой-либо одной базе, копируются в другую. Выделенный маршрутизатор, Джон, распространяет новые объявления среди других маршрутизаторов своей локальной сети.
Например, объявления Мило и Робина передаются Джону Робом, а Джон в свою очередь передает их Фреду и Джеффри. Обмен информацией между базами продолжается некоторое время, и пока он не завершится, маршрутизаторы не будут считать себя работоспособными. После этого они себя таковыми считают, потому что имеют всю доступную информацию о сети.
Посмотрим теперь, как Робин вычисляет маршрут через сеть. Две из связей, присоединенных к его портам, представляют линии T-1, а одна - линию 56 Кб/c. Робин сначала обнаруживает двух соседей - Роба с метрикой 65 и Мило с метрикой 1785. Из объявления о связях Роба Робин обнаружил наилучший путь к Мило со стоимостью 130, поэтому он отверг непосредственный путь к Мило, поскольку он связан с большей задержкой, так как проходит через линии с меньшей пропускной способностью. Робин также обнаруживает транзитную локальную сеть с выделенным маршрутизатором Джоном. Из объявлений о связях Джона Робин узнает о пути к Фреду и, наконец, узнает о пути к маршрутизаторам Келли и Джеффу и к их тупиковым сетям.
После того, как маршрутизаторы полностью входят в рабочий режим, интенсивность обмена сообщениями резко падает. Обычно они посылают сообщение HELLO по своим подсетям каждые 10 секунд и делают объявления о состоянии связей каждые 30 минут (если обнаруживаются изменения в состоянии связей, то объявление передается, естественно, немедленно). Обновленные объявления о связях служат гарантией того, что маршрутизатор работает в сети. Старые объявления удаляются из базы через определенное время.
Представим, однако, что какая-либо выделенная линия сети отказала. Присоединенные к ней маршрутизаторы распространяют свои объявления, в которых они уже не упоминают друг друга. Эта информация распространяется по сети, включая маршрутизаторы транзитной локальной сети. Каждый маршрутизатор в сети пересчитывает свои маршруты, находя, может быть, новые пути для восстановления утраченного взаимодействия.
Сравнение протоколов RIP и OSPF по затратам на широковещательный трафик
В сетях, где используется протокол RIP, накладные расходы на обмен маршрутной информацией строго фиксированы. Если в сети имеется определенное число маршрутизаторов, то трафик, создаваемый передаваемой маршрутной информацией, описываются формулой (1):
(1) F = (число объявляемых маршрутов/25) x 528 (байтов в сообщении) x
(число копий в единицу времени) x 8 (битов в байте)
В сети с протоколом OSPF загрузка при неизменном состоянии линий связи создается сообщениями HELLO и обновленными объявлениями о состоянии связей, что описывается формулой (2):
(2) F = { [ 20 + 24 + 20 + (4 x число соседей)] x
(число копий HELLO в единицу времени) }x 8 +
[(число объявлений x средний размер объявления) x
(число копий объявлений в единицу времени)] x 8,
где 20 - размер заголовка IP-пакета,
24 - заголовок пакета OSPF,
20 - размер заголовка сообщения HELLO,
4 - данные на каждого соседа.
Интенсивность посылки сообщений HELLO - каждые 10 секунд, объявлений о состоянии связей - каждые полчаса. По связям "точка-точка" или по широковещательным локальным сетям в единицу времени посылается только одна копия сообщения, по NBMA сетям типа frame relay каждому соседу посылается своя копия сообщения. В сети frame relay с 10 соседними маршрутизаторами и 100 маршрутами в сети (подразумевается, что каждый маршрут представляет собой отдельное OSPF-обобщение о сетевых связях и что RIP распространяет информацию о всех этих маршрутах) трафик маршрутной информации определяется соотношениями (3) и (4):
(3) RIP: (100 маршрутов / 25 маршрутов в объявлении) x 528 x
(10 копий / 30 сек) = 5 632 б/с
(4) OSPF: {[20 + 24 + 20 + (4 x 10) x (10 копий / 10 сек)] +
[100 маршрутов x (32 + 24 + 20) + (10 копий / 30 x 60 сек]} x 8 = 1 170 б/с
Как видно из полученных результатов, для нашего гипотетического примера трафик, создаваемый протоколом RIP, почти в пять раз интенсивней трафика, создаваемого протоколом OSPF.
Использование других протоколов маршрутизации
Случай использования в сети только протокола маршрутизации OSPF представляется маловероятным. Если сеть присоединена к Internet'у, то могут использоваться такие протоколы, как EGP (Exterior Gateway protocol), BGP (Border Gateway Protocol, протокол пограничного маршрутизатора), старый протокол маршрутизации RIP или собственные протоколы производителей.
Когда в сети начинает применяться протокол OSPF, то существующие протоколы маршрутизации могут продолжать использоваться до тех пор, пока не будут полностью заменены. В некоторых случаях необходимо будет объявлять о статических маршрутах, сконфигурированных вручную.
В OSPF существует понятие автономных систем маршрутизаторов (autonomous systems), которые представляют собой домены маршрутизации, находящиеся под общим административным управлением и использующие единый протокол маршрутизации. OSPF называет маршрутизатор, который соединяет автономную систему с другой автономной системой, использующей другой протокол маршрутизации, пограничным маршрутизатором автономной системы (autonomous system boundary router, ASBR).
В OSPF маршруты (именно маршруты, то есть номера сетей и расстояния до них во внешней метрике, а не топологическая информация) из одной автономной системы импортируются в другую автономную систему и распространяются с использованием специальных внешних объявлений о связях.
Внешние маршруты обрабатываются за два этапа. Маршрутизатор выбирает среди внешних маршрутов маршрут с наименьшей внешней метрикой. Если таковых оказывается больше, чем 2, то выбирается путь с меньшей стоимостью внутреннего пути до ASBR.
Область OSPF - это набор смежных интерфейсов (территориальных линий или каналов локальных сетей). Введение понятия "область" служит двум целям - управлению информацией и определению доменов маршрутизации.
Для понимания принципа управления информацией рассмотрим сеть, имеющую следующую структуру: центральная локальная сеть связана с помощью 50 маршрутизаторов с большим количеством соседей через сети X.25 или frame relay. Эти соседи представляют собой большое количество небольших удаленных подразделений, например, отделов продаж или филиалов банка.
Из-за большого размера сети каждый маршрутизатор должен хранить огромное количество маршрутной информации, которая должна передаваться по каждой из линий, и каждое из этих обстоятельств удорожает сеть. Так как топология сети проста, то большая часть этой информации и создаваемого ею трафика не имеют смысла.
Для каждого из удаленных филиалов нет необходимости иметь детальную маршрутную информацию о всех других удаленных офисах, в особенности, если они взаимодействуют в основном с центральными компьютерами, связанными с центральными маршрутизаторами. Аналогично, центральным маршрутизаторам нет необходимости иметь детальную информацию о топологии связей с удаленными офисами, соединенными с другими центральными маршрутизаторами.
В то же время центральные маршрутизаторы нуждаются в информации, необходимой для передачи пакетов следующему центральному маршрутизатору. Администратор мог бы без труда разделить эту сеть на более мелкие домены маршрутизации для того, чтобы ограничить объемы хранения и передачи по линиям связи не являющейся необходимой информации. Обобщение маршрутной информации является главной целью введения областей в OSPF.
В протоколе OSPF определяется также пограничный маршрутизатор области (ABR, area border router). ABR - это маршрутизатор с интерфейсами в двух или более областях, одна из которых является специальной областью, называемой магистральной (backbone area). Каждая область работает с отдельной базой маршрутной информации и независимо вычисляет маршруты по алгоритму OSPF.
Пограничные маршрутизаторы передают данные о топологии области в соседние области в обобщенной форме - в виде вычисленных маршрутов с их весами. Поэтому в сети, разбитой на области, уже не действует утверждение о том, что все маршрутизаторы оперируют с идентичными топологическими базами данных.
Маршрутизатор ABR берет информацию о маршрутах OSPF, вычисленную в одной области, и транслирует ее в другую область путем включения этой информации в обобщенное суммарное объявление (summary) для базы данных другой области. Суммарная информация описывает каждую подсеть области и дает для нее метрику. Суммарная информация может быть использована тремя способами: для объявления об отдельном маршруте, для обобщения нескольких маршрутов или же служить маршрутом по умолчанию.
Дальнейшее уменьшение требований к ресурсам маршрутизаторов происходит в том случае, когда область представляет собой тупиковую область (stub area). Этот атрибут администратор сети может применить к любой области, за исключением магистральной. ABR в тупиковой области не распространяет внешние объявления или суммарные объявления из других областей. Вместо этого он делает одно суммарное объявление, которое будет удовлетворять любой IP-адрес, имеющий номер сети, отличный от номеров сетей тупиковой области. Это объявление называется маршрутом по умолчанию.
Маршрутизаторы тупиковой области имеют информацию, необходимую только для вычисления маршрутов между собой плюс указания о том, что все остальные маршруты должны проходить через ABR. Такой подход позволяет уменьшить в нашей гипотетической сети количество маршрутной информации в удаленных офисах без уменьшения способности маршрутизаторов корректно передавать пакеты.
Протокол обмена управляющими сообщениями ICMP (Internet Control Message Protocol) позволяет маршрутизатору сообщить конечному узлу об ошибках, с которыми машрутизатор столкнулся при передаче какого-либо IP-пакета от данного конечного узла.
Управляющие сообщения ICMP не могут направляться промежуточному маршрутизатору, который участвовал в передаче пакета, с которым возникли проблемы, так как для такой посылки нет адресной информации - пакет несет в себе только адрес источника и адрес назначения, не фиксируя адреса промежуточных маршрутизаторов.
Протокол ICMP - это протокол сообщения об ошибках, а не протокол коррекции ошибок. Конечный узел может предпринять некоторые действия для того, чтобы ошибка больше не возникала, но эти действия протоколом ICMP не регламентируются.
Каждое сообщение протокола ICMP передается по сети внутри пакета IP. Пакеты IP с сообщениями ICMP маршрутизируются точно так же, как и любые другие пакеты, без приоритетов, поэтому они также могут теряться. Кроме того, в загруженной сети они могут вызывать дополнительную загрузку маршрутизаторов. Для того, чтобы не вызывать лавины сообщения об ошибках, потери пакетов IP, переносящие сообщения ICMP об ошибках, не могут порождать новые сообщения ICMP.
Формат сообщений протокола ICMP
Существует несколько типов сообщений ICMP. Каждый тип сообщения имеет свой формат, при этом все они начинаются с общих трех полей: 8-битного целого числа, обозначающего тип сообщения (TYPE), 8-битного поля кода (CODE), который конкретизирует назначение сообщения, и 16-битного поля контрольной суммы (CHECKSUM). Кроме того, сообщение ICMP всегда содержит заголовок и первые 64 бита данных пакета IP, который вызвал ошибку.
Это делается для того, чтобы узел-отправитель смог более точно проанализировать причину ошибки, так как все протоколы прикладного уровня стека TCP/IP содержат наиболее важную информацию для анализа в первых 64 битах своих сообщений.
Поле типа может иметь следующие значения:
Значение | Тип сообщения
0_________Эхо-ответ (Echo Replay)
3_________Узел назначения недостижим (Destination Unreachable)
4_________Подавление источника (Source Quench)
5_________Перенаправление маршрута (Redirect)
8_________Эхо-запрос (Echo Request)
11________Истечение времени дейтаграммы (Time Exceeded for a Datagram)
12________Проблема с параметром пакета (Parameter Problem on a Datagram)
13________Запрос отметки времени (Timestamp Request)
14________Ответ отметки времени (Timestamp Replay)
17________Запрос маски (Address Mask Request)
18________Ответ маски (Address Mask Replay)
Как видно из используемых типов сообщений, протокол ICMP представляет собой некоторое объединение протоколов, решающих свои узкие задачи.
Эхо-протокол
Протокол ICMP предоставляет сетевым администраторам средства для тестирования достижимости узлов сети. Эти средства представляют собой очень простой эхо-протокол, включающий обмен двумя типами сообщений: эхо-запрос и эхо-ответ. Компьютер или маршрутизатор посылают по интерсети эхо-запрос, в котором указывают IP-адрес узла, достижимость которого нужно проверить. Узел, который получает эхо-запрос, формирует и отправляет эхо-ответ и возвращает сообщение узлу - отправителю запроса.
В запросе могут содержаться некоторые данные, которые должны быть возвращены в ответе. Так как эхо-запрос и эхо-ответ передаются по сети внутри IP-пакетов, то их успешная доставка означает нормальное функционирование всей транспортной системы интерсети.
Во многих операционных системах используется утилита ping, которая предназначена для тестирования достижимости узлов. Эта утилита обычно посылает серию эхо-запросов к тестируемому узлу и предоставляет пользователю статистику об утерянных эхо-ответах и среднем времени реакции сети на запросы.
Сообщения о недостижимости узла назначения
Когда маршрутизатор не может передать или доставить IP-пакет, он отсылает узлу, отправившему этот пакет, сообщение "Узел назначения недостижим" (тип сообщения - 3). Это сообщение содержит в поле кода значение, уточняющее причину, по которой пакет не был доставлен. Причина кодируется следующим образом:
Код - | - Причина
0________Сеть недостижима
1________Узел недостижим
2________Протокол недостижим
3________Порт недостижим
4________Требуется фрагментация, а бит DF установлен
5________Ошибка в маршруте, заданном источником
6________Сеть назначения неизвестна
7________Узел назначения неизвестен
8________Узел-источник изолирован
9________Взаимодействие с сетью назначения административно запрещено
10_______Взаимодействие с узлом назначения административно запрещено
11_______Сеть недостижима для заданного класса сервиса
12_______Узел недостижим для заданного класса сервиса
Маршрутизатор, обнаруживший по какой-либо причине, что он не может передать IP-пакет далее по сети, должен отправить ICMP-сообщение узлу-источнику, и только потом отбросить пакет. Кроме причины ошибки, ICMP-сообщение включает также заголовок недоставленного пакета и его первые 64 бита поля данных.
Узел или сеть назначения могут быть недостижимы из-за временной неработоспособности аппаратуры, из-за того, что отправитель указал неверный адрес назначения, а также из-за того, что маршрутизатор не имеет данных о маршруте к сети назначения.
Недостижимость протокола и порта означают отсутствие реализации какого-либо протокола прикладного уровня в узле назначения или же отсутствие открытого порта протоколов UDP или TCP в узле назначения.
Ошибка фрагментации возникает тогда, когда отправитель послал в сеть пакет с признаком DF, запрещающим фрагментацию, а маршрутизатор столкнулся с необходимостью передачи этого пакета в сеть со значением MTU меньшим, чем размер пакета.
Перенаправление маршрута
Маршрутные таблицы у компьютеров обычно являются статическими, так как конфигурируются администратором сети, а у маршрутизаторов - динамическими, формируемыми автоматически с помощью протоколов обмена маршрутной информации. Поэтому с течением времени при изменении топологии сети маршрутные таблицы компьютеров могут устаревать. Кроме того, эти таблицы обычно содержат минимум информации, например, только адреса нескольких маршрутизаторов.
Для корректировки поведения компьютеров маршрутизатор может использовать сообщение протокола ICMP, называемое "Перенаправление маршрута" (Redirect).
Это сообщение посылается в том случае, когда маршрутизатор видит, что компьютер отправляет пакет некоторой сети назначения нерациональным образом, то есть не тому маршрутизатору локальной сети, от которого начинается более короткий маршрут к сети назначения.
Механизм перенаправления протокола ICMP позволяет компьютерам содержать в конфигурационном файле только IP-адреса его локальных маршрутизаторов. С помощью сообщений о перенаправлении маршрутизаторы будут сообщать компьютеру всю необходимую ему информацию о том, какому маршрутизатору следует отправлять пакеты для той или иной сети назначения. То есть маршрутизаторы передадут компьютеру нужную ему часть их таблиц маршрутизации.
В сообщении "Перенаправление маршрута" маршрутизатор помещает IP-адрес маршрутизатора, которым нужно пользоваться в дальнейшем, и заголовок исходного пакета с первыми 64 битами его поля данных. Из заголовка пакета узел узнает, для какой сети необходимо пользоваться указанным маршрутизатором.
В стеке протоколов TCP/IP протокол TCP (Transmission Control Protocol) работает так же, как и протокол UDP, на транспортном уровне. Он обеспечивает надежную транспортировку данных между прикладными процессами путем установления логического соединения.
Сегменты TCP
Единицей данных протокола TCP является сегмент. Информация, поступающая к протоколу TCP в рамках логического соединения от протоколов более высокого уровня, рассматривается протоколом TCP как неструктурированный поток байт. Поступающие данные буферизуются средствами TCP. Для передачи на сетевой уровень из буфера "вырезается" некоторая непрерывная часть данных, называемая сегментом.
В протоколе TCP предусмотрен случай, когда приложение обращается с запросом о срочной передаче данных (бит PSH в запросе установлен в 1). В этом случае протокол TCP, не ожидая заполнения буфера до уровня размера сегмента, немедленно передает указанные данные в сеть. О таких данных говорят, что они передаются вне потока - out of band.
Не все сегменты, посланные через соединение, будут одного и того же размера, однако оба участника соединения должны договориться о максимальном размере сегмента, который они будут использовать. Этот размер выбирается таким образом, чтобы при упаковке сегмента в IP-пакет он помещался туда целиком, то есть максимальный размер сегмента не должен превосходить максимального размера поля данных IP-пакета. В противном случае пришлось бы выполнять фрагментацию, то есть делить сегмент на несколько частей, для того, чтобы он вместился в IP-пакет.
Аналогичные проблемы решаются и на сетевом уровне. Для того, чтобы избежать фрагментации, должен быть выбран соответствующий максимальный размер IP-пакета. Однако при этом должны быть приняты во внимание максимальные размеры поля данных кадров (MTU) всех протоколов канального уровня, используемых в сети. Максимальный размер сегмента не должен превышать минимальное значение на множестве всех MTU составной сети.
Порты и установление TCP-соединений
В протоколе TCP также, как и в UDP, для связи с прикладными процессами используются порты. Номера портам присваиваются аналогичным образом: имеются стандартные, зарезервированные номера (например, номер 21 закреплен за сервисом FTP, 23 - за telnet), а менее известные приложения пользуются произвольно выбранными локальными номерами.
Однако в протоколе TCP порты используются несколько иным способом. Для организации надежной передачи данных предусматривается установление логического соединения между двумя прикладными процессами. В рамках соединения осуществляется обязательное подтверждение правильности приема для всех переданных сообщений, и при необходимости выполняется повторная передача. Соединение в TCP позволяет вести передачу данных одновременно в обе стороны, то есть полнодуплексную передачу.
Соединение в протоколе TCP идентифицируется парой полных адресов обоих взаимодействующих процессов (оконечных точек). Адрес каждой из оконечных точек включает IP-адрес (номер сети и номер компьютера) и номер порта. Одна оконечная точка может участвовать в нескольких соединениях.
Установление соединения выполняется в следующей последовательности:
* При установлении соединения одна из сторон является инициатором. Она посылает запрос к протоколу TCP на открытие порта для передачи (active open).
* После открытия порта протокол TCP на стороне процесса-инициатора посылает запрос процессу, с которым требуется установить соединение.
* Протокол TCP на приемной стороне открывает порт для приема данных (passive open) и возвращает квитанцию, подтверждающую прием запроса.
* Для того чтобы передача могла вестись в обе стороны, протокол на приемной стороне также открывает порт для передачи (active port) и также передает запрос к противоположной стороне.
* Сторона-инициатор открывает порт для приема и возвращает квитанцию. Соединение считается установленным. Далее происходит обмен данными в рамках данного соединения.
Концепция квитирования
В рамках соединения правильность передачи каждого сегмента должна подтверждаться квитанцией получателя. Квитирование - это один из традиционных методов обеспечения надежной связи. Идея квитирования состоит в следующем.
Для того, чтобы можно было организовать повторную передачу искаженных данных отправитель нумерует отправляемые единицы передаваемых данных (далее для простоты называемые кадрами). Для каждого кадра отправитель ожидает от приемника так называемую положительную квитанцию - служебное сообщение, извещающее о том, что исходный кадр был получен и данные в нем оказались корректными. Время этого ожидания ограничено - при отправке каждого кадра передатчик запускает таймер, и если по его истечению положительная квитанция на получена, то кадр считается утерянным. В некоторых протоколах приемник, в случае получения кадра с искаженными данными должен отправить отрицательную квитанцию - явное указание того, что данный кадр нужно передать повторно.
Существуют два подхода к организации процесса обмена положительными и отрицательными квитанциями: с простоями и с организацией "окна".
Метод с простоями требует, чтобы источник, пославший кадр, ожидал получения квитанции (положительной или отрицательной) от приемника и только после этого посылал следующий кадр (или повторял искаженный). В этом случае производительность обмена данными существенно снижается - хотя передатчик и мог бы послать следующий кадр сразу же после отправки предыдущего, он обязан ждать прихода квитанции. Снижение производительности для этого метода коррекции особенно заметно на низкоскоростных каналах связи, то есть в территориальных сетях.
Во втором методе для повышения коэффициента использования линии источнику разрешается передать некоторое количество кадров в непрерывном режиме, то есть в максимально возможном для источника темпе, без получения на эти кадры ответных квитанций. Количество кадров, которые разрешается передавать таким образом, называется размером окна. Обычно кадры при обмене нумеруются циклически, от 1 до W. При отправке кадра с номером 1 источнику разрешается передать еще W-1 кадров до получения квитанции на кадр 1. Если же за это время квитанция на кадр 1 так и не пришла, то процесс передачи приостанавливается, и по истечению некоторого тайм-аута кадр 1 считается утерянным (или квитанция на него утеряна) и он передается снова.
Если же поток квитанций поступает более-менее регулярно, в пределах допуска в W кадров, то скорость обмена достигает максимально возможной величины для данного канала и принятого протокола.
Этот алгоритм называют алгоритмом скользящего окна. Действительно, при каждом получении квитанции окно перемещается (скользит), захватывая новые данные, которые разрешается передавать без подтверждения.
[pagebreak]
Реализация скользящего окна в протоколе TCP
В протоколе TCP реализована разновидность алгоритма квитирования с использованием окна. Особенность этого алгоритма состоит в том, что, хотя единицей передаваемых данных является сегмент, окно определено на множестве нумерованных байт неструктурированного потока данных, поступающих с верхнего уровня и буферизуемых протоколом TCP.
Квитанция посылается только в случае правильного приема данных, отрицательные квитанции не посылаются. Таким образом, отсутствие квитанции означает либо прием искаженного сегмента, либо потерю сегмента, либо потерю квитанции.
В качестве квитанции получатель сегмента отсылает ответное сообщение (сегмент), в которое помещает число, на единицу превышающее максимальный номер байта в полученном сегменте. Если размер окна равен W, а последняя квитанция содержала значение N, то отправитель может посылать новые сегменты до тех пор, пока в очередной сегмент не попадет байт с номером N+W. Этот сегмент выходит за рамки окна, и передачу в таком случае необходимо приостановить до прихода следующей квитанции.
Выбор тайм-аута
Выбор времени ожидания (тайм-аута) очередной квитанции является важной задачей, результат решения которой влияет на производительность протокола TCP.
Тайм-аут не должен быть слишком коротким, чтобы по возможности исключить избыточные повторные передачи, которые снижают полезную пропускную способность системы. Но он не должен быть и слишком большим, чтобы избежать длительных простоев, связанных с ожиданием несуществующей или "заблудившейся" квитанции.
При выборе величины тайм-аута должны учитываться скорость и надежность физических линий связи, их протяженность и многие другие подобные факторы. В протоколе TCP тайм-аут определяется с помощью достаточно сложного адаптивного алгоритма, идея которого состоит в следующем. При каждой передаче засекается время от момента отправки сегмента до прихода квитанции о его приеме (время оборота).
Получаемые значения времен оборота усредняются с весовыми коэффициентами, возрастающими от предыдущего замера к последующему. Это делается с тем, чтобы усилить влияние последних замеров. В качестве тайм-аута выбирается среднее время оборота, умноженное на некоторый коэффициент. Практика показывает, что значение этого коэффициента должно превышать 2. В сетях с большим разбросом времени оборота при выборе тайм-аута учитывается и дисперсия этой величины.
Реакция на перегрузку сети
Варьируя величину окна, можно повлиять на загрузку сети. Чем больше окно, тем большую порцию неподтвержденных данных можно послать в сеть. Если сеть не справляется с нагрузкой, то возникают очереди в промежуточных узлах-маршрутизаторах и в конечных узлах-компьютерах.
При переполнении приемного буфера конечного узла "перегруженный" протокол TCP, отправляя квитанцию, помещает в нее новый, уменьшенный размер окна. Если он совсем отказывается от приема, то в квитанции указывается окно нулевого размера. Однако даже после этого приложение может послать сообщение на отказавшийся от приема порт. Для этого, сообщение должно сопровождаться пометкой "срочно" (бит URG в запросе установлен в 1). В такой ситуации порт обязан принять сегмент, даже если для этого придется вытеснить из буфера уже находящиеся там данные.
После приема квитанции с нулевым значением окна протокол-отправитель время от времени делает контрольные попытки продолжить обмен данными. Если протокол-приемник уже готов принимать информацию, то в ответ на контрольный запрос он посылает квитанцию с указанием ненулевого размера окна.
Другим проявлением перегрузки сети является переполнение буферов в маршрутизаторах. В таких случаях они могут централизовано изменить размер окна, посылая управляющие сообщения некоторым конечным узлам, что позволяет им дифференцировано управлять интенсивностью потока данных в разных частях сети.
Формат сообщений TCP
Сообщения протокола TCP называются сегментами и состоят из заголовка и блока данных. Заголовок сегмента имеет следующие поля:
* Порт источника (SOURS PORT) занимает 2 байта, идентифицирует процесс-отправитель;
* Порт назначения (DESTINATION PORT) занимает 2 байта, идентифицирует процесс-получатель;
* Последовательный номер (SEQUENCE NUMBER) занимает 4 байта, указывает номер байта, который определяет смещение сегмента относительно потока отправляемых данных;
* Подтвержденный номер (ACKNOWLEDGEMENT NUMBER) занимает 4 байта, содержит максимальный номер байта в полученном сегменте, увеличенный на единицу; именно это значение используется в качестве квитанции;
* Длина заголовка (HLEN) занимает 4 бита, указывает длину заголовка сегмента TCP, измеренную в 32-битовых словах. Длина заголовка не фиксирована и может изменяться в зависимости от значений, устанавливаемых в поле Опции;
* Резерв (RESERVED) занимает 6 битов, поле зарезервировано для последующего использования;
* Кодовые биты (CODE BITS) занимают 6 битов, содержат служебную информацию о типе данного сегмента, задаваемую установкой в единицу соответствующих бит этого поля:
* URG - срочное сообщение;
* ACK - квитанция на принятый сегмент;
* PSH - запрос на отправку сообщения без ожидания заполнения буфера;
* RST - запрос на восстановление соединения;
* SYN - сообщение используемое для синхронизации счетчиков переданных данных при установлении соединения;
* FIN - признак достижения передающей стороной последнего байта в потоке передаваемых данных.
* Окно (WINDOW) занимает 2 байта, содержит объявляемое значение размера окна в байтах;
* Контрольная сумма (CHECKSUM) занимает 2 байта, рассчитывается по сегменту;
* Указатель срочности (URGENT POINTER) занимает 2 байта, используется совместно с кодовым битом URG, указывает на конец данных, которые необходимо срочно принять, несмотря на переполнение буфера;
* Опции (OPTIONS) - это поле имеет переменную длину и может вообще отсутствовать, максимальная величина поля 3 байта; используется для решения вспомогательных задач, например, при выборе максимального размера сегмента;
* Заполнитель (PADDING) может иметь переменную длину, представляет собой фиктивное поле, используемое для доведения размера заголовка до целого числа 32-битовых слов.
Типы адресов: физический (MAC-адрес), сетевой (IP-адрес) и символьный (DNS-имя).
Каждый компьютер в сети TCP/IP имеет адреса трех уровней:
* Локальный адрес узла, определяемый технологией, с помощью которой построена отдельная сеть, в которую входит данный узел. Для узлов, входящих в локальные сети - это МАС-адрес сетевого адаптера или порта маршрутизатора, например, 11-А0-17-3D-BC-01. Эти адреса назначаются производителями оборудования и являются уникальными адресами, так как управляются централизовано. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байтов: старшие 3 байта - идентификатор фирмы производителя, а младшие 3 байта назначаются уникальным образом самим производителем. Для узлов, входящих в глобальные сети, такие как Х.25 или frame relay, локальный адрес назначается администратором глобальной сети.
* IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Network Information Center, NIC), если сеть должна работать как составная часть Internet. Обычно провайдеры услуг Internet получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами.
Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла - гибкое, и граница между этими полями может устанавливаться весьма произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.
* Символьный идентификатор-имя, например, SERV1.IBM.COM. Этот адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена. Такой адрес, называемый также DNS-именем, используется на прикладном уровне, например, в протоколах FTP или telnet.
Три основных класса IP-адресов
IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значения каждого байта в десятичной форме, и разделенных точками, например:
128.10.2.30 - традиционная десятичная форма представления адреса,
10000000 00001010 00000010 00011110 - двоичная форма представления этого же адреса.
Адрес состоит из двух логических частей - номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая к номеру узла, определяется значениями первых битов адреса:
* Если адрес начинается с 0, то сеть относят к классу А, и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) В сетях класса А количество узлов должно быть больше 216 , но не превышать 224.
* Если первые два бита адреса равны 10, то сеть относится к классу В и является сетью средних размеров с числом узлов 28 - 216. В сетях класса В под адрес сети и под адрес узла отводится по 16 битов, то есть по 2 байта.
* Если адрес начинается с последовательности 110, то это сеть класса С с числом узлов не больше 28. Под адрес сети отводится 24 бита, а под адрес узла - 8 битов.
* Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес - multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.
* Если адрес начинается с последовательности 11110, то это адрес класса Е, он зарезервирован для будущих применений.
В таблице приведены диапазоны номеров сетей, соответствующих каждому классу сетей.
Класс | Наименьший адрес | Наибольший адрес
A _________01.0.0 ___________126.0.0.0
B _________128.0.0.0_________191.255.0.0
C _________192.0.1.0._________223.255.255.0
D _________224.0.0.0__________239.255.255.255
E _________240.0.0.0 _________247.255.255.255
Уже упоминавшаяся форма группового IP-адреса - multicast - означает, что данный пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Узлы сами идентифицируют себя, то есть определяют, к какой из групп они относятся. Один и тот же узел может входить в несколько групп. Такие сообщения в отличие от широковещательных называются мультивещательными. Групповой адрес не делится на поля номера сети и узла и обрабатывается маршрутизатором особым образом.
В протоколе IP нет понятия широковещательности в том смысле, в котором оно используется в протоколах канального уровня локальных сетей, когда данные должны быть доставлены абсолютно всем узлам. Как ограниченный широковещательный IP-адрес, так и широковещательный IP-адрес имеют пределы распространения в интерсети - они ограничены либо сетью, к которой принадлежит узел - источник пакета, либо сетью, номер которой указан в адресе назначения. Поэтому деление сети с помощью маршрутизаторов на части локализует широковещательный шторм пределами одной из составляющих общую сеть частей просто потому, что нет способа адресовать пакет одновременно всем узлам всех сетей составной сети.
Отображение физических адресов на IP-адреса: протоколы ARP и RARP
В протоколе IP-адрес узла, то есть адрес компьютера или порта маршрутизатора, назначается произвольно администратором сети и прямо не связан с его локальным адресом, как это сделано, например, в протоколе IPX. Подход, используемый в IP, удобно использовать в крупных сетях и по причине его независимости от формата локального адреса, и по причине стабильности, так как в противном случае, при смене на компьютере сетевого адаптера это изменение должны бы были учитывать все адресаты всемирной сети Internet (в том случае, конечно, если сеть подключена к Internet'у).
Локальный адрес используется в протоколе IP только в пределах локальной сети при обмене данными между маршрутизатором и узлом этой сети. Маршрутизатор, получив пакет для узла одной из сетей, непосредственно подключенных к его портам, должен для передачи пакета сформировать кадр в соответствии с требованиями принятой в этой сети технологии и указать в нем локальный адрес узла, например его МАС-адрес. В пришедшем пакете этот адрес не указан, поэтому перед маршрутизатором встает задача поиска его по известному IP-адресу, который указан в пакете в качестве адреса назначения. С аналогичной задачей сталкивается и конечный узел, когда он хочет отправить пакет в удаленную сеть через маршрутизатор, подключенный к той же локальной сети, что и данный узел.
Для определения локального адреса по IP-адресу используется протокол разрешения адреса Address Resolution Protocol, ARP. Протокол ARP работает различным образом в зависимости от того, какой протокол канального уровня работает в данной сети - протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещательного доступа одновременно ко всем узлам сети, или же протокол глобальной сети (X.25, frame relay), как правило не поддерживающий широковещательный доступ. Существует также протокол, решающий обратную задачу - нахождение IP-адреса по известному локальному адресу. Он называется реверсивный ARP - RARP (Reverse Address Resolution Protocol) и используется при старте бездисковых станций, не знающих в начальный момент своего IP-адреса, но знающих адрес своего сетевого адаптера.
В локальных сетях протокол ARP использует широковещательные кадры протокола канального уровня для поиска в сети узла с заданным IP-адресом.
Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно. Все узлы локальной сети получают ARP запрос и сравнивают указанный там IP-адрес с собственным. В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP запросе отправитель указывает свой локальный адрес. ARP-запросы и ответы используют один и тот же формат пакета. Так как локальные адреса могут в различных типах сетей иметь различную длину, то формат пакета протокола ARP зависит от типа сети.
В поле типа сети для сетей Ethernet указывается значение 1. Поле типа протокола позволяет использовать пакеты ARP не только для протокола IP, но и для других сетевых протоколов.
Длина локального адреса для протокола Ethernet равна 6 байтам, а длина IP-адреса - 4 байтам. В поле операции для ARP запросов указывается значение 1 для протокола ARP и 2 для протокола RARP.
Узел, отправляющий ARP-запрос, заполняет в пакете все поля, кроме поля искомого локального адреса (для RARP-запроса не указывается искомый IP-адрес). Значение этого поля заполняется узлом, опознавшим свой IP-адрес.
В глобальных сетях администратору сети чаще всего приходится вручную формировать ARP-таблицы, в которых он задает, например, соответствие IP-адреса адресу узла сети X.25, который имеет смысл локального адреса. В последнее время наметилась тенденция автоматизации работы протокола ARP и в глобальных сетях. Для этой цели среди всех маршрутизаторов, подключенных к какой-либо глобальной сети, выделяется специальный маршрутизатор, который ведет ARP-таблицу для всех остальных узлов и маршрутизаторов этой сети.
При таком централизованном подходе для всех узлов и маршрутизаторов вручную нужно задать только IP-адрес и локальный адрес выделенного маршрутизатора. Затем каждый узел и маршрутизатор регистрирует свои адреса в выделенном маршрутизаторе, а при необходимости установления соответствия между IP-адресом и локальным адресом узел обращается к выделенному маршрутизатору с запросом и автоматически получает ответ без участия администратора.
[pagebreak]
Отображение символьных адресов на IP-адреса: служба DNS
DNS (Domain Name System) - это распределенная база данных, поддерживающая иерархическую систему имен для идентификации узлов в сети Internet. Служба DNS предназначена для автоматического поиска IP-адреса по известному символьному имени узла. Спецификация DNS определяется стандартами RFC 1034 и 1035. DNS требует статической конфигурации своих таблиц, отображающих имена компьютеров в IP-адрес.
Протокол DNS является служебным протоколом прикладного уровня. Этот протокол несимметричен - в нем определены DNS-серверы и DNS-клиенты. DNS-серверы хранят часть распределенной базы данных о соответствии символьных имен и IP-адресов. Эта база данных распределена по административным доменам сети Internet. Клиенты сервера DNS знают IP-адрес сервера DNS своего административного домена и по протоколу IP передают запрос, в котором сообщают известное символьное имя и просят вернуть соответствующий ему IP-адрес.
Если данные о запрошенном соответствии хранятся в базе данного DNS-сервера, то он сразу посылает ответ клиенту, если же нет - то он посылает запрос DNS-серверу другого домена, который может сам обработать запрос, либо передать его другому DNS-серверу. Все DNS-серверы соединены иерархически, в соответствии с иерархией доменов сети Internet. Клиент опрашивает эти серверы имен, пока не найдет нужные отображения. Этот процесс ускоряется из-за того, что серверы имен постоянно кэшируют информацию, предоставляемую по запросам. Клиентские компьютеры могут использовать в своей работе IP-адреса нескольких DNS-серверов, для повышения надежности своей работы.
База данных DNS имеет структуру дерева, называемого доменным пространством имен, в котором каждый домен (узел дерева) имеет имя и может содержать поддомены. Имя домена идентифицирует его положение в этой базе данных по отношению к родительскому домену, причем точки в имени отделяют части, соответствующие узлам домена.
Корень базы данных DNS управляется центром Internet Network Information Center. Домены верхнего уровня назначаются для каждой страны, а также на организационной основе. Имена этих доменов должны следовать международному стандарту ISO 3166. Для обозначения стран используются трехбуквенные и двухбуквенные аббревиатуры, а для различных типов организаций используются следующие аббревиатуры:
* com - коммерческие организации (например, microsoft.com);
* edu - образовательные (например, mit.edu);
* gov - правительственные организации (например, nsf.gov);
* org - некоммерческие организации (например, fidonet.org);
* net - организации, поддерживающие сети (например, nsf.net).
Каждый домен DNS администрируется отдельной организацией, которая обычно разбивает свой домен на поддомены и передает функции администрирования этих поддоменов другим организациям. Каждый домен имеет уникальное имя, а каждый из поддоменов имеет уникальное имя внутри своего домена. Имя домена может содержать до 63 символов. Каждый хост в сети Internet однозначно определяется своим полным доменным именем (fully qualified domain name, FQDN), которое включает имена всех доменов по направлению от хоста к корню.
Автоматизация процесса назначения IP-адресов узлам сети - протокол DHCP
Как уже было сказано, IP-адреса могут назначаться администратором сети вручную. Это представляет для администратора утомительную процедуру. Ситуация усложняется еще тем, что многие пользователи не обладают достаточными знаниями для того, чтобы конфигурировать свои компьютеры для работы в интерсети и должны поэтому полагаться на администраторов.
Протокол Dynamic Host Configuration Protocol (DHCP) был разработан для того, чтобы освободить администратора от этих проблем. Основным назначением DHCP является динамическое назначение IP-адресов. Однако, кроме динамического, DHCP может поддерживать и более простые способы ручного и автоматического статического назначения адресов.
В ручной процедуре назначения адресов активное участие принимает администратор, который предоставляет DHCP-серверу информацию о соответствии IP-адресов физическим адресам или другим идентификаторам клиентов. Эти адреса сообщаются клиентам в ответ на их запросы к DHCP-серверу.
При автоматическом статическом способе DHCP-сервер присваивает IP-адрес (и, возможно, другие параметры конфигурации клиента) из пула наличных IP-адресов без вмешательства оператора. Границы пула назначаемых адресов задает администратор при конфигурировании DHCP-сервера. Между идентификатором клиента и его IP-адресом по-прежнему, как и при ручном назначении, существует постоянное соответствие. Оно устанавливается в момент первичного назначения сервером DHCP IP-адреса клиенту. При всех последующих запросах сервер возвращает тот же самый IP-адрес.
При динамическом распределении адресов DHCP-сервер выдает адрес клиенту на ограниченное время, что дает возможность впоследствии повторно использовать IP-адреса другими компьютерами. Динамическое разделение адресов позволяет строить IP-сеть, количество узлов в которой намного превышает количество имеющихся в распоряжении администратора IP-адресов.
DHCP обеспечивает надежный и простой способ конфигурации сети TCP/IP, гарантируя отсутствие конфликтов адресов за счет централизованного управления их распределением. Администратор управляет процессом назначения адресов с помощью параметра "продолжительности аренды" (lease duration), которая определяет, как долго компьютер может использовать назначенный IP-адрес, перед тем как снова запросить его от сервера DHCP в аренду.
Примером работы протокола DHCP может служить ситуация, когда компьютер, являющийся клиентом DHCP, удаляется из подсети. При этом назначенный ему IP-адрес автоматически освобождается. Когда компьютер подключается к другой подсети, то ему автоматически назначается новый адрес. Ни пользователь, ни сетевой администратор не вмешиваются в этот процесс. Это свойство очень важно для мобильных пользователей.
Протокол DHCP использует модель клиент-сервер. Во время старта системы компьютер-клиент DHCP, находящийся в состоянии "инициализация", посылает сообщение discover (исследовать), которое широковещательно распространяется по локальной сети и передается всем DHCP-серверам частной интерсети. Каждый DHCP-сервер, получивший это сообщение, отвечает на него сообщением offer (предложение), которое содержит IP-адрес и конфигурационную информацию.
Компьютер-клиент DHCP переходит в состояние "выбор" и собирает конфигурационные предложения от DHCP-серверов. Затем он выбирает одно из этих предложений, переходит в состояние "запрос" и отправляет сообщение request (запрос) тому DHCP-серверу, чье предложение было выбрано.
Выбранный DHCP-сервер посылает сообщение DHCP-acknowledgment (подтверждение), содержащее тот же IP-адрес, который уже был послан ранее на стадии исследования, а также параметр аренды для этого адреса. Кроме того, DHCP-сервер посылает параметры сетевой конфигурации. После того, как клиент получит это подтверждение, он переходит в состояние "связь", находясь в котором он может принимать участие в работе сети TCP/IP. Компьютеры-клиенты, которые имеют локальные диски, сохраняют полученный адрес для использования при последующих стартах системы. При приближении момента истечения срока аренды адреса компьютер пытается обновить параметры аренды у DHCP-сервера, а если этот IP-адрес не может быть выделен снова, то ему возвращается другой IP-адрес.
В протоколе DHCP описывается несколько типов сообщений, которые используются для обнаружения и выбора DHCP-серверов, для запросов информации о конфигурации, для продления и досрочного прекращения лицензии на IP-адрес. Все эти операции направлены на то, чтобы освободить администратора сети от утомительных рутинных операций по конфигурированию сети.
Однако использование DHCP несет в себе и некоторые проблемы. Во-первых, это проблема согласования информационной адресной базы в службах DHCP и DNS. Как известно, DNS служит для преобразования символьных имен в IP-адреса. Если IP-адреса будут динамически изменятся сервером DHCP, то эти изменения необходимо также динамически вносить в базу данных сервера DNS. Хотя протокол динамического взаимодействия между службами DNS и DHCP уже реализован некоторыми фирмами (так называемая служба Dynamic DNS), стандарт на него пока не принят.
Во-вторых, нестабильность IP-адресов усложняет процесс управления сетью. Системы управления, основанные на протоколе SNMP, разработаны с расчетом на статичность IP-адресов. Аналогичные проблемы возникают и при конфигурировании фильтров маршрутизаторов, которые оперируют с IP-адресами.
Наконец, централизация процедуры назначения адресов снижает надежность системы: при отказе DHCP-сервера все его клиенты оказываются не в состоянии получить IP-адрес и другую информацию о конфигурации. Последствия такого отказа могут быть уменьшены путем использовании в сети нескольких серверов DHCP, каждый из которых имеет свой пул IP-адресов.
Сетевой уровень в первую очередь должен предоставлять средства для решения следующих задач:
* доставки пакетов в сети с произвольной топологией,
* структуризации сети путем надежной локализации трафика,
* согласования различных протоколов канального уровня.
Локализация трафика и изоляция сетей
Трафик в сети складывается случайным образом, однако в нем отражены и некоторые закономерности. Как правило, некоторые пользователи, работающие над общей задачей, (например, сотрудники одного отдела) чаще всего обращаются с запросами либо друг к другу, либо к общему серверу, и только иногда они испытывают необходимость доступа к ресурсам компьютеров другого отдела.
Желательно, чтобы структура сети соответствовала структуре информационных потоков. В зависимости от сетевого трафика компьютеры в сети могут быть разделены на группы (сегменты сети). Компьютеры объединяются в группу, если большая часть порождаемых ими сообщений, адресована компьютерам этой же группы.
Для разделения сети на сегменты используются мосты и коммутаторы. Они экранируют локальный трафик внутри сегмента, не передавая за его пределы никаких кадров, кроме тех, которые адресованы компьютерам, находящимся в других сегментах. Тем самым, сеть распадается на отдельные подсети. Это позволяет более рационально выбирать пропускную способность имеющихся линий связи, учитывая интенсивность трафика внутри каждой группы, а также активность обмена данными между группами.
Однако локализация трафика средствами мостов и коммутаторов имеет существенные ограничения.
С одной стороны, логические сегменты сети, расположенные между мостами, недостаточно изолированы друг от друга, а именно, они не защищены от, так называемых, широковещательных штормов. Если какая-либо станция посылает широковещательное сообщение, то это сообщение передается всем станциям всех логических сегментов сети. Защита от широковещательных штормов в сетях, построенных на основе мостов, имеет количественный, а не качественный характер: администратор просто ограничивает количество широковещательных пакетов, которое разрешается генерировать некоторому узлу.
С другой стороны, использование механизма виртуальных сегментов, реализованного в коммутаторах локальных сетей, приводит к полной локализации трафика - такие сегменты полностью изолированы друг от друга, даже в отношении широковещательных кадров. Поэтому в сетях, построенных только на мостах и коммутаторах, компьютеры, принадлежащие разным виртуальным сегментам, не образуют единой сети.
Приведенные недостатки мостов и коммутаторов связаны с тем, что они работают по протоколам канального уровня, в которых в явном виде не определяется понятие части сети (или подсети, или сегмента), которое можно было бы использовать при структуризации большой сети. Вместо того, чтобы усовершенствовать канальный уровень, разработчики сетевых технологий решили поручить задачу построения составной сети новому уровню - сетевому.
Согласование протоколов канального уровня
Современные вычислительные сети часто строятся с использованием нескольких различных базовых технологий - Ethernet, Token Ring или FDDI. Такая неоднородность возникает либо при объединении уже существовавших ранее сетей, использующих в своих транспортных подсистемах различные протоколы канального уровня, либо при переходе к новым технологиям, таким, как Fast Ethernet или 100VG-AnyLAN.
Именно для образования единой транспортной системы, объединяющей несколько сетей с различными принципами передачи информации между конечными узлами, и служит сетевой уровень. Когда две или более сетей организуют совместную транспортную службу, то такой режим взаимодействия обычно называют межсетевым взаимодействием (internetworking). Для обозначения составной сети в англоязычной литературе часто также используется термин интерсеть (internetwork или internet).
Создание сложной структурированной сети, интегрирующей различные базовые технологии, может осуществляться и средствами канального уровня: для этого могут быть использованы некоторые типы мостов и коммутаторов. Однако возможностью трансляции протоколов канального уровня обладают далеко не все типы мостов и коммутаторов, к тому же возможности эти ограничены. В частности, в объединяемых сетях должны совпадать максимальные размеры полей данных в кадрах, так как канальные протоколы, как правило, не поддерживают функции фрагментации пакетов.
Маршрутизация в сетях с произвольной топологией
Среди протоколов канального уровня некоторые обеспечивают доставку данных в сетях с произвольной топологией, но только между парой соседних узлов (например, протокол PPP), а некоторые - между любыми узлами (например, Ethernet), но при этом сеть должна иметь топологию определенного и весьма простого типа, например, древовидную.
При объединении в сеть нескольких сегментов с помощью мотов или коммутаторов продолжают действовать ограничения на ее топологию: в получившейся сети должны отсутствовать петли. Действительно, мост или его функциональный аналог - коммутатор - могут решать задачу доставки пакета адресату только тогда, когда между отправителем и получателем существует единственный путь. В то же время наличие избыточных связей, которые и образуют петли, часто необходимо для лучшей балансировки нагрузки, а также для повышения надежности сети за счет существования альтернативного маршрута в дополнение к основному.
Сетевой уровень позволяет передавать данные между любыми, произвольно связанными узлами сети.
Реализация протокола сетевого уровня подразумевает наличие в сети специального устройства - маршрутизатора. Маршрутизаторы объединяют отдельные сети в общую составную сеть. Внутренняя структура каждой сети не показана, так как она не имеет значения при рассмотрении сетевого протокола. К каждому маршрутизатору могут быть присоединены несколько сетей (по крайней мере две).
В сложных составных сетях почти всегда существует несколько альтернативных маршрутов для передачи пакетов между двумя конечными узлами. Задачу выбора маршрутов из нескольких возможных решают маршрутизаторы, а также конечные узлы.
Маршрут - это последовательность маршрутизаторов, которые должен пройти пакет от отправителя до пункта назначения.
Маршрутизатор выбирает маршрут на основании своего представления о текущей конфигурации сети и соответствующего критерия выбора маршрута. Обычно в качестве критерия выступает время прохождения маршрута, которое в локальных сетях совпадает с длиной маршрута, измеряемой в количестве пройденных узлов маршрутизации (в глобальных сетях принимается в расчет и время передачи пакета по каждой линии связи).
[pagebreak]
Сетевой уровень и модель OSI
В модели OSI, называемой также моделью взаимодействия открытых систем (Open Systems Interconnection - OSI) и разработанной Международной Организацией по Стандартам (International Organization for Standardization - ISO), средства сетевого взаимодействия делятся на семь уровней, для которых определены стандартные названия и функции.
Сетевой уровень занимает в модели OSI промежуточное положение: к его услугам обращаются протоколы прикладного уровня, сеансового уровня и уровня представления. Для выполнения своих функций сетевой уровень вызывает функции канального уровня, который в свою очередь обращается к средствам физического уровня.
Рассмотрим коротко основные функции уровней модели OSI.
Физический уровень выполняет передачу битов по физическим каналам, таким, как коаксиальный кабель, витая пара или оптоволоконный кабель. На этом уровне определяются характеристики физических сред передачи данных и параметров электрических сигналов.
Канальный уровень обеспечивает передачу кадра данных между любыми узлами в сетях с типовой топологией либо между двумя соседними узлами в сетях с произвольной топологией. В протоколах канального уровня заложена определенная структура связей между компьютерами и способы их адресации. Адреса, используемые на канальном уровне в локальных сетях, часто называют МАС-адресами.
Сетевой уровень обеспечивает доставку данных между любыми двумя узлами в сети с произвольной топологией, при этом он не берет на себя никаких обязательств по надежности передачи данных.
Транспортный уровень обеспечивает передачу данных между любыми узлами сети с требуемым уровнем надежности. Для этого на транспортном уровне имеются средства установления соединения, нумерации, буферизации и упорядочивания пакетов.
Сеансовый уровень предоставляет средства управления диалогом, позволяющие фиксировать, какая из взаимодействующих сторон является активной в настоящий момент, а также предоставляет средства синхронизации в рамках процедуры обмена сообщениями.
Уровень представления. В отличии от нижележащих уровней, которые имеют дело с надежной и эффективной передачей битов от отправителя к получателю, уровень представления имеет дело с внешним представлением данных. На этом уровне могут выполняться различные виды преобразования данных, такие как компрессия и декомпрессия, шифровка и дешифровка данных.
Прикладной уровень - это в сущности набор разнообразных сетевых сервисов, предоставляемых конечным пользователям и приложениям. Примерами таких сервисов являются, например, электронная почта, передача файлов, подключение удаленных терминалов к компьютеру по сети.
При построении транспортной подсистемы наибольший интерес представляют функции физического, канального и сетевого уровней, тесно связанные с используемым в данной сети оборудованием: сетевыми адаптерами, концентраторами, мостами, коммутаторами, маршрутизаторами. Функции прикладного и сеансового уровней, а также уровня представления реализуются операционными системами и системными приложениями конечных узлов. Транспортный уровень выступает посредником между этими двумя группами протоколов.
Функции сетевого уровня
Протоколы канального уровня не позволяют строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Для того, чтобы, с одной стороны, сохранить простоту процедур передачи пакетов для типовых топологий, а с другой стороны, допустить использование произвольных топологий, вводится дополнительный сетевой уровень.
Прежде, чем приступить к рассмотрению функций сетевого уровня , уточним, что понимается под термином "сеть". В протоколах сетевого уровня термин "сеть" означает совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи пакетов общую базовую сетевую технологию. Внутри сети сегменты не разделяются маршрутизаторами, иначе это была бы не одна сеть, а несколько сетей. Маршрутизатор соединят несколько сетей в интерсеть.
Основная идея введения сетевого уровня состоит в том, чтобы оставить технологии, используемые в объединяемых сетях в неизменном в виде, но добавить в кадры канального уровня дополнительную информацию - заголовок сетевого уровня, на основании которой можно было бы находить адресата в сети с любой базовой технологией. Заголовок пакета сетевого уровня имеет унифицированный формат, не зависящий от форматов кадров канального уровня тех сетей, которые могут входить в объединенную сеть.
Заголовок сетевого уровня должен содержать адрес назначения и другую информацию, необходимую для успешного перехода пакета из сети одного типа в сеть другого типа. К такой информации может относиться, например:
* номер фрагмента пакета, нужный для успешного проведения операций сборки-разборки фрагментов при соединении сетей с разными максимальными размерами кадров канального уровня,
* время жизни пакета, указывающее, как долго он путешествует по интерсети, это время может использоваться для уничтожения "заблудившихся" пакетов,
* информация о наличии и о состоянии связей между сетями, помогающая узлам сети и маршрутизаторам рационально выбирать межсетевые маршруты,
* информация о загруженности сетей, также помогающая согласовать темп посылки пакетов в сеть конечными узлами с реальными возможностями линий связи на пути следования пакетов,
* качество сервиса - критерий выбора маршрута при межсетевых передачах - например, узел-отправитель может потребовать передать пакет с максимальной надежностью, возможно в ущерб времени доставки.
В качестве адресов отправителя и получателя в составной сети используется не МАС-адрес, а пара чисел - номер сети и номер компьютера в данной сети. В канальных протоколах поле "номер сети" обычно отсутствует - предполагается, что все узлы принадлежат одной сети. Явная нумерация сетей позволяет протоколам сетевого уровня составлять точную карту межсетевых связей и выбирать рациональные маршруты при любой их топологии, используя альтернативные маршруты, если они имеются, что не умеют делать мосты.
Таким образом, внутри сети доставка сообщений регулируется канальным уровнем. А вот доставкой пакетов между сетями занимается сетевой уровень.
Существует два подхода к назначению номера узла в заголовке сетевого пакета. Первый основан на использовании для каждого узла нового адреса, отличного от того, который использовался на канальном уровне. Преимуществом такого подхода является его универсальность и гибкость - каков бы ни был формат адреса на канальном уровне, формат адреса узла на сетевом уровне выбирается единым. Однако, здесь имеются и некоторые неудобства, связанные с необходимостью заново нумеровать узлы, причем чаще всего вручную.
Второй подход состоит в использовании на сетевом уровне того же адреса узла, что был дан ему на канальном уровне. Это избавляет администратора от дополнительной работы по присвоению новых адресов, снимает необходимость в установлении соответствия между сетевым и канальным адресом одного и того же узла, но может породить сложную задачу интерпретации адреса узла при соединении сетей с разными форматами адресов.
Протоколы передачи данных и протоколы обмена маршрутной информацией
Для того, чтобы иметь информацию о текущей конфигурации сети, маршрутизаторы обмениваются маршрутной информацией между собой по специальному протоколу. Протоколы этого типа называются протоколами обмена маршрутной информацией (или протоколами маршрутизации). Протоколы обмена маршрутной информацией следует отличать от, собственно, протоколов сетевого уровня. В то время как первые несут чисто служебную информацию, вторые предназначены для передачи пользовательских данных, также, как это делают протоколы канального уровня.
Для того, чтобы доставить удаленному маршрутизатору пакет протокола обмена маршрутной информацией, используется протокол сетевого уровня, так как только он может передать информацию между маршрутизаторами, находящимися в разных сетях. Пакет протокола обмена маршрутной информацией помещается в поле данных пакета сетевого уровня, поэтому с точки зрения вложенности пакетов протоколы маршрутизации следует отнести к более высокому уровню, чем сетевой. Но функционально они решают общую задачу с пакетами сетевого уровня - доставляют кадры адресату через разнородную составную сеть.
С помощью протоколов обмена маршрутной информацией маршрутизаторы составляют карту межсетевых связей той или иной степени подробности и принимают решение о том, какому следующему маршрутизатору нужно передать пакет для образования рационального пути.
На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов - Address Resolution Protocol, ARP. Иногда их относят не к сетевому уровню, а к канальному, хотя тонкости классификации не изменяют их сути.
Задачей протокола транспортного уровня UDP (User Datagram Protocol) является передача данных между прикладными процессами без гарантий доставки, поэтому его пакеты могут быть потеряны, продублированы или прийти не в том порядке, в котором они были отправлены.
Зарезервированные и доступные порты UDP
В то время, как задачей сетевого уровня является передача данных между произвольными узлами сети, задача транспортного уровня заключается в передаче данных между любыми прикладными процессами, выполняющимися на любых узлах сети. Действительно, после того, как пакет средствами протокола IP доставлен в компьютер-получатель, данные необходимо направить конкретному процессу-получателю. Каждый компьютер может выполнять несколько процессов, более того, прикладной процесс тоже может иметь несколько точек входа, выступающих в качестве адреса назначения для пакетов данных.
Пакеты, поступающие на транспортный уровень, организуются операционной системой в виде множества очередей к точкам входа различных прикладных процессов. В терминологии TCP/IP такие системные очереди называются портами. Таким образом, адресом назначения, который используется на транспортном уровне, является идентификатор (номер) порта прикладного сервиса. Номер порта, задаваемый транспортным уровнем, в совокупности с номером сети и номером компьютера, задаваемыми сетевым уровнем, однозначно определяют прикладной процесс в сети.
Локальное присвоение номера порта заключается в том, что разработчик некоторого приложения просто связывает с ним любой доступный, произвольно выбранный числовой идентификатор, обращая внимание на то, чтобы он не входил в число зарезервированных номеров портов. В дальнейшем все удаленные запросы к данному приложению от других приложений должны адресоваться с указанием назначенного ему номера порта.
Мультиплексирование и демультиплексирование прикладных протоколов с помощью протокола UDP
Протокол UDP ведет для каждого порта две очереди: очередь пакетов, поступающих в данный порт из сети, и очередь пакетов, отправляемых данным портом в сеть.
Процедура обслуживания протоколом UDP запросов, поступающих от нескольких различных прикладных сервисов, называется мультиплексированием.
Распределение протоколом UDP поступающих от сетевого уровня пакетов между набором высокоуровневых сервисов, идентифицированных номерами портов, называется демультиплексированием.
Хотя к услугам протокола UDP может обратиться любое приложение, многие из них предпочитают иметь дело с другим, более сложным протоколом транспортного уровня TCP. Дело в том, что протокол UDP выступает простым посредником между сетевым уровнем и прикладными сервисами, и, в отличие от TCP, не берет на себя никаких функций по обеспечению надежности передачи. UDP является дейтаграммным протоколом, то есть он не устанавливает логического соединения, не нумерует и не упорядочивает пакеты данных.
С другой стороны, функциональная простота протокола UDP обуславливает простоту его алгоритма, компактность и высокое быстродействие. Поэтому те приложения, в которых реализован собственный, достаточно надежный, механизм обмена сообщениями, основанный на установлении соединения, предпочитают для непосредственной передачи данных по сети использовать менее надежные, но более быстрые средства транспортировки, в качестве которых по отношению к протоколу TCP и выступает протокол UDP. Протокол UDP может быть использован и в том случае, когда хорошее качество каналов связи обеспечивает достаточный уровень надежности и без применения дополнительных приемов типа установления логического соединения и квитирования передаваемых пакетов.
Формат сообщений UDP
Единица данных протокола UDP называется UDP-пакетом или пользовательской дейтаграммой (user datagram). UDP-пакет состоит из заголовка и поля данных, в котором размещается пакет прикладного уровня. Заголовок имеет простой формат и состоит из четырех двухбайтовых полей:
* UDP source port - номер порта процесса-отправителя,
* UDP destination port - номер порта процесса-получателя,
* UDP message length - длина UDP-пакета в байтах,
* UDP checksum - контрольная сумма UDP-пакета
Не все поля UDP-пакета обязательно должны быть заполнены. Если посылаемая дейтаграмма не предполагает ответа, то на месте адреса отправителя могут помещаться нули. Можно отказаться и от подсчета контрольной суммы, однако следует учесть, что протокол IP подсчитывает контрольную сумму только для заголовка IP-пакета, игнорируя поле данных.
Так уж сложилось у веб-мастеров, что на их сайты заходят как пользователи, так и спамерские роботы. Если первые заходят на сайт для поиска нужной информации, то вторым непременно подавай адреса e-mail'ов. Так называемые флудеры, которым попросту от нечего делать или от небольшого интеллекта так и хочется завалить ваши новости, статьи бестолковой лексикой. Ну а форум сообщениями, явно не относящимися к тематике рассматриваемой темы. Это неизбежно, как и то что за ночью приходит день и наоборот. Но с этим нужно бороться - иначе ваши порядочные пользователи вовсе потеряют интерес к вашему сайту - можете не сомневаться.
Самым простой метод противодействия данным явлениям - это банить таких посетителей по ip. Проще говоря, закрывать им доступ на ваш сайт. Данный метод пусть и не идеальная защита, но порядка 90% защиту он вам обеспечит. а это уже лучше, чем ничего.
Далее рассмотрим, как данная техника защиты работает на практике и как ее можно реализовать на php.
За дело
Для начала нам нужно получить список ip-адресов, которым будет закрыт доступ на наш сайт. Еще потребуется использовать массивы и циклы - вот где нам и пригодится php.
Дальше - больше :)
Для получения ip-адреса посетителя можно использовать суперглобальную переменную $_SERVER['REMOTE_ADDR'].
На php это реализуется следующим образом:
.
.
А теперь разберемся с остальными переменными нашего мини-скрипта. Создаем массив ($ban), куда помещаем все забаненые ip:
.
.
Как видите, ip нужно помещать в одинарные кавычки и отделять их друг от друга запятой (все просто и ясно - за что я и люблю php)
В следующая переменная ($count) будет занесено количество этих самых ip:
.
.
Для чего это все нужно - читайте дальше.
Что мы имеем:
1) IP адрес определенного посетителя - переменная $ip;
2) массив запрещенных IP-адресов - $ban;
3) число элементов этого массива - $count.
Все элементарно просто - берем и сверяем адрес $ip со списком запрещенных - а так как у нас их может быть несколько, то для этого понадобится обход всего массива забаненых адресов.
Эту работу за нас легко проделает цикл for:
.
.
.
Вот и получается, что если проверяемый адрес совпадет с одним из наших "нехороших", то мы и дадим знать его обладателю - I'm sorry, you've been banned. 68.225.34.86.
А вот и весь скрипт целиком - это для тех, кому лень его собирать по частям из статьи:
На полноту изложения темы я не претендую, это ведь статья, а не справочное пособие, но для начинающих будет вводной информацией в эту технику.
Собственно, о самом термине:
Автоматическое перенаправление пользователя со страницы, на которую он попал на другую страницу или сайт. Технически реализовать редирект можно целым рядом способов.
Данным механизмом следует пользоваться только в исключительных случаях, по той причине, что поисковые системы считают, что редирект может быть использован недобросовестными раскрутчиками, привлекающими таким способом аудиторию на собственый сайт со страниц специально созданных для поисковых машин на страницы действительно содержащие полезный контент, что выглядит как обман поисковиков.
Перед началом повествования сделаю небольшие замечания:
* Вам не обязательно быть PHP-программистом, чтобы разобраться в технике редиректа;
* Подразумевается, что сервер (будь-то локальный - localhost, или же ваш хостинг в интернете) поддерживает выполнение PHP-скриптов.
А вообще, если что будет непонятно, то милости прошу на php.net :)
Суть технологии или техники редиректа - это автоматическое перенаправление кого-то куда-то :) А куда именно - вы сами задаете в скрипте, таким образом, при выполнении скрипта он вас автоматически перенаправит на определенный web-адрес.
Получается, что переход идет не по прямой ссылке с сайта вида <a href="http://www.google.com">google.com</a>, а через скрипт.
1. Открываем любой html-редактор (хотя подойдет и блокнот) и набираем/вставляем в него следующий код:
2. Далее сохраняем наш файл с вышеприведенным кодом, например code.php и загружаем его на веб-сервер. К примеру, если вы загрузили code.php в корневую папку сайта codeguru.com.ua, то вызвать скрипт можно по URL http://www.coders-library.ru/code.php. После исполнения скрипта на сервере вы будете автоматически перенаправлены (средиректены :)) на полезный сайт для программистов realcoding.net - что и было указано в нашем скрипте.
Еще можно просто на сайте в теле страницы (внутри тегов <body>...</body>) поставить ссылку вида:
.
.
Вот такая нехитрая техника редиректа (redirect).
Я представляю на Ваш суд утилиту быстрого поиска по базе данных. Данная технология производит поиск по полям, преобразуя их значения в строки (все значения преобразуются в верхний регистр, включая действительные числа).
Данное решение может быть не самым быстрым, однако на поверку оно оказывается быстрее остальных, обнаруженных мною в Интернете (может вам повезет больше). Более того, представьте, что действительное значение какого-либо поля равно 4.509375354, а значение поиска равно 7, в этом случае утилита засчитает "попадание". Утилита удобна также тем, что она за один проход производит поиск более, чем в одном поле.
Это удобно, если у Вас имеются, к примеру, два поля с адресами. Это моя первая "серьезная" разработка, так как первое, с чем я столкнулся, изучая Delphi, стала необходимость включения процедуры поиска в любое приложение, работающее с базой данных. А так как поиск - вещь тоже сугубо специфическая, как и любое приложение, то мне пришлось побороть свой страх перед "крутым программированием" и попробовать написать свой поисковый механизм, удовлетворивший меня (и, надеюсь, других) своей скоростью и возможностью "мульти"-поиска по нескольким полям.
Я надеюсь, что он поможет тем программистам, кто часто сталкивается с подобными задачами. Технология довольно легка для понимания, но если у Вас возникли какие-либо вопросы, пошлите мне письмо электронной почтой, я буду рад Вам помочь. Посмотрев код, можно легко узнать поддерживаемые типы полей (добавить новые не составит проблем).