Добро пожаловать,
|
|
|
|
|
|
Поиск
|
Итак, вы создали список ключевых слов, которые будете использовать для поисковиков. Теперь пришло время узнать, как правильно разместить эти слова для того, чтобы получить максимальную оценку от поисковой системы. Эта статья посвящена всем вебмастерам, которые занимаются не только созданием сайтов, но и их продвижением в сети интернет.
Создайте "входные страницы" (дорвеи) для вашего сайта, используя всевозможные комбинации ключевых слов на странице. В идеале, необходимо создать каждую отдельную страницу для конкретного ключевого слова и для конкретной поисковой машины, так как каждая поисковая система использует свой алгоритм оценки релевантности. Сразу должен сказать, что дорвеи - это хорошая идея, но на практике их разработка может занять массу времени. С тех пор, как поисковые системы стали регулярно менять алгоритмы оценки страниц, вебмастерам приходится постоянно работать над созданием новых дорвеев, обеспечивающих высокий рейтинг в поисковой системе. Более того, если вы работаете над большим количеством ключевых слов, вам придется создавать сотни дорвеев! И вскоре, вы столкнетесь с тем, что их создание будет отнимать больше времени, чем обычная работа над сайтом.
Метод, который я хочу предложить работает. Изначально, не беспокойтесь о разных алгоритмах в поисковых системах. Создайте разные дорвеи, пропишите их в поисковые системы, и отслеживайте траффик. Регулярно создавайте дорвеи и проверяйте статистику посещений, до тех пор, пока не определите рейтинг ваших страниц в поисковиках (почти все поисковые системы дают эту возможность). Когда вы определили нахождение страниц в рейтинге, создайте новый дорвей - в котором неоднократно повторяется конкретное ключевое слово в смеси с другими ключевыми словами. Зарегистрируйте этот дорвей в поисковиках и следите за его рейтингом. Как только вы определили поисковики, которые низко оценивают этот дорвей, создайте новые дорвеи для конкретной поисковой системы, основываясь на рейтинге предыдущих дорвеев. Продолжайте оптимизировать его до тех пор, пока не достигните должного результата.
Пойдем дальше. Я надеюсь, вы вкурсе, что такое meta tags, tittle tags, meta-description tags, meta-keywordstags, the heading tags, и alt tags. Если вы не знаете, что это такое, бросайте читать эту статью и отправляйтесь в магазин за руководством по созданию HTML-страниц.
Предположим, у вас сайт туристической фирмы и вам необходимо использовать ключевые слова "Путешествие в Австралию". Приступим к созданию нашего дорвея.
Самый важный тэг в создании дорвея. Всегда вписывайте основное ключевое слово вначало, повторяя его в середине и в конце тэгов .Но НИКОГДА не вписывайте ключевое слово (или два ключевых слова) два раза подряд - поисковые системы воспримут это как спам. Также, содержимое тэгов является заголовком в результатах поиска поисковой системы, т.е.вы должны создать абсолютно читаемый заголовок. Вот пример: "Путешествие в Австралию - открой для себя как можно совершить путешествие в Австралию всего за ***$". Здесь мы создали заголовок, в котором ключевые слова используются в начале и повторяются в середине. Также, чередуйте заглавные и прописные буквы в слове "путешествие". Создайте подобные дорвеи, используя варианты: "путешествие в австралию", "Путешествие в Австралию", "путешествие в Австралию" и т.п.
Содержимое страницы. ALT-тэг Переходим к содержимому страницы. Начните свою страницу с изображения рисунка, имеющего прямое отношение к теме вашего сайта. Поместите его вверху страницы. В ALT тэге рисунка впишите "Путешествие в Австралию". Можете дополнить тэг другими словами, но начните обязательно с основных. Теперь создайте заголовок. Используйте размер H1 для заголовка. Снова, впишите основные ключевые слова в заголовок. Также как и в ALT-тэг, вы можете добавить другие слова, но после основных. Переходим к тексту страницы. От текста, расположенного в начале страницы зависит практически все. Содержанием текста вы должны направить посетителя к вашей основной странице сайта. Вставьте ссылку на основную страницу сайта на видном месте, чтобы посетитель мог не напрягаясь уйти по ней. Не вставляйте лишних ссылок и лишних баннеров - не давайте посетителю уйти.
Придерживайтесь следующих правил:
1) Первое, что необходимо помнить: некоторые поисковые системы не читают Meta-тэги, и используют первые слова на странице в качестве ключевых. Поэтому первые строки должны быть качественно составлены и удобочитаемы для посетителя.
2) Составьте предложения так, чтобы в них обязательно присутствовали ключевые слова - по одному разу в предложении. При этом ваши предложения должны иметь грамматический смысл, а не представлять из себя набор фраз. Посетитель должен получить приятное впечатление при чтении текста.
3) Не делайте ваши параграфы слишком длинными. Каждый должен быть от силы из 3-4 предложений. Посетители веб-страниц просто не будут читать большие громоздкие тексты.
4) Попытайтесь сделать так, чтобы текстовые ссылки включали в себя ключевые слова. Зачастую поисковики высоко ранжируют такие страницы.
5) Если это возможно, делайте ссылки на страницы которые имеют ключевое слово в имени файла. Поисковые системы учитывают это.
6) Нет конкретного ограничения на количество слов в странице - но постарайтесь создать ваш дорвей с 500-600 словами.
Созданную страницу назовите ключевыми словами, разделенными дефисом:travel-to-australia.html Это даст вам высокую оценку поисковиками (например Nothern Light), которые обращают внимание на присутствие ключевого слова в URL.
Теперь вам нужно правильно прописать дорвеи в поисковых системах. Многие вебмастера, загрузив дорвеи на сервер начинают регистрировать их один за другим в поисковых системах. Это распространенная ошибка. Поисковые системы низко оценивают страницу, с которой есть несколько ссылок, но нет ссылок на нее, а бывает так, что такие страницы оцениваются как дорвеи и тогда поисковая машина заносит URL в черный список - блэклист.
Что вам еще нужно сделать, так это сделать ссылку на дорвей с вашей основной страницы, но сделать это так, чтобы ссылка существовала только для поисковой машины - но не для посетителя. Однако не делайте текстовые ссылки под цвет фона - 99% поисковиков занесут вас в блэклист за такие проделки. Вот здесь я вам открою свой маленький секрет Создайте небольшую картинку под цвет вашего фона. Назовите рисунок именем дорвея - travel-to-australia.gif Вставьте рисунок в конец основной страницы и сделайте с него ссылку на дорвей. В ALT-тэг рисунка также вставьте ключевые слова . Не забудьте установить border=0 для рисунка.
Создайте подобные дорвеи для других ключевых слов, скопируйте тот же рисунок на основной странице еще раз, изменив его имя, ALT-тэг и ссылку. Повторяйте этот процесс для каждого ключевого слова или фразы. Таким образом, когда будет создано достаточное количество дорвеев, вы можете прописать вашу основную страницу сайта в поисковые системы. Не прописывайте все страницы сайта - пропишите только основную страницу. Несмотря на то, что на обнаружение всех страниц сайта уйдет больше времени, я настоятельно рекомендую поступить именно так: спайдер, пройдясь по ссылкам и обнаружив тем самым дорвеи и не узнав их, придаст более высокое ранжирование им!
|
|
|
Этот документ дает основную информацию о том как создавать VLANы наКаталистах, которые работают на программном обеспечении CatOS.Нижеслежующая информация применима для Catalyst 4000/4500, 5000/5500 и6000/6500 работающих в режиме Hybrid.
VLAN - это механизм создания логических броадкастовых доменов, которые могут распространяться через один или множество свичей независимо от физического местоположения (географии). Эта функция полезна для уменьшения размера броадкастовых доменов или позволяет логически сгурппировать пользователей без необходимости физического размещения последних на том же самом свитче.
Для того, чтобы создать VLAN, вы должны определить:
* Какой VTP режим и доменное имя будет использовать свитч
* Какие порты на свитче будут принадлежать к какому VLANу
* Нужна ли вам связь между VLANами или последние изолированы
Создание VLAN и портов
Прежде чем вы создадите VLAN свитч должен находиться в VTP режиме "сервер" или VTP режиме "прозрачный". Если свитч это VTP-сервер, вы должны опреелить VTP доменное имя, прежде чем вы сможете добавлять ВЛАНы. Вы должны определить доменное имя независимо от того используете ли бы VTP для распространения ВЛАНов другим свитчам в сети или нет.
1. Устанавливаем VTP домен
VTP - конфигурация по умолчнию на свитче:
CatosSwitch> (enable) show vtp domain
Domain Name Domain Index VTP Version Local Mode Password
- -
1 2 server -
CatosSwitch> (enable)set vtp domain cisco mode server
VTP domain cisco modified
2. Проверяем установленную конфигурацию
CatosSwitch> (enable)show vtp domain
Domain Name Domain Index VTP Version Local Mode Password
- -
cisco 1 2 server -
3. После установки домена, создаем VLANы на свитче
По умолчанию, все порты принадлежат одному единственному ВЛАНу. Этот VLAN называется default и имеет номер 1. Вы не можете переименоватьили удалить VLAN 1. Команда show vlan покажет все сконфигурированные VLANы в административном домене.
CatosSwitch> (enable)show vlan
VLAN Name Status IfIndex Mod/Ports, Vlans
- -
1 default active 5 1/1-2
3/1-48
4/1-16
CatosSwitch> (enable)set vlan 2 name cisco_vlan_2
Vlan 2 configuration successful
CatosSwitch> (enable)show vlan
VLAN Name Status IfIndex Mod/Ports, Vlans
- -
1 default active 5 1/1-2
3/1-48
4/1-16
2 cisco_vlan_2 active 75
Теперь добавляем в созданный VLAN порты с помошью команды set vlan vlan_number mod/ports
CatosSwitch> (enable)set vlan 2 3/1-12
VLAN 2 modified.
VLAN 1 modified.
VLAN Mod/Ports
-
2 3/1-12
15/1
Вы можете также сразу создать VLAN и добавить туда порты за одну команду. Например, созадим третий VLAN и назначим порты с 3/13 до 3/15 в этот VLAN
CatosSwitch> (enable)set vlan 3 3/13-15
Vlan 3 configuration successful
VLAN 3 modified.
VLAN 1 modified.
VLAN Mod/Ports
-
3 3/13-15
15/1
Проверяем созданную конфигурацию
CatosSwitch> (enable)show vlan
VLAN Name Status IfIndex Mod/Ports, Vlans
- -
1 default active 5 1/1-2
3/16-48
4/1-16
2 cisco_vlan_2 active 75 3/1-12
3 VLAN0003 active 76 3/13-15
Удаление портов из VLAN
Для удаления порта из VLAN выполните команду set vlan vlan_number mod/ports и поместите порт в другой VLAN. Такое перемещение в конечном счете назначит порт в другой VLAN, т.к. все порты изначально принадлежат VLAN 1.
Для того, чтобы удалить VLAN выполните команду clear vlan. В этом случае порты отключаются, поскольку они остаются чатью этого VLAN, а такого VLAN больше не существует. Свитч выведет предупреждение и даст вам возможность отменить последнюю команду.
CatosSwitch> (enable)clear vlan 3
This command will deactivate all ports on vlan 3
in the entire management domain.
Do you want to continue(y/n) [n]? y
Vlan 3 deleted
CatosSwitch> (enable)show vlan
VLAN Name Status IfIndex Mod/Ports, Vlans
- -
1 default active 5 1/1-2
3/16-48
4/1-16
2 cisco_vlan_2 active 75 3/1-12
Порты 3/13-3/15 не отображаются в выводе команды show vlan, поскольку удаленеие VLAN 3 деактивировало эти порты. Порты останутся в таком состоянии до тех пор пока вы их не добавите обратно в другой VLAN.
|
|
|
Дата: 24.01.2025
Модуль:
Категория: Хостинг
В мире информационных технологий такое понятие, как доступность сайта - это одна из самых важных составляющих. В Сети уже есть достаточное количество сервисов, с помощью которых можно проследить “доступность” (uptime - время работы). В данной статье рассмотрим три таких сервиса, один из которых работает на русском языке.
Бинoкль (http://www.binokl.info/) - изначально сервис разработан для хостинг-компаний, веб-мастеров и интернет-провайдеров. В зависимости от выбранного тарифного пакета проверка доступности (uptime'а) вашего сервера происходит через 15, 20 или 30 минут.
Если вам лень каждый раз заходить в раздел статистики и смотреть показатели работы хостинга, то можно настроить автоматическое уведомление на e-mail, когда ваш сервер будет недоступен. Предусмотрена и отправка отчетов за определенны интервал времени - раз в неделю, месяц.
Есть возможность установить у себя на сайте графическую кнопку, которая будет информировать о том, что ваш сайт находится под наблюдением сервиса "Бинокль". Единственный недостаток такой кнопки - это ее информативность лишь в популяризации сервиса, потому как числовых данных она не выдает.
mon.itor.us (http://mon.itor.us/) - uptime сервис от американской компании. Очень информативен и предлагает возможность контроля множества параметров. Информация может выводиться в виде графика, таблицы или диаграммы - это кому как удобнее и понятнее воспринимать. Также можно организовать получение уведомлений через e-mail. Среди недостатков - это удаленность сервера от просторов рунета, что, естественно, замедляет проверку хостинга на доступность.
Montastic (http://montastic.com/) - простой (можно сказать, что даже очень простой), но, тем не менее, удобный сервис для определения uptima'а. Здесь статистика отсутствует как таковая, и вообще есть только два состояния - работает и не работает. Но изюминка в способах того, как вы узнаете статус сайта - это и рассылка по электронной почте, подписка на RSS и даже Yahoo Widget.
Интерфейс, как и функциональность весьма прост, просто вводите адрес сайта, e-mail и все! В принципе если вы не заморачиваетесь подсчетом денег, которые вы потеряли пока ваш сайт не работает или у вас нет желания высылать подробные жалобные письма в адрес своего хостера, то этот сервис то, что вам надо.
Сделаем выводы:
mon.itor.us - следует использовать только в том случае, если ваш сайт (а желательно и вы тоже) живет близко к этому сервису, то он просто идеально подходит для вас, только следите чтобы ваш сайт работал всегда.
Montastic - этот сервис для тех, кому нужен ответ - работает/не работает сайт
Бинoкль - подробный, надежный и главное что на русском языке.
|
|
|
Дата: 24.01.2025
Модуль:
Категория: Хостинг
К примеру, решили обратиться хостинг-компанию для размещения собственного веб-сайта. У вас уже есть зарегистрированное доменное имя или вы его вскоре планируете зарегистрировать. Ведь какой толк от хостинга без домена? Но выбор хостинга и конкретного тарифного плана не такая простая штука, как кажется на первый взгляд.
Очень важно прочитать отзывы о нескольких хостерах на форумах, проверить аптайм их серверов и внимательно ознакомиться с техническими возможностями хостинга.
1. Техподдержка
В наше время существует очень много хостинг-провайдеров, список которых можно найти в любом поисковике. Остановимся на вопросе о быстроте работы службы техподдержки. Некоторые из них отвечают своим клиентам быстро, а ответа от некоторых приходится ждать часами, а то и днями.
Нередки случаи, когда после 6 вечера и до самого утра вообще никого нет, не говоря уже о праздничных днях. Но ведь оборудование и программное обеспечение вещь ненадежная – возьмет и сгорит блок питания, отпадет проводок или повиснет база данных – “ну у вас и запросы, сказала база данных и повисла”.
От таких хостеров нужно бежать поскорее и подальше, даже не ведитесь на то, что у них цены ниже, зато проблем будет больше. Вообще есть универсальное правило – если вам не ответят в течение часа, это говорит о некачественной работе службы техподдержки.
2. Оборудование, программное обеспечение, скорость каналов, бэкапы
Сервера составляют основу инфраструктуры любого хостинг-провайдера. Ясное дело, что они имеют свои характеристики, такие как тип и производительность процессора, объем оперативной памяти, размер жесткого диска, версии программного обеспечения (операционная система – Linux, FreeBSD, сервер баз данных - MySQL, сам сервер - apache).
Немаловажно, чтобы раз в сутки производился бэкап всего вашего сайта (с БД), был резервный канал данных и подвода электричества.
3. Финансовое положение и доходность хостера
Очень важно знать хотя бы приблизительно, в каком финансовом положении находится ваш хостинг-провайдер. Естественно, о убытках или прибыльности компании вам никто просто так не скажет. Но есть моменты, которые говорят сами за себя.
К примеру, посмотрите характеристики серверного оборудования и ширину каналов у ведущих и авторитетных хостеров. Потом сравните ее с вашим предполагаемым будущим хостером. Если технические характеристики процессоров, типа и емкости оперативной памяти значительно устарели, то видимо не все у них гладко с деньгами или же они попросту экономят на своих клиентах. Тоже самое можно сказать о ширине канала и наличии собственного дата-центра.
К примеру, на одном сервере хостятся 50 сайтов (виртуальный хостинг), всем хватает ресурсов процессора и оперативной памяти, БД не виснет от большого количества запросов в единицу времени. Но если еще добавить на этот сайт 10-20 сайтов и не увеличить производительность оборудования, то проблемы с работоспособностью будут у всех сайтов.
4. Виды услуг, предоставляемых хостингом
Что именно поставщик услуг хостинга собирается вам предложить? В зависимости от ваших требований, он должен быть в состоянии предоставить все, что вам необходимо для работы вашего сайта.
Ведь если вы собираетесь делать лишь домашнюю страничку или сайт-визитку на 10 страниц без использования скриптов, то вам совсем необязательно брать 1 гигабайт дискового пространства, 10 баз данных, и десятки гигабайт трафика.
Другое дело, когда вы собираетесь делать сайт с использованием технологий PHP, asp.net и Java вплоть до скриптов, форумов, покупательских тележек, plesk, CMS и систем электронной коммерции.
Важно, чтобы все необходимые вам технологии поддерживались хостингом в полной мере. Если вы планируете сделать по-настоящему интерактивным по своему содержанию сайт, в том числе в форме видео, потокового медиа, блогов, чатов и многое другое, Вы должны убедиться, что ваш поставщик услуг может предоставить вам все это.
5. Какие гарантии дает ваш провайдер в плане надежности и гарантию по времени доступности сервера (аптайм)?
Поинтересуйтесь у провайдера, какой у них аптайм сервером. Желательно, чтобы была не просто указана цифра на сайте, а был линк на независимый сервис мониторинга аптайма серверов.
Приемлемой величиной аптайма является от 99% до 99,9%. Если эта величина хотя бы за один отчетный период (день, неделю, месяц) ниже, лучше поискать другого хостера.
|
|
|
Дата: 24.01.2025
Модуль:
Категория: Хостинг
Услуги по предоставлению хостинга бывают следующих видов:
Бесплатный хостинг (Free web hosting service)
Полностью бесплатен для пользователя. Как правило, дается доменное в поддомене хостера, на хостинге часто висит баннерная реклама, которая мешает дизайну, список поддерживаемых технологий ограничен, часто нет поддержки скриптовых языков (php, asp.net и java). Подобный хостинг на большее, чем под домашняя страничка, не подходит.
Виртуальный хостинг (Shared web hosting service)
Ваш веб-сайт находится на том же сервере, как и многие другие сайты, в диапазоне от нескольких до сотен или тысяч. Как правило, все домены могут разделить общий пул серверных ресурсов, таких как память и процессор. Управление работой всех сайтов идет через виртуальные хосты средствами веб-сервера apache.
Реселлеры хостинга (Reseller web hosting)
Когда провайдер хостинга позволяет клиентам стать самостоятельными провайдерами хостинга. Дилеры могут самостоятельно настраивать свой сервер, создавать отдельные домены. Реселлеры затем перепродают свой хостинг по более высокой цене своим клиентам, зарабатывая на разнице. Дилеры могут сильно отличаться по размерам: они могут иметь свои собственные сервера или же арендовать их у хостера.
Виртуальный выделенный сервер (Virtual Dedicated Server)
Аренда части сервера. Отличается от виртуального тем, что каждый пользователь считает, что у него как бы свой собственной выделенный сервер, но он фактически лишь делит его с другими пользователями. Как правило, пользователи имеют доступ к настройкам конфигурации той части сервера, которая ими арендована, также регулировать размеры трафика, количество баз данных, электронных почтовых ящиков и ftp-аккаунтов.
Выделенный сервер (Dedicated hosting service)
Пользователь получает в аренду или ставит свой сервер на площадке хостера. Предоставляется полный контроль над сервером (корневой доступ для Linux / администратора для Windows). Выделенный хостинг делится на самообслуживание клиентов или на обслуживании администраторов хостера (за дополнительную плату). Если пользователь имеет полный административный доступ, то это означает, что он несет ответственность за обеспечение безопасности и поддержание своего сервера.
Управляемые службы хостинга (Managed hosting service)
Пользователь получает свой собственный Web сервер, но не имеет полного контроля над ним (корневой доступ Linux / администратора для Windows). Однако он может управлять своими данными через FTP или другие средства удаленного управления. Пользователям запрещается полный контроль по той причине, что провайдер должен гарантировать качество обслуживания, не позволяя пользователю изменять конфигурацию сервера или создавать потенциально опасных проблем конфигурации. Пользователь, как правило, не владеет сервером, а лишь арендует его.
Колокейшен (Collocation web hosting service)
Предоставляются услуги, аналогичные выделенному серверу, но пользователь владеет размещенным сервером. Хостинговая компания обеспечивает физическое пространство и обеспечивает работоспособность сервера (питание, охрану, защиту от перегрева, пыли и влаги).
Это самый мощный и дорогостоящий вид услуг веб-хостинга. В большинстве случаев колокейшен провайдер почти не оказывает поддержки непосредственно для своих клиентов, а предоставляет только электричество, доступ в Интернет и стойку для сервера.
В большинстве случаев для колокейшена, клиент имеет собственного системного администратора, который может в любое время посещать дата-центр хостера для настройки и конфигурирования сервера (программное обеспечение, замена оборудования сервера).
|
|
|
Дата: 24.01.2025
Модуль:
Категория: Хостинг
Ресселинг веб-хостинга является разновидностью веб-хостинга, в котором владелец счета имеет право и возможность использовать полный объем жесткого диска и пропускной способности выделенных ему каналов, чтобы организовать веб-сайты от имени третьих сторон.
Обычно веб-хостинг получает реселлер как разработчик, системный интегратор или студия веб-дизайна. Они берут хостинг как бы оптом и им он обходится дешевле, а уже своим клиентам они продают его дороже или по себестоимости, если речь идет о клиентах студии веб-дизайна.
Помимо этого реселлерами хостинга становятся предприниматели, которые хотят создать новую компанию. Вообще большинство хостинговых компаний для реселлеров создают свой собственный план и предоставляют нужный им набор услуг.
Реселлерам также предоставляется панель управления и полный доступ к ней. С ее помощью они могут создавать свои собственные учетные записи и администрировать сервер.
Реселлер хостинга не требует обширных знаний технических аспектов веб-хостинга. В этом случае обычно достаточно оператора центра обработки данных, который отвечает за поддержание сетевой инфраструктуры и аппаратного обеспечения. Еще нужен системный администратор, который настроит программное обеспечение и будет следить за работоспособностью сервера.
Реселлер отвечает за взаимодействие собственной клиентской базы, но любые сбои оборудования и проблемы с каналами как правило направляется провайдеру, у которого реселлер приобрел хостинг.
Через контрольную панель реселлеры могут создавать и управлять своими клиентами в соответствии с их потребностью через простой интерфейс. Они также могут использовать программное обеспечение. Тот же MordenBill является одним из популярных программ для автоматизации создания счета и расчетов с покупателями.
Вот лишь основные возможности панели управления реселлера хостинга:
* WHM/cPanel (Unix) (Вскоре должна выйти версия под ОС Windows)
* Plesk (Windows/Unix)
* DirectAdmin (Unix)
* Webmin (Unix)
* Ensim Pro (Windows/Unix)
* Helm (Windows)
* Hosting Controller (Windows)
|
|
|
Дата: 24.01.2025
Модуль:
Категория: Хостинг
Если вам необходимо найти компанию, которая предлагают хостинг, то ее можно очень просто найти в интернете через любимую вами поисковую машину. При выборе конкретной компании вам следует обратить внимание на следующие очень важные моменты:
1) Техническая поддержка должна быть круглосуточной (24/7/365), включая праздники и выходные и должна предоставляться по телефону, сервису мгновенных интернет сообщений через пейджеры (icq, qip, miranda) и электронной почте. Время ответа не должно превышать 1 часа.
2) Хорошие показатели доступности сервера в сети (uptime, аптайм). Если вы занимаетесь продажей чего-либо на вашем сайте, то во время простоя сайта у вас не будет покупателей и еще сложиться негативное мнение как о ненадежном магазине. Выбирайте uptime не менее 99%. Причем важно узнать его величину от независимых служб мониторинга и за несколько отчетных периодов. Ведь что толку, если в мае сайт имел аптайм 99,9%, а в марте и апреле - всего 80%.
3) Быстрый интернет канал, к которому подключен ваш хостер. Здесь важно выбирать географическое расположение хостера в зависимости от аудитории вашего сайта. К примеру, сайт на английском языке лучше размещать в США, поскольку основная часть англоязычной аудитории будет идти оттуда, да и пропускная способность каналов и стоимость трафика в США значительно лучше, чем, к примеру, у отечественных хостеров.
4) Если ваш сайт относится в сфере e-commerce (интернет или электронная коммерция), то необходимо позаботиться о возможности доступа по SSL для совершения безопасных транзакций. Естественно, хостинг должен поддерживать выполнение скриптов на определенном языке программирования (php, perl, cgi, asp или java).
5) Многие хорошие хостеры вернут вам деньги, если вам не понравятся их услуги. Это довольно распространенная на западе практика (называется там money-back guarantee), которая повышает доверие к компании как поставщику услуг. Это будет гарантией тому, что в случае некачественных услуг хостинга вы не останетесь без посетителей и своих денег.
6) Дисковое пространство для вашего сайта должно быть с запасом. Так, если для сайта-визитки фирмы хватит и 10 Мб диска, то для новостного сайта или крупного интернет магазина может быть мало и 1 Гб.
7) Трафик. Для большинства сайтов количество трафика столь невелико, что даже если они используют вместе не 100, а 110 Мб трафика в месяц, то это не разорит хостера. Вот для этого и предлагают тарифные планы с безлимитным трафиком. А вот если у вас посещаемый сайт с графикой, файлами, то величина трафика может измеряться десятками и сотнями гигабайт.
В таких случаях за него придется платить и лучше сразу брать хостинг с оплатой трафика, тогда вы будете приблизительно знать, во что он вам обойдется. А то перерасходуете лимит, возьмут и отключат сайт или придет счет на круглую сумму. Да, через некоторое время сайт вновь заработает, но его простой уж точно не пойдет на пользу.
8) Безопасность. Если у вас должен быть защищенный (зашифрованный) канал, то вам придется оплатить дополнительные расходы на получение сертификата сервера. Если вы собираетесь обрабатывать персональные данные или кредитной карты на вашем веб-сайте, вам потребуется наличие сертификата безопасности.
Цифровые сертификаты используется для защиты любого сообщения с клиентами, которое содержит личную информацию. Также вы должны иметь установленный цифровой сертификат на вашем веб-сервере, чтобы вы могли воспользоваться кредитной картой заказов в безопасном режиме.
9) Доступ по FTP (file transfer protocol, протокол передачи файлов). Без него сейчас не обойтись и он предоставляется всеми хостерами. Если вы планируете создать несколько FTP-аккаунтов (например, для совместной разработки сайта), то узнайте, сколько их входит в ваш тарифный план.
10) Программное обеспечение. Узнайте, какое программное обеспечение или встроенные скрипты предлагает ваш хостер. Не все хостинговые компании предлагаем одинаковый набор программного обеспечения. У некоторых есть несколько бесплатных инструментов, которые помогут вам работать с сайтом легко и эффективно.
Есть множество скриптов, которые помогут вам организовать поиск на сайте, завести и управлять электронной почтой, создать форум, доску объявлений или чат, сделать резервное копирование и восстановление всего сайта или только одной базы данных.
Вообще поиску компании для веб-хостинга следует уделить достаточно времени. Помните, что вы значительная часть успеха вашего веб-сайта будет связана с этой компанией. А одним из главных расходов, которые вам нужно будет оплачивать при серьезных проектах, будет оплата услуг хостинга. Поэтому лучше сразу выбирать компанию с надежной репутацией.
|
|
|
Дата: 24.01.2025
Модуль:
Категория: Хостинг
Одной из самых серьезных проблем для многих компаний, которые планируют занимаются коммерческой деятельностью в Интернете это выбор веб-хостинга и предоставления услуг веб-хостинга. Если попытаться найти оптимальное решение, какой хостинг является самым экономичным и надежным, то это может быть сложной задачей.
Большой проблемой для многих клиентов, которые выбирают хостинг является то, чтобы список возможных проблем с хостингом свести к минимуму. Это особенно важно для тех компаний, основа бизнеса которых лежит в интернет-коммерции и они общаются с клиентами посредством интернет-технологий. Спам электронной почты является одной из крупнейших проблем, когда речь идет об электронной почте.
Глядя на услуги веб-хостинга следует искать компании, которые предоставляют вам самые лучше способы защиту от спама. Следует искать разумную плату и убедится в том, что хостинг обладает всеми характеристиками, которые вас интересуют. Есть разных тарифных планов и возможностей.
Каждый имеет свой набор функций и различные варианты, типы функций, которые могут быть нацелены на разные по уровню квалификации и размеры вашего бизнеса. FTP доступ будет хорошей особенностью и позволит загружать файлы на ваш сайт. Еще требуется поддержка протоколов POP3 и SMTP, хорошая пропускная способность и достаточно свободного пространства для функционирования вашего сайта.
Другая хорошая идея - пообщаться с компаниями, которые уже используют веб-хостинг и услуги вашего выбранного хостера. Вы можете сделать это, связавшись с компаниями веб-хостинга и задать вопросы по поводу вопросов или проблем. Обратите внимание и на то, сколько времени уделяется на ответ службы поддержки клиентов.
Кроме того, было бы неплохо убедиться, что вы внимательно прочли условия предоставления услуг хостинга. Поиск хостинга, который сможет предоставить вам все необходимые инструменты для работы сайта и за приемлемую для вас цену является сложной задачей.
Так что не пожалейте потратить немного времени для поиска информации и отзывов о нескольких хостерах и проблем с хостингом у вас будет значительно меньше.
|
|
|
Дата: 24.01.2025
Модуль:
Категория: Хостинг
Бесплатный веб хостинг - это одна из самых распространенных услуг хостинга в интернете. Его предоставляют множество как крупных, так и мелких хостинговых компаний и владельцев почтовых сервисов. Это делается скорее не ради альтруизма, а для популяризации самого хостинга или сайта, который предоставляет этот хостинг.
Бесплатный хостинг услуг, как правило, финансируются за счет размещение рекламы на веб-сайтах, которые этим хостингом пользуются. Еще возможности бесплатного хостинга очень ограничены.
Если вы получаете бесплатный хостинга, то вам придется наблюдать рекламные объявления часто в верхней и нижней части сайта. Но даже и на этом можно закрыть глаза, если вы используете бесплатный хостинг для тестирования свого домашнего сайта или просто хотите посмотреть, как на самом деле происходит работа с хостингом, пусть и бесплатным.
В большинстве случаев вам дают не отдельный домен, а поддомен (например, site.narod.ru).
Теперь о некоторых недостатках бесплатного хостинга
Во-первых, многие сервисы бесплатного хостинга не поддерживают работу с базами данных, а если такая возможность и есть, то она слишком ограничена - мало места под базу данных и т.п.
Многие из служб бесплатного веб-хостинга сайтов не поддерживают скриптовые языки программирования (php, asp, perl или java). Также часто не предоставляется доступ по FTP, возможность заводить несколько ящиков и управлять лог-файлами доступа и статистики сайта.
В целом, бесплатный хостинг предназначен только для начинающих пользователей интернета, которым пока не нужно много места и они не используют скрипты. Да и гарантии, что ваш сайт не удалят в любое время, вам никто не дает.
|
|
|
Технология стека TCP/IP сложилась в основном в конце 1970-х годов и с тех пор основные принципы работы базовых протоколов, таких как IP, TCP, UDP и ICMP, практически не изменились. Однако, сам компьютерный мир за эти годы значительно изменился, поэтому долго назревавшие усовершенствования в технологии стека TCP/IP сейчас стали необходимостью.
Основными обстоятельствами, из-за которых требуется модификация базовых протоколов стека TCP/IP, являются следующие.
* Повышение производительности компьютеров и коммуникационного оборудования. За время существования стека производительность компьютеров возросла на два порядка, объемы оперативной памяти выросли более чем в 30 раз, пропускная способность магистрали Internet в Соединенных Штатах выросла в 800 раз.
* Появление новых приложений. Коммерческий бум вокруг Internet и использование ее технологий при создании intranet привели к появлению в сетях TCP/IP, ранее использовавшихся в основном в научных целях, большого количества приложений нового типа, работающих с мультимедийной информацией. Эти приложения чувствительны к задержкам передачи пакетов, так как такие задержки приводят к искажению передаваемых в реальном времени речевых сообщений и видеоизображений. Особенностью мультимедийных приложений является также передача очень больших объемов информации. Некоторые технологии вычислительных сетей, например, frame relay и ATM, уже имеют в своем арсенале механизмы для резервирования полосы пропускания для определенных приложений. Однако эти технологии еще не скоро вытеснят традиционные технологии локальных сетей, не поддерживающие мультимедийные приложения (например, Ethernet). Следовательно, необходимо компенсировать такой недостаток средствами сетевого уровня, то есть средствами протокола IP.
* Бурное расширение сети Internet. В начале 90-х годов сеть Internet расширялась очень быстро, новый узел появлялся в ней каждые 30 секунд, но 95-й год стал переломным - перспективы коммерческого использования Internet стали отчетливыми и сделали ее развитие просто бурным. Первым следствием такого развития стало почти полное истощение адресного пространства Internet, определяемого полем адреса IP в четыре байта.
* Новые стратегии администрирования. Расширение Internet связано с его проникновением в новые страны и новые отрасли промышленности. При этом в сети появляются новые органы администрирования, которые начинают использовать новые методы администрирования. Эти методы требуют появления новых средств в базовых протоколах стека TCP/IP.
Сообщество Internet уже несколько лет работает над разработкой новой спецификации для базового протокола стека - протокола IP. Выработано уже достаточно много предложений, от простых, предусматривающих только расширения адресного пространства IP, до очень сложных, приводящих к существенному увеличению стоимости реализации IP в высокопроизводительных (и так недешевых) маршрутизаторах.
Основным предложением по модернизации протокола IP является предложение, разработанное группой IETF. Сейчас принято называть ее предложение версией 6 - IPv6, а все остальные предложения группируются под названием IP Next Generation, IPng.
В предложении IETF протокол IPv6 оставляет основные принципы IPv4 неизменными. К ним относятся дейтаграммный метод работы, фрагментация пакетов, разрешение отправителю задавать максимальное число хопов для своих пакетов. Однако, в деталях реализации протокола IPv6 имеются существенные отличия от IPv4. Эти отличия коротко можно описать следующим образом.
* Использование более длинных адресов. Новый размер адреса - наиболее заметное отличие IPv6 от IPv4. Версия 6 использует 128-битные адреса.
* Гибкий формат заголовка. Вместо заголовка с фиксированными полями фиксированного размера (за исключением поля Резерв), IPv6 использует базовый заголовок фиксированного формата плюс набор необязательных заголовков различного формата.
* Поддержка резервирования пропускной способности. В IPv6 механизм резервирования пропускной способности заменяет механизм классов сервиса версии IPv4.
* Поддержка расширяемости протокола. Это одно из наиболее значительных изменений в подходе к построению протокола - от полностью детализированного описания протокола к протоколу, который разрешает поддержку дополнительных функций.
Адресация в IPv6
Адреса назначения и источника в IPv6 имеют длину 128 бит или 16 байт. Версия 6 обобщает специальные типы адресов версии 4 в следующих типах адресов:
* Unicast - индивидуальный адрес. Определяет отдельный узел - компьютер или порт маршрутизатора. Пакет должен быть доставлен узлу по кратчайшему маршруту.
* Cluster - адрес кластера. Обозначает группу узлов, которые имеют общий адресный префикс (например, присоединенных к одной физической сети). Пакет должен быть маршрутизирован группе узлов по кратчайшему пути, а затем доставлен только одному из членов группы (например, ближайшему узлу).
* Multicast - адрес набора узлов, возможно в различных физических сетях. Копии пакета должны быть доставлены каждому узлу набора, используя аппаратные возможности групповой или широковещательной доставки, если это возможно.
Как и в версии IPv4, адреса в версии IPv6 делятся на классы, в зависимости от значения нескольких старших бит адреса.
Большая часть классов зарезервирована для будущего применения. Наиболее интересным для практического использования является класс, предназначенный для провайдеров услуг Internet, названный Provider-Assigned Unicast.
Адрес этого класса имеет следующую структуру:
010
Идентификатор провайдера
Идентификатор абонента
Идентификатор подсети
Идентификатор узла
Каждому провайдеру услуг Internet назначается уникальный идентификатор, которым помечаются все поддерживаемые им сети. Далее провайдер назначает своим абонентам уникальные идентификаторы, и использует оба идентификатора при назначении блока адресов абонента. Абонент сам назначает уникальные идентификаторы своим подсетям и узлам этих сетей.
Абонент может использовать технику подсетей, применяемую в версии IPv4, для дальнейшего деления поля идентификатора подсети на более мелкие поля.
Описанная схема приближает схему адресации IPv6 к схемам, используемым в территориальных сетях, таких как телефонные сети или сети Х.25. Иерархия адресных полей позволит магистральным маршрутизаторам работать только со старшими частями адреса, оставляя обработку менее значимых полей маршрутизаторам абонентов.
Под поле идентификатора узла требуется выделения не менее 6 байт, для того чтобы можно было использовать в IP-адресах МАС-адреса локальных сетей непосредственно.
Для обеспечения совместимости со схемой адресации версии IPv4, в версии IPv6 имеется класс адресов, имеющих 0000 0000 в старших битах адреса. Младшие 4 байта адреса этого класса должны содержать адрес IPv4. Маршрутизаторы, поддерживающие обе версии адресов, должны обеспечивать трансляцию при передаче пакета из сети, поддерживающей адресацию IPv4, в сеть, поддерживающую адресацию IPv6, и наоборот.
|
|
|
Все протоколы обмена маршрутной информацией стека TCP/IP относятся к классу адаптивных протоколов, которые в свою очередь делятся на две группы, каждая из которых связана с одним из следующих типов алгоритмов:
* дистанционно-векторный алгоритм (Distance Vector Algorithms, DVA),
* алгоритм состояния связей (Link State Algorithms, LSA).
В алгоритмах дистанционно-векторного типа каждый маршрутизатор периодически и широковещательно рассылает по сети вектор расстояний от себя до всех известных ему сетей. Под расстоянием обычно понимается число промежуточных маршрутизаторов через которые пакет должен пройти прежде, чем попадет в соответствующую сеть. Может использоваться и другая метрика, учитывающая не только число перевалочных пунктов, но и время прохождения пакетов по связи между соседними маршрутизаторами.
Получив вектор от соседнего маршрутизатора, каждый маршрутизатор добавляет к нему информацию об известных ему других сетях, о которых он узнал непосредственно (если они подключены к его портам) или из аналогичных объявлений других маршрутизаторов, а затем снова рассылает новое значение вектора по сети. В конце-концов, каждый маршрутизатор узнает информацию об имеющихся в интерсети сетях и о расстоянии до них через соседние маршрутизаторы.
Дистанционно-векторные алгоритмы хорошо работают только в небольших сетях. В больших сетях они засоряют линии связи интенсивным широковещательным трафиком, к тому же изменения конфигурации могут отрабатываться по этому алгоритму не всегда корректно, так как маршрутизаторы не имеют точного представления о топологии связей в сети, а располагают только обобщенной информацией - вектором дистанций, к тому же полученной через посредников. Работа маршрутизатора в соответствии с дистанционно-векторным протоколом напоминает работу моста, так как точной топологической картины сети такой маршрутизатор не имеет.
Наиболее распространенным протоколом, основанным на дистанционно-векторном алгоритме, является протокол RIP.
Алгоритмы состояния связей обеспечивают каждый маршрутизатор информацией, достаточной для построения точного графа связей сети. Все маршрутизаторы работают на основании одинаковых графов, что делает процесс маршрутизации более устойчивым к изменениям конфигурации. Широковещательная рассылка используется здесь только при изменениях состояния связей, что происходит в надежных сетях не так часто.
Для того, чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами со своими ближайшими соседями. Этот трафик также широковещательный, но он циркулирует только между соседями и поэтому не так засоряет сеть.
Протоколом, основанным на алгоритме состояния связей, в стеке TCP/IP является протокол OSPF.
Дистанционно-векторный протокол RIP
Протокол RIP (Routing Information Protocol) представляет собой один из старейших протоколов обмена маршрутной информацией, однако он до сих пор чрезвычайно распространен в вычислительных сетях. Помимо версии RIP для сетей TCP/IP, существует также версия RIP для сетей IPX/SPX компании Novell.
В этом протоколе все сети имеют номера (способ образования номера зависит от используемого в сети протокола сетевого уровня), а все маршрутизаторы - идентификаторы. Протокол RIP широко использует понятие "вектор расстояний". Вектор расстояний представляет собой набор пар чисел, являющихся номерами сетей и расстояниями до них в хопах.
Вектора расстояний итерационно распространяются маршрутизаторами по сети, и через несколько шагов каждый маршрутизатор имеет данные о достижимых для него сетях и о расстояниях до них. Если связь с какой-либо сетью обрывается, то маршрутизатор отмечает этот факт тем, что присваивает элементу вектора, соответствующему расстоянию до этой сети, максимально возможное значение, которое имеет специальный смысл - "связи нет". Таким значением в протоколе RIP является число 16.
При необходимости отправить пакет в сеть D маршрутизатор просматривает свою базу данных маршрутов и выбирает порт, имеющий наименьшее расстояния до сети назначения (в данном случае порт, связывающий его с маршрутизатором 3).
Для адаптации к изменению состояния связей и оборудования с каждой записью таблицы маршрутизации связан таймер. Если за время тайм-аута не придет новое сообщение, подтверждающее этот маршрут, то он удаляется из маршрутной таблицы.
При использовании протокола RIP работает эвристический алгоритм динамического программирования Беллмана-Форда, и решение, найденное с его помощью является не оптимальным, а близким к оптимальному. Преимуществом протокола RIP является его вычислительная простота, а недостатками - увеличение трафика при периодической рассылке широковещательных пакетов и неоптимальность найденного маршрута.
При обрыве связи с сетью 1 маршрутизатор М1 отмечает, что расстояние до этой сети приняло значение 16. Однако получив через некоторое время от маршрутизатора М2 маршрутное сообщение о том, что от него до сети 1 расстояние составляет 2 хопа, маршрутизатор М1 наращивает это расстояние на 1 и отмечает, что сеть 1 достижима через маршрутизатор 2. В результате пакет, предназначенный для сети 1, будет циркулировать между маршрутизаторами М1 и М2 до тех пор, пока не истечет время хранения записи о сети 1 в маршрутизаторе 2, и он не передаст эту информацию маршрутизатору М1.
Для исключения подобных ситуаций маршрутная информация об известной маршрутизатору сети не передается тому маршрутизатору, от которого она пришла.
Существуют и другие, более сложные случаи нестабильного поведения сетей, использующих протокол RIP, при изменениях в состоянии связей или маршрутизаторов сети.
Комбинирование различных протоколов обмена. Протоколы EGP и BGP сети Internet
Большинство протоколов маршрутизации, применяемых в современных сетях с коммутацией пакетов, ведут свое происхождение от сети Internet и ее предшественницы - сети ARPANET. Для того, чтобы понять их назначение и особенности, полезно сначала познакомится со структурой сети Internet, которая наложила отпечаток на терминологию и типы протоколов.
Internet изначально строилась как сеть, объединяющая большое количество существующих систем. С самого начала в ее структуре выделяли магистральную сеть (core backbone network), а сети, присоединенные к магистрали, рассматривались как автономные системы (autonomous systems). Магистральная сеть и каждая из автономных систем имели свое собственное административное управление и собственные протоколы маршрутизации. Далее маршрутизаторы будут называться шлюзами для следования традиционной терминологии Internet.
Шлюзы, которые используются для образования подсетей внутри автономной системы, называются внутренними шлюзами (interior gateways), а шлюзы, с помощью которых автономные системы присоединяются к магистрали сети, называются внешними шлюзами (exterior gateways). Непосредственно друг с другом автономные системы не соединяются. Соответственно, протоколы маршрутизации, используемые внутри автономных систем, называются протоколами внутренних шлюзов (interior gateway protocol, IGP), а протоколы, определяющие обмен маршрутной информацией между внешними шлюзами и шлюзами магистральной сети - протоколами внешних шлюзов (exterior gateway protocol, EGP). Внутри магистральной сети также может использоваться любой собственный внутренний протокол IGP.
Смысл разделения всей сети Internet на автономные системы в ее многоуровневом представлении, что необходимо для любой крупной системы, способной к расширению в больших масштабах. Внутренние шлюзы могут использовать для внутренней маршрутизации достаточно подробные графы связей между собой, чтобы выбрать наиболее рациональный маршрут. Однако, если информация такой степени детализации будет храниться во всех маршрутизаторах сети, то топологические базы данных так разрастутся, что потребуют наличия памяти гигантских размеров, а время принятия решений о маршрутизации непременно возрастет.
Поэтому детальная топологическая информация остается внутри автономной системы, а автономную систему как единое целое для остальной части Internet представляют внешние шлюзы, которые сообщают о внутреннем составе автономной системы минимально необходимые сведения - количество IP-сетей, их адреса и внутреннее расстояние до этих сетей от данного внешнего шлюза.
При инициализации внешний шлюз узнает уникальный идентификатор обслуживаемой им автономной системы, а также таблицу достижимости (reachability table), которая позволяет ему взаимодействовать с другими внешними шлюзами через магистральную сеть.
Затем внешний шлюз начинает взаимодействовать по протоколу EGP с другими внешними шлюзами и обмениваться с ними маршрутной информацией, состав которой описан выше. В результате, при отправке пакета из одной автономной системы в другую, внешний шлюз данной системы на основании маршрутной информации, полученной от всех внешних шлюзов, с которыми он общается по протоколу EGP, выбирает наиболее подходящий внешний шлюз и отправляет ему пакет.
В протоколе EGP определены три основные функции:
* установление соседских отношений,
* подтверждение достижимости соседа,
* обновление маршрутной информации.
Каждая функция работает на основе обмена сообщениями запрос-ответ.
Так как каждая автономная система работает под контролем своего административного штата, то перед началом обмена маршрутной информацией внешние шлюзы должны согласиться на такой обмен. Сначала один из шлюзов посылает запрос на установление соседских отношений (acquisition request) другому шлюзу. Если тот согласен на это, то он отвечает сообщением подтверждение установления соседских отношений (acquisition confirm), а если нет - то сообщением отказ от установления соседских отношений (acquisition refuse), которое содержит также причину отказа.
После установления соседских отношений шлюзы начинают периодически проверять состояние достижимости друг друга. Это делается либо с помощью специальных сообщений (привет (hello) и Я-услышал-тебя (I-heard-you)), либо встраиванием подтверждающей информации непосредственно в заголовок обычного маршрутного сообщения.
Обмен маршрутной информацией начинается с посылки одним из шлюзов другому сообщения запрос данных (poll request) о номерах сетей, обслуживаемых другим шлюзом и расстояниях до них от него. Ответом на это сообщение служит сообщение обновленная маршрутная информация (routing ). Если же запрос оказался некорректным, то в ответ на него отсылается сообщение об ошибке.
Все сообщения протокола EGP передаются в поле данных IP-пакетов. Сообщения EGP имеют заголовок фиксированного формата.
Поля Тип и Код совместно определяют тип сообщения, а поле Статус - информацию, зависящую от типа сообщения. Поле Номер автономной системы - это номер, назначенный той автономной системе, к которой присоединен данный внешний шлюз. Поле Номер последовательности служит для синхронизации процесса запросов и ответов.
[pagebreak]
Поле IP-адрес исходной сети в сообщениях запроса и обновления маршрутной информации обозначает сеть, соединяющую два внешних шлюза.
Сообщение об обновленной маршрутной информации содержит список адресов сетей, которые достижимы в данной автономной системе. Этот список упорядочен по внутренним шлюзам, которые подключены к исходной сети и через которые достижимы данные сети, а для каждого шлюза он упорядочен по расстоянию до каждой достижимой сети от исходной сети, а не от данного внутреннего шлюза. Для примера внешний шлюз R2 в своем сообщении указывает, что сеть 4 достижима с помощью шлюза R3 и расстояние ее равно 2, а сеть 2 достижима через шлюз R2 и ее расстояние равно 1 (а не 0, как если бы шлюз измерял ее расстояние от себя, как в протоколе RIP).
Протокол EGP имеет достаточно много ограничений, связанных с тем, что он рассматривает магистральную сеть как одну неделимую магистраль.
Развитием протокола EGP является протокол BGP (Border Gateway Protocol), имеющий много общего с EGP и используемый наряду с ним в магистрали сети Internet.
Протокол состояния связей OSPF
Протокол OSPF (Open Shortest Path Firs) является достаточно современной реализацией алгоритма состояния связей (он принят в 1991 году) и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях.
Протокол OSPF вычисляет маршруты в IP-сетях, сохраняя при этом другие протоколы обмена маршрутной информацией.
Непосредственно связанные (то есть достижимые без использования промежуточных маршрутизаторов) маршрутизаторы называются "соседями". Каждый маршрутизатор хранит информацию о том, в каком состоянии по его мнению находится сосед. Маршрутизатор полагается на соседние маршрутизаторы и передает им пакеты данных только в том случае, если он уверен, что они полностью работоспособны. Для выяснения состояния связей маршрутизаторы-соседи достаточно часто обмениваются короткими сообщениями HELLO.
Для распространения по сети данных о состоянии связей маршрутизаторы обмениваются сообщениями другого типа. Эти сообщения называются router links advertisement - объявление о связях маршрутизатора (точнее, о состоянии связей). OSPF-маршрутизаторы обмениваются не только своими, но и чужими объявлениями о связях, получая в конце-концов информацию о состоянии всех связей сети. Эта информация и образует граф связей сети, который, естественно, один и тот же для всех маршрутизаторов сети.
Кроме информации о соседях, маршрутизатор в своем объявлении перечисляет IP-подсети, с которыми он связан непосредственно, поэтому после получения информации о графе связей сети, вычисление маршрута до каждой сети производится непосредственно по этому графу по алгоритму Дэйкстры. Более точно, маршрутизатор вычисляет путь не до конкретной сети, а до маршрутизатора, к которому эта сеть подключена. Каждый маршрутизатор имеет уникальный идентификатор, который передается в объявлении о состояниях связей. Такой подход дает возможность не тратить IP-адреса на связи типа "точка-точка" между маршрутизаторами, к которым не подключены рабочие станции.
Маршрутизатор вычисляет оптимальный маршрут до каждой адресуемой сети, но запоминает только первый промежуточный маршрутизатор из каждого маршрута. Таким образом, результатом вычислений оптимальных маршрутов является список строк, в которых указывается номер сети и идентификатор маршрутизатора, которому нужно переслать пакет для этой сети. Указанный список маршрутов и является маршрутной таблицей, но вычислен он на основании полной информации о графе связей сети, а не частичной информации, как в протоколе RIP.
Описанный подход приводит к результату, который не может быть достигнут при использовании протокола RIP или других дистанционно-векторных алгоритмов. RIP предполагает, что все подсети определенной IP-сети имеют один и тот же размер, то есть, что все они могут потенциально иметь одинаковое число IP-узлов, адреса которых не перекрываются. Более того, классическая реализация RIP требует, чтобы выделенные линии "точка-точка" имели IP-адрес, что приводит к дополнительным затратам IP-адресов.
В OSPF такие требования отсутствуют: сети могут иметь различное число хостов и могут перекрываться. Под перекрытием понимается наличие нескольких маршрутов к одной и той же сети. В этом случае адрес сети в пришедшем пакете может совпасть с адресом сети, присвоенным нескольким портам.
Если адрес принадлежит нескольким подсетям в базе данных маршрутов, то продвигающий пакет маршрутизатор использует наиболее специфический маршрут, то есть адрес подсети, имеющей более длинную маску.
Например, если рабочая группа ответвляется от главной сети, то она имеет адрес главной сети наряду с более специфическим адресом, определяемым маской подсети. При выборе маршрута к хосту в подсети этой рабочей группы маршрутизатор найдет два пути, один для главной сети и один для рабочей группы. Так как последний более специфичен, то он и будет выбран. Этот механизм является обобщением понятия "маршрут по умолчанию", используемого во многих сетях.
Использование подсетей с различным количеством хостов является вполне естественным. Например, если в здании или кампусе на каждом этаже имеются локальные сети, и на некоторых этажах компьютеров больше, чем на других, то администратор может выбрать размеры подсетей, отражающие ожидаемые требования каждого этажа, а не соответствующие размеру наибольшей подсети.
В протоколе OSPF подсети делятся на три категории:
* "хост-сеть", представляющая собой подсеть из одного адреса,
* "тупиковая сеть", которая представляет собой подсеть, подключенную только к одному маршрутизатору,
* "транзитная сеть", которая представляет собой подсеть, подключенную к более чем одному маршрутизатору.
Транзитная сеть является для протокола OSPF особым случаем. В транзитной сети несколько маршрутизаторов являются взаимно и одновременно достижимыми. В широковещательных локальных сетях, таких как Ethernet или Token Ring, маршрутизатор может послать одно сообщение, которое получат все его соседи. Это уменьшает нагрузку на маршрутизатор, когда он посылает сообщения для определения существования связи или обновленные объявления о соседях.
Однако, если каждый маршрутизатор будет перечислять всех своих соседей в своих объявлениях о соседях, то объявления займут много места в памяти маршрутизатора. При определении пути по адресам транзитной подсети может обнаружиться много избыточных маршрутов к различным маршрутизаторам. На вычисление, проверку и отбраковку этих маршрутов уйдет много времени.
Когда маршрутизатор начинает работать в первый раз (то есть инсталлируется), он пытается синхронизировать свою базу данных со всеми маршрутизаторами транзитной локальной сети, которые по определению имеют идентичные базы данных. Для упрощения и оптимизации этого процесса в протоколе OSPF используется понятие "выделенного" маршрутизатора, который выполняет две функции.
Во-первых, выделенный маршрутизатор и его резервный "напарник" являются единственными маршрутизаторами, с которыми новый маршрутизатор будет синхронизировать свою базу. Синхронизировав базу с выделенным маршрутизатором, новый маршрутизатор будет синхронизирован со всеми маршрутизаторами данной локальной сети.
Во-вторых, выделенный маршрутизатор делает объявление о сетевых связях, перечисляя своих соседей по подсети. Другие маршрутизаторы просто объявляют о своей связи с выделенным маршрутизатором. Это делает объявления о связях (которых много) более краткими, размером с объявление о связях отдельной сети.
Для начала работы маршрутизатора OSPF нужен минимум информации - IP-конфигурация (IP-адреса и маски подсетей), некоторая информация по умолчанию (default) и команда на включение. Для многих сетей информация по умолчанию весьма похожа. В то же время протокол OSPF предусматривает высокую степень программируемости.
Интерфейс OSPF (порт маршрутизатора, поддерживающего протокол OSPF) является обобщением подсети IP. Подобно подсети IP, интерфейс OSPF имеет IP-адрес и маску подсети. Если один порт OSPF поддерживает более, чем одну подсеть, протокол OSPF рассматривает эти подсети так, как если бы они были на разных физических интерфейсах, и вычисляет маршруты соответственно.
Интерфейсы, к которым подключены локальные сети, называются широковещательными (broadcast) интерфейсами, так как они могут использовать широковещательные возможности локальных сетей для обмена сигнальной информацией между маршрутизаторами. Интерфейсы, к которым подключены глобальные сети, не поддерживающие широковещание, но обеспечивающие доступ ко многим узлам через одну точку входа, например сети Х.25 или frame relay, называются нешироковещательными интерфейсами с множественным доступом или NBMA (non-broadcast multi-access).
Они рассматриваются аналогично широковещательным интерфейсам за исключением того, что широковещательная рассылка эмулируется путем посылки сообщения каждому соседу. Так как обнаружение соседей не является автоматическим, как в широковещательных сетях, NBMA-соседи должны задаваться при конфигурировании вручную. Как на широковещательных, так и на NBMA-интерфейсах могут быть заданы приоритеты маршрутизаторов для того, чтобы они могли выбрать выделенный маршрутизатор.
Интерфейсы "точка-точка", подобные PPP, несколько отличаются от традиционной IP-модели. Хотя они и могут иметь IP-адреса и подмаски, но необходимости в этом нет.
В простых сетях достаточно определить, что пункт назначения достижим и найти маршрут, который будет удовлетворительным. В сложных сетях обычно имеется несколько возможных маршрутов. Иногда хотелось бы иметь возможности по установлению дополнительных критериев для выбора пути: например, наименьшая задержка, максимальная пропускная способность или наименьшая стоимость (в сетях с оплатой за пакет). По этим причинам протокол OSPF позволяет сетевому администратору назначать каждому интерфейсу определенное число, называемое метрикой, чтобы оказать нужное влияние на выбор маршрута.
Число, используемое в качестве метрики пути, может быть назначено произвольным образом по желанию администратора. Но по умолчанию в качестве метрики используется время передачи бита в 10-ти наносекундных единицах (10 Мб/с Ethernet'у назначается значение 10, а линии 56 Кб/с - число 1785). Вычисляемая протоколом OSPF метрика пути представляет собой сумму метрик всех проходимых в пути связей; это очень грубая оценка задержки пути. Если маршрутизатор обнаруживает более, чем один путь к удаленной подсети, то он использует путь с наименьшей стоимостью пути.
В протоколе OSPF используется несколько временных параметров, и среди них наиболее важными являются интервал сообщения HELLO и интервал отказа маршрутизатора (router dead interval).
HELLO - это сообщение, которым обмениваются соседние, то есть непосредственно связанные маршрутизаторы подсети, с целью установить состояние линии связи и состояние маршрутизатора-соседа. В сообщении HELLO маршрутизатор передает свои рабочие параметры и говорит о том, кого он рассматривает в качестве своих ближайших соседей. Маршрутизаторы с разными рабочими параметрами игнорируют сообщения HELLO друг друга, поэтому неверно сконфигурированные маршрутизаторы не будут влиять на работу сети.
Каждый маршрутизатор шлет сообщение HELLO каждому своему соседу по крайней мере один раз на протяжении интервала HELLO. Если интервал отказа маршрутизатора истекает без получения сообщения HELLO от соседа, то считается, что сосед неработоспособен, и распространяется новое объявление о сетевых связях, чтобы в сети произошел пересчет маршрутов.
Пример маршрутизации по алгоритму OSPF
Представим себе один день из жизни транзитной локальной сети. Пусть у нас имеется сеть Ethernet, в которой есть три маршрутизатора - Джон, Фред и Роб (имена членов рабочей группы Internet, разработавшей протокол OSPF). Эти маршрутизаторы связаны с сетями в других городах с помощью выделенных линий.
Пусть произошло восстановление сетевого питания после сбоя. Маршрутизаторы и компьютеры перезагружаются и начинают работать по сети Ethernet. После того, как маршрутизаторы обнаруживают, что порты Ethernet работают нормально, они начинают генерировать сообщения HELLO, которые говорят о их присутствии в сети и их конфигурации. Однако маршрутизация пакетов начинает осуществляться не сразу - сначала маршрутизаторы должны синхронизировать свои маршрутные базы.
На протяжении интервала отказа маршрутизаторы продолжают посылать сообщения HELLO. Когда какой-либо маршрутизатор посылает такое сообщение, другие его получают и отмечают, что в локальной сети есть другой маршрутизатор. Когда они посылают следующее HELLO, они перечисляют там и своего нового соседа.
Когда период отказа маршрутизатора истекает, то маршрутизатор с наивысшим приоритетом и наибольшим идентификатором объявляет себя выделенным (а следующий за ним по приоритету маршрутизатор объявляет себя резервным выделенным маршрутизатором) и начинает синхронизировать свою базу данных с другими маршрутизаторами.
[pagebreak]
С этого момента времени база данных маршрутных объявлений каждого маршрутизатора может содержать информацию, полученную от маршрутизаторов других локальных сетей или из выделенных линий. Роб, например, вероятно получил информацию от Мило и Робина об их сетях, и он может передавать туда пакеты данных. Они содержат информацию о собственных связях маршрутизатора и объявления о связях сети.
Базы данных теперь синхронизированы с выделенным маршрутизатором, которым является Джон. Джон суммирует свою базу данных с каждой базой данных своих соседей - базами Фреда, Роба и Джеффа - индивидуально. В каждой синхронизирующейся паре объявления, найденные только в какой-либо одной базе, копируются в другую. Выделенный маршрутизатор, Джон, распространяет новые объявления среди других маршрутизаторов своей локальной сети.
Например, объявления Мило и Робина передаются Джону Робом, а Джон в свою очередь передает их Фреду и Джеффри. Обмен информацией между базами продолжается некоторое время, и пока он не завершится, маршрутизаторы не будут считать себя работоспособными. После этого они себя таковыми считают, потому что имеют всю доступную информацию о сети.
Посмотрим теперь, как Робин вычисляет маршрут через сеть. Две из связей, присоединенных к его портам, представляют линии T-1, а одна - линию 56 Кб/c. Робин сначала обнаруживает двух соседей - Роба с метрикой 65 и Мило с метрикой 1785. Из объявления о связях Роба Робин обнаружил наилучший путь к Мило со стоимостью 130, поэтому он отверг непосредственный путь к Мило, поскольку он связан с большей задержкой, так как проходит через линии с меньшей пропускной способностью. Робин также обнаруживает транзитную локальную сеть с выделенным маршрутизатором Джоном. Из объявлений о связях Джона Робин узнает о пути к Фреду и, наконец, узнает о пути к маршрутизаторам Келли и Джеффу и к их тупиковым сетям.
После того, как маршрутизаторы полностью входят в рабочий режим, интенсивность обмена сообщениями резко падает. Обычно они посылают сообщение HELLO по своим подсетям каждые 10 секунд и делают объявления о состоянии связей каждые 30 минут (если обнаруживаются изменения в состоянии связей, то объявление передается, естественно, немедленно). Обновленные объявления о связях служат гарантией того, что маршрутизатор работает в сети. Старые объявления удаляются из базы через определенное время.
Представим, однако, что какая-либо выделенная линия сети отказала. Присоединенные к ней маршрутизаторы распространяют свои объявления, в которых они уже не упоминают друг друга. Эта информация распространяется по сети, включая маршрутизаторы транзитной локальной сети. Каждый маршрутизатор в сети пересчитывает свои маршруты, находя, может быть, новые пути для восстановления утраченного взаимодействия.
Сравнение протоколов RIP и OSPF по затратам на широковещательный трафик
В сетях, где используется протокол RIP, накладные расходы на обмен маршрутной информацией строго фиксированы. Если в сети имеется определенное число маршрутизаторов, то трафик, создаваемый передаваемой маршрутной информацией, описываются формулой (1):
(1) F = (число объявляемых маршрутов/25) x 528 (байтов в сообщении) x
(число копий в единицу времени) x 8 (битов в байте)
В сети с протоколом OSPF загрузка при неизменном состоянии линий связи создается сообщениями HELLO и обновленными объявлениями о состоянии связей, что описывается формулой (2):
(2) F = { [ 20 + 24 + 20 + (4 x число соседей)] x
(число копий HELLO в единицу времени) }x 8 +
[(число объявлений x средний размер объявления) x
(число копий объявлений в единицу времени)] x 8,
где 20 - размер заголовка IP-пакета,
24 - заголовок пакета OSPF,
20 - размер заголовка сообщения HELLO,
4 - данные на каждого соседа.
Интенсивность посылки сообщений HELLO - каждые 10 секунд, объявлений о состоянии связей - каждые полчаса. По связям "точка-точка" или по широковещательным локальным сетям в единицу времени посылается только одна копия сообщения, по NBMA сетям типа frame relay каждому соседу посылается своя копия сообщения. В сети frame relay с 10 соседними маршрутизаторами и 100 маршрутами в сети (подразумевается, что каждый маршрут представляет собой отдельное OSPF-обобщение о сетевых связях и что RIP распространяет информацию о всех этих маршрутах) трафик маршрутной информации определяется соотношениями (3) и (4):
(3) RIP: (100 маршрутов / 25 маршрутов в объявлении) x 528 x
(10 копий / 30 сек) = 5 632 б/с
(4) OSPF: {[20 + 24 + 20 + (4 x 10) x (10 копий / 10 сек)] +
[100 маршрутов x (32 + 24 + 20) + (10 копий / 30 x 60 сек]} x 8 = 1 170 б/с
Как видно из полученных результатов, для нашего гипотетического примера трафик, создаваемый протоколом RIP, почти в пять раз интенсивней трафика, создаваемого протоколом OSPF.
Использование других протоколов маршрутизации
Случай использования в сети только протокола маршрутизации OSPF представляется маловероятным. Если сеть присоединена к Internet'у, то могут использоваться такие протоколы, как EGP (Exterior Gateway protocol), BGP (Border Gateway Protocol, протокол пограничного маршрутизатора), старый протокол маршрутизации RIP или собственные протоколы производителей.
Когда в сети начинает применяться протокол OSPF, то существующие протоколы маршрутизации могут продолжать использоваться до тех пор, пока не будут полностью заменены. В некоторых случаях необходимо будет объявлять о статических маршрутах, сконфигурированных вручную.
В OSPF существует понятие автономных систем маршрутизаторов (autonomous systems), которые представляют собой домены маршрутизации, находящиеся под общим административным управлением и использующие единый протокол маршрутизации. OSPF называет маршрутизатор, который соединяет автономную систему с другой автономной системой, использующей другой протокол маршрутизации, пограничным маршрутизатором автономной системы (autonomous system boundary router, ASBR).
В OSPF маршруты (именно маршруты, то есть номера сетей и расстояния до них во внешней метрике, а не топологическая информация) из одной автономной системы импортируются в другую автономную систему и распространяются с использованием специальных внешних объявлений о связях.
Внешние маршруты обрабатываются за два этапа. Маршрутизатор выбирает среди внешних маршрутов маршрут с наименьшей внешней метрикой. Если таковых оказывается больше, чем 2, то выбирается путь с меньшей стоимостью внутреннего пути до ASBR.
Область OSPF - это набор смежных интерфейсов (территориальных линий или каналов локальных сетей). Введение понятия "область" служит двум целям - управлению информацией и определению доменов маршрутизации.
Для понимания принципа управления информацией рассмотрим сеть, имеющую следующую структуру: центральная локальная сеть связана с помощью 50 маршрутизаторов с большим количеством соседей через сети X.25 или frame relay. Эти соседи представляют собой большое количество небольших удаленных подразделений, например, отделов продаж или филиалов банка.
Из-за большого размера сети каждый маршрутизатор должен хранить огромное количество маршрутной информации, которая должна передаваться по каждой из линий, и каждое из этих обстоятельств удорожает сеть. Так как топология сети проста, то большая часть этой информации и создаваемого ею трафика не имеют смысла.
Для каждого из удаленных филиалов нет необходимости иметь детальную маршрутную информацию о всех других удаленных офисах, в особенности, если они взаимодействуют в основном с центральными компьютерами, связанными с центральными маршрутизаторами. Аналогично, центральным маршрутизаторам нет необходимости иметь детальную информацию о топологии связей с удаленными офисами, соединенными с другими центральными маршрутизаторами.
В то же время центральные маршрутизаторы нуждаются в информации, необходимой для передачи пакетов следующему центральному маршрутизатору. Администратор мог бы без труда разделить эту сеть на более мелкие домены маршрутизации для того, чтобы ограничить объемы хранения и передачи по линиям связи не являющейся необходимой информации. Обобщение маршрутной информации является главной целью введения областей в OSPF.
В протоколе OSPF определяется также пограничный маршрутизатор области (ABR, area border router). ABR - это маршрутизатор с интерфейсами в двух или более областях, одна из которых является специальной областью, называемой магистральной (backbone area). Каждая область работает с отдельной базой маршрутной информации и независимо вычисляет маршруты по алгоритму OSPF.
Пограничные маршрутизаторы передают данные о топологии области в соседние области в обобщенной форме - в виде вычисленных маршрутов с их весами. Поэтому в сети, разбитой на области, уже не действует утверждение о том, что все маршрутизаторы оперируют с идентичными топологическими базами данных.
Маршрутизатор ABR берет информацию о маршрутах OSPF, вычисленную в одной области, и транслирует ее в другую область путем включения этой информации в обобщенное суммарное объявление (summary) для базы данных другой области. Суммарная информация описывает каждую подсеть области и дает для нее метрику. Суммарная информация может быть использована тремя способами: для объявления об отдельном маршруте, для обобщения нескольких маршрутов или же служить маршрутом по умолчанию.
Дальнейшее уменьшение требований к ресурсам маршрутизаторов происходит в том случае, когда область представляет собой тупиковую область (stub area). Этот атрибут администратор сети может применить к любой области, за исключением магистральной. ABR в тупиковой области не распространяет внешние объявления или суммарные объявления из других областей. Вместо этого он делает одно суммарное объявление, которое будет удовлетворять любой IP-адрес, имеющий номер сети, отличный от номеров сетей тупиковой области. Это объявление называется маршрутом по умолчанию.
Маршрутизаторы тупиковой области имеют информацию, необходимую только для вычисления маршрутов между собой плюс указания о том, что все остальные маршруты должны проходить через ABR. Такой подход позволяет уменьшить в нашей гипотетической сети количество маршрутной информации в удаленных офисах без уменьшения способности маршрутизаторов корректно передавать пакеты.
|
|
|
Протокол обмена управляющими сообщениями ICMP (Internet Control Message Protocol) позволяет маршрутизатору сообщить конечному узлу об ошибках, с которыми машрутизатор столкнулся при передаче какого-либо IP-пакета от данного конечного узла.
Управляющие сообщения ICMP не могут направляться промежуточному маршрутизатору, который участвовал в передаче пакета, с которым возникли проблемы, так как для такой посылки нет адресной информации - пакет несет в себе только адрес источника и адрес назначения, не фиксируя адреса промежуточных маршрутизаторов.
Протокол ICMP - это протокол сообщения об ошибках, а не протокол коррекции ошибок. Конечный узел может предпринять некоторые действия для того, чтобы ошибка больше не возникала, но эти действия протоколом ICMP не регламентируются.
Каждое сообщение протокола ICMP передается по сети внутри пакета IP. Пакеты IP с сообщениями ICMP маршрутизируются точно так же, как и любые другие пакеты, без приоритетов, поэтому они также могут теряться. Кроме того, в загруженной сети они могут вызывать дополнительную загрузку маршрутизаторов. Для того, чтобы не вызывать лавины сообщения об ошибках, потери пакетов IP, переносящие сообщения ICMP об ошибках, не могут порождать новые сообщения ICMP.
Формат сообщений протокола ICMP
Существует несколько типов сообщений ICMP. Каждый тип сообщения имеет свой формат, при этом все они начинаются с общих трех полей: 8-битного целого числа, обозначающего тип сообщения (TYPE), 8-битного поля кода (CODE), который конкретизирует назначение сообщения, и 16-битного поля контрольной суммы (CHECKSUM). Кроме того, сообщение ICMP всегда содержит заголовок и первые 64 бита данных пакета IP, который вызвал ошибку.
Это делается для того, чтобы узел-отправитель смог более точно проанализировать причину ошибки, так как все протоколы прикладного уровня стека TCP/IP содержат наиболее важную информацию для анализа в первых 64 битах своих сообщений.
Поле типа может иметь следующие значения:
Значение | Тип сообщения
0_________Эхо-ответ (Echo Replay)
3_________Узел назначения недостижим (Destination Unreachable)
4_________Подавление источника (Source Quench)
5_________Перенаправление маршрута (Redirect)
8_________Эхо-запрос (Echo Request)
11________Истечение времени дейтаграммы (Time Exceeded for a Datagram)
12________Проблема с параметром пакета (Parameter Problem on a Datagram)
13________Запрос отметки времени (Timestamp Request)
14________Ответ отметки времени (Timestamp Replay)
17________Запрос маски (Address Mask Request)
18________Ответ маски (Address Mask Replay)
Как видно из используемых типов сообщений, протокол ICMP представляет собой некоторое объединение протоколов, решающих свои узкие задачи.
Эхо-протокол
Протокол ICMP предоставляет сетевым администраторам средства для тестирования достижимости узлов сети. Эти средства представляют собой очень простой эхо-протокол, включающий обмен двумя типами сообщений: эхо-запрос и эхо-ответ. Компьютер или маршрутизатор посылают по интерсети эхо-запрос, в котором указывают IP-адрес узла, достижимость которого нужно проверить. Узел, который получает эхо-запрос, формирует и отправляет эхо-ответ и возвращает сообщение узлу - отправителю запроса.
В запросе могут содержаться некоторые данные, которые должны быть возвращены в ответе. Так как эхо-запрос и эхо-ответ передаются по сети внутри IP-пакетов, то их успешная доставка означает нормальное функционирование всей транспортной системы интерсети.
Во многих операционных системах используется утилита ping, которая предназначена для тестирования достижимости узлов. Эта утилита обычно посылает серию эхо-запросов к тестируемому узлу и предоставляет пользователю статистику об утерянных эхо-ответах и среднем времени реакции сети на запросы.
Сообщения о недостижимости узла назначения
Когда маршрутизатор не может передать или доставить IP-пакет, он отсылает узлу, отправившему этот пакет, сообщение "Узел назначения недостижим" (тип сообщения - 3). Это сообщение содержит в поле кода значение, уточняющее причину, по которой пакет не был доставлен. Причина кодируется следующим образом:
Код - | - Причина
0________Сеть недостижима
1________Узел недостижим
2________Протокол недостижим
3________Порт недостижим
4________Требуется фрагментация, а бит DF установлен
5________Ошибка в маршруте, заданном источником
6________Сеть назначения неизвестна
7________Узел назначения неизвестен
8________Узел-источник изолирован
9________Взаимодействие с сетью назначения административно запрещено
10_______Взаимодействие с узлом назначения административно запрещено
11_______Сеть недостижима для заданного класса сервиса
12_______Узел недостижим для заданного класса сервиса
Маршрутизатор, обнаруживший по какой-либо причине, что он не может передать IP-пакет далее по сети, должен отправить ICMP-сообщение узлу-источнику, и только потом отбросить пакет. Кроме причины ошибки, ICMP-сообщение включает также заголовок недоставленного пакета и его первые 64 бита поля данных.
Узел или сеть назначения могут быть недостижимы из-за временной неработоспособности аппаратуры, из-за того, что отправитель указал неверный адрес назначения, а также из-за того, что маршрутизатор не имеет данных о маршруте к сети назначения.
Недостижимость протокола и порта означают отсутствие реализации какого-либо протокола прикладного уровня в узле назначения или же отсутствие открытого порта протоколов UDP или TCP в узле назначения.
Ошибка фрагментации возникает тогда, когда отправитель послал в сеть пакет с признаком DF, запрещающим фрагментацию, а маршрутизатор столкнулся с необходимостью передачи этого пакета в сеть со значением MTU меньшим, чем размер пакета.
Перенаправление маршрута
Маршрутные таблицы у компьютеров обычно являются статическими, так как конфигурируются администратором сети, а у маршрутизаторов - динамическими, формируемыми автоматически с помощью протоколов обмена маршрутной информации. Поэтому с течением времени при изменении топологии сети маршрутные таблицы компьютеров могут устаревать. Кроме того, эти таблицы обычно содержат минимум информации, например, только адреса нескольких маршрутизаторов.
Для корректировки поведения компьютеров маршрутизатор может использовать сообщение протокола ICMP, называемое "Перенаправление маршрута" (Redirect).
Это сообщение посылается в том случае, когда маршрутизатор видит, что компьютер отправляет пакет некоторой сети назначения нерациональным образом, то есть не тому маршрутизатору локальной сети, от которого начинается более короткий маршрут к сети назначения.
Механизм перенаправления протокола ICMP позволяет компьютерам содержать в конфигурационном файле только IP-адреса его локальных маршрутизаторов. С помощью сообщений о перенаправлении маршрутизаторы будут сообщать компьютеру всю необходимую ему информацию о том, какому маршрутизатору следует отправлять пакеты для той или иной сети назначения. То есть маршрутизаторы передадут компьютеру нужную ему часть их таблиц маршрутизации.
В сообщении "Перенаправление маршрута" маршрутизатор помещает IP-адрес маршрутизатора, которым нужно пользоваться в дальнейшем, и заголовок исходного пакета с первыми 64 битами его поля данных. Из заголовка пакета узел узнает, для какой сети необходимо пользоваться указанным маршрутизатором.
|
|
|
В стеке протоколов TCP/IP протокол TCP (Transmission Control Protocol) работает так же, как и протокол UDP, на транспортном уровне. Он обеспечивает надежную транспортировку данных между прикладными процессами путем установления логического соединения.
Сегменты TCP
Единицей данных протокола TCP является сегмент. Информация, поступающая к протоколу TCP в рамках логического соединения от протоколов более высокого уровня, рассматривается протоколом TCP как неструктурированный поток байт. Поступающие данные буферизуются средствами TCP. Для передачи на сетевой уровень из буфера "вырезается" некоторая непрерывная часть данных, называемая сегментом.
В протоколе TCP предусмотрен случай, когда приложение обращается с запросом о срочной передаче данных (бит PSH в запросе установлен в 1). В этом случае протокол TCP, не ожидая заполнения буфера до уровня размера сегмента, немедленно передает указанные данные в сеть. О таких данных говорят, что они передаются вне потока - out of band.
Не все сегменты, посланные через соединение, будут одного и того же размера, однако оба участника соединения должны договориться о максимальном размере сегмента, который они будут использовать. Этот размер выбирается таким образом, чтобы при упаковке сегмента в IP-пакет он помещался туда целиком, то есть максимальный размер сегмента не должен превосходить максимального размера поля данных IP-пакета. В противном случае пришлось бы выполнять фрагментацию, то есть делить сегмент на несколько частей, для того, чтобы он вместился в IP-пакет.
Аналогичные проблемы решаются и на сетевом уровне. Для того, чтобы избежать фрагментации, должен быть выбран соответствующий максимальный размер IP-пакета. Однако при этом должны быть приняты во внимание максимальные размеры поля данных кадров (MTU) всех протоколов канального уровня, используемых в сети. Максимальный размер сегмента не должен превышать минимальное значение на множестве всех MTU составной сети.
Порты и установление TCP-соединений
В протоколе TCP также, как и в UDP, для связи с прикладными процессами используются порты. Номера портам присваиваются аналогичным образом: имеются стандартные, зарезервированные номера (например, номер 21 закреплен за сервисом FTP, 23 - за telnet), а менее известные приложения пользуются произвольно выбранными локальными номерами.
Однако в протоколе TCP порты используются несколько иным способом. Для организации надежной передачи данных предусматривается установление логического соединения между двумя прикладными процессами. В рамках соединения осуществляется обязательное подтверждение правильности приема для всех переданных сообщений, и при необходимости выполняется повторная передача. Соединение в TCP позволяет вести передачу данных одновременно в обе стороны, то есть полнодуплексную передачу.
Соединение в протоколе TCP идентифицируется парой полных адресов обоих взаимодействующих процессов (оконечных точек). Адрес каждой из оконечных точек включает IP-адрес (номер сети и номер компьютера) и номер порта. Одна оконечная точка может участвовать в нескольких соединениях.
Установление соединения выполняется в следующей последовательности:
* При установлении соединения одна из сторон является инициатором. Она посылает запрос к протоколу TCP на открытие порта для передачи (active open).
* После открытия порта протокол TCP на стороне процесса-инициатора посылает запрос процессу, с которым требуется установить соединение.
* Протокол TCP на приемной стороне открывает порт для приема данных (passive open) и возвращает квитанцию, подтверждающую прием запроса.
* Для того чтобы передача могла вестись в обе стороны, протокол на приемной стороне также открывает порт для передачи (active port) и также передает запрос к противоположной стороне.
* Сторона-инициатор открывает порт для приема и возвращает квитанцию. Соединение считается установленным. Далее происходит обмен данными в рамках данного соединения.
Концепция квитирования
В рамках соединения правильность передачи каждого сегмента должна подтверждаться квитанцией получателя. Квитирование - это один из традиционных методов обеспечения надежной связи. Идея квитирования состоит в следующем.
Для того, чтобы можно было организовать повторную передачу искаженных данных отправитель нумерует отправляемые единицы передаваемых данных (далее для простоты называемые кадрами). Для каждого кадра отправитель ожидает от приемника так называемую положительную квитанцию - служебное сообщение, извещающее о том, что исходный кадр был получен и данные в нем оказались корректными. Время этого ожидания ограничено - при отправке каждого кадра передатчик запускает таймер, и если по его истечению положительная квитанция на получена, то кадр считается утерянным. В некоторых протоколах приемник, в случае получения кадра с искаженными данными должен отправить отрицательную квитанцию - явное указание того, что данный кадр нужно передать повторно.
Существуют два подхода к организации процесса обмена положительными и отрицательными квитанциями: с простоями и с организацией "окна".
Метод с простоями требует, чтобы источник, пославший кадр, ожидал получения квитанции (положительной или отрицательной) от приемника и только после этого посылал следующий кадр (или повторял искаженный). В этом случае производительность обмена данными существенно снижается - хотя передатчик и мог бы послать следующий кадр сразу же после отправки предыдущего, он обязан ждать прихода квитанции. Снижение производительности для этого метода коррекции особенно заметно на низкоскоростных каналах связи, то есть в территориальных сетях.
Во втором методе для повышения коэффициента использования линии источнику разрешается передать некоторое количество кадров в непрерывном режиме, то есть в максимально возможном для источника темпе, без получения на эти кадры ответных квитанций. Количество кадров, которые разрешается передавать таким образом, называется размером окна. Обычно кадры при обмене нумеруются циклически, от 1 до W. При отправке кадра с номером 1 источнику разрешается передать еще W-1 кадров до получения квитанции на кадр 1. Если же за это время квитанция на кадр 1 так и не пришла, то процесс передачи приостанавливается, и по истечению некоторого тайм-аута кадр 1 считается утерянным (или квитанция на него утеряна) и он передается снова.
Если же поток квитанций поступает более-менее регулярно, в пределах допуска в W кадров, то скорость обмена достигает максимально возможной величины для данного канала и принятого протокола.
Этот алгоритм называют алгоритмом скользящего окна. Действительно, при каждом получении квитанции окно перемещается (скользит), захватывая новые данные, которые разрешается передавать без подтверждения.
[pagebreak]
Реализация скользящего окна в протоколе TCP
В протоколе TCP реализована разновидность алгоритма квитирования с использованием окна. Особенность этого алгоритма состоит в том, что, хотя единицей передаваемых данных является сегмент, окно определено на множестве нумерованных байт неструктурированного потока данных, поступающих с верхнего уровня и буферизуемых протоколом TCP.
Квитанция посылается только в случае правильного приема данных, отрицательные квитанции не посылаются. Таким образом, отсутствие квитанции означает либо прием искаженного сегмента, либо потерю сегмента, либо потерю квитанции.
В качестве квитанции получатель сегмента отсылает ответное сообщение (сегмент), в которое помещает число, на единицу превышающее максимальный номер байта в полученном сегменте. Если размер окна равен W, а последняя квитанция содержала значение N, то отправитель может посылать новые сегменты до тех пор, пока в очередной сегмент не попадет байт с номером N+W. Этот сегмент выходит за рамки окна, и передачу в таком случае необходимо приостановить до прихода следующей квитанции.
Выбор тайм-аута
Выбор времени ожидания (тайм-аута) очередной квитанции является важной задачей, результат решения которой влияет на производительность протокола TCP.
Тайм-аут не должен быть слишком коротким, чтобы по возможности исключить избыточные повторные передачи, которые снижают полезную пропускную способность системы. Но он не должен быть и слишком большим, чтобы избежать длительных простоев, связанных с ожиданием несуществующей или "заблудившейся" квитанции.
При выборе величины тайм-аута должны учитываться скорость и надежность физических линий связи, их протяженность и многие другие подобные факторы. В протоколе TCP тайм-аут определяется с помощью достаточно сложного адаптивного алгоритма, идея которого состоит в следующем. При каждой передаче засекается время от момента отправки сегмента до прихода квитанции о его приеме (время оборота).
Получаемые значения времен оборота усредняются с весовыми коэффициентами, возрастающими от предыдущего замера к последующему. Это делается с тем, чтобы усилить влияние последних замеров. В качестве тайм-аута выбирается среднее время оборота, умноженное на некоторый коэффициент. Практика показывает, что значение этого коэффициента должно превышать 2. В сетях с большим разбросом времени оборота при выборе тайм-аута учитывается и дисперсия этой величины.
Реакция на перегрузку сети
Варьируя величину окна, можно повлиять на загрузку сети. Чем больше окно, тем большую порцию неподтвержденных данных можно послать в сеть. Если сеть не справляется с нагрузкой, то возникают очереди в промежуточных узлах-маршрутизаторах и в конечных узлах-компьютерах.
При переполнении приемного буфера конечного узла "перегруженный" протокол TCP, отправляя квитанцию, помещает в нее новый, уменьшенный размер окна. Если он совсем отказывается от приема, то в квитанции указывается окно нулевого размера. Однако даже после этого приложение может послать сообщение на отказавшийся от приема порт. Для этого, сообщение должно сопровождаться пометкой "срочно" (бит URG в запросе установлен в 1). В такой ситуации порт обязан принять сегмент, даже если для этого придется вытеснить из буфера уже находящиеся там данные.
После приема квитанции с нулевым значением окна протокол-отправитель время от времени делает контрольные попытки продолжить обмен данными. Если протокол-приемник уже готов принимать информацию, то в ответ на контрольный запрос он посылает квитанцию с указанием ненулевого размера окна.
Другим проявлением перегрузки сети является переполнение буферов в маршрутизаторах. В таких случаях они могут централизовано изменить размер окна, посылая управляющие сообщения некоторым конечным узлам, что позволяет им дифференцировано управлять интенсивностью потока данных в разных частях сети.
Формат сообщений TCP
Сообщения протокола TCP называются сегментами и состоят из заголовка и блока данных. Заголовок сегмента имеет следующие поля:
* Порт источника (SOURS PORT) занимает 2 байта, идентифицирует процесс-отправитель;
* Порт назначения (DESTINATION PORT) занимает 2 байта, идентифицирует процесс-получатель;
* Последовательный номер (SEQUENCE NUMBER) занимает 4 байта, указывает номер байта, который определяет смещение сегмента относительно потока отправляемых данных;
* Подтвержденный номер (ACKNOWLEDGEMENT NUMBER) занимает 4 байта, содержит максимальный номер байта в полученном сегменте, увеличенный на единицу; именно это значение используется в качестве квитанции;
* Длина заголовка (HLEN) занимает 4 бита, указывает длину заголовка сегмента TCP, измеренную в 32-битовых словах. Длина заголовка не фиксирована и может изменяться в зависимости от значений, устанавливаемых в поле Опции;
* Резерв (RESERVED) занимает 6 битов, поле зарезервировано для последующего использования;
* Кодовые биты (CODE BITS) занимают 6 битов, содержат служебную информацию о типе данного сегмента, задаваемую установкой в единицу соответствующих бит этого поля:
* URG - срочное сообщение;
* ACK - квитанция на принятый сегмент;
* PSH - запрос на отправку сообщения без ожидания заполнения буфера;
* RST - запрос на восстановление соединения;
* SYN - сообщение используемое для синхронизации счетчиков переданных данных при установлении соединения;
* FIN - признак достижения передающей стороной последнего байта в потоке передаваемых данных.
* Окно (WINDOW) занимает 2 байта, содержит объявляемое значение размера окна в байтах;
* Контрольная сумма (CHECKSUM) занимает 2 байта, рассчитывается по сегменту;
* Указатель срочности (URGENT POINTER) занимает 2 байта, используется совместно с кодовым битом URG, указывает на конец данных, которые необходимо срочно принять, несмотря на переполнение буфера;
* Опции (OPTIONS) - это поле имеет переменную длину и может вообще отсутствовать, максимальная величина поля 3 байта; используется для решения вспомогательных задач, например, при выборе максимального размера сегмента;
* Заполнитель (PADDING) может иметь переменную длину, представляет собой фиктивное поле, используемое для доведения размера заголовка до целого числа 32-битовых слов.
|
|
|
Типы адресов: физический (MAC-адрес), сетевой (IP-адрес) и символьный (DNS-имя).
Каждый компьютер в сети TCP/IP имеет адреса трех уровней:
* Локальный адрес узла, определяемый технологией, с помощью которой построена отдельная сеть, в которую входит данный узел. Для узлов, входящих в локальные сети - это МАС-адрес сетевого адаптера или порта маршрутизатора, например, 11-А0-17-3D-BC-01. Эти адреса назначаются производителями оборудования и являются уникальными адресами, так как управляются централизовано. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байтов: старшие 3 байта - идентификатор фирмы производителя, а младшие 3 байта назначаются уникальным образом самим производителем. Для узлов, входящих в глобальные сети, такие как Х.25 или frame relay, локальный адрес назначается администратором глобальной сети.
* IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Network Information Center, NIC), если сеть должна работать как составная часть Internet. Обычно провайдеры услуг Internet получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами.
Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла - гибкое, и граница между этими полями может устанавливаться весьма произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.
* Символьный идентификатор-имя, например, SERV1.IBM.COM. Этот адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена. Такой адрес, называемый также DNS-именем, используется на прикладном уровне, например, в протоколах FTP или telnet.
Три основных класса IP-адресов
IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значения каждого байта в десятичной форме, и разделенных точками, например:
128.10.2.30 - традиционная десятичная форма представления адреса,
10000000 00001010 00000010 00011110 - двоичная форма представления этого же адреса.
Адрес состоит из двух логических частей - номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая к номеру узла, определяется значениями первых битов адреса:
* Если адрес начинается с 0, то сеть относят к классу А, и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) В сетях класса А количество узлов должно быть больше 216 , но не превышать 224.
* Если первые два бита адреса равны 10, то сеть относится к классу В и является сетью средних размеров с числом узлов 28 - 216. В сетях класса В под адрес сети и под адрес узла отводится по 16 битов, то есть по 2 байта.
* Если адрес начинается с последовательности 110, то это сеть класса С с числом узлов не больше 28. Под адрес сети отводится 24 бита, а под адрес узла - 8 битов.
* Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес - multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.
* Если адрес начинается с последовательности 11110, то это адрес класса Е, он зарезервирован для будущих применений.
В таблице приведены диапазоны номеров сетей, соответствующих каждому классу сетей.
Класс | Наименьший адрес | Наибольший адрес
A _________01.0.0 ___________126.0.0.0
B _________128.0.0.0_________191.255.0.0
C _________192.0.1.0._________223.255.255.0
D _________224.0.0.0__________239.255.255.255
E _________240.0.0.0 _________247.255.255.255
Уже упоминавшаяся форма группового IP-адреса - multicast - означает, что данный пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Узлы сами идентифицируют себя, то есть определяют, к какой из групп они относятся. Один и тот же узел может входить в несколько групп. Такие сообщения в отличие от широковещательных называются мультивещательными. Групповой адрес не делится на поля номера сети и узла и обрабатывается маршрутизатором особым образом.
В протоколе IP нет понятия широковещательности в том смысле, в котором оно используется в протоколах канального уровня локальных сетей, когда данные должны быть доставлены абсолютно всем узлам. Как ограниченный широковещательный IP-адрес, так и широковещательный IP-адрес имеют пределы распространения в интерсети - они ограничены либо сетью, к которой принадлежит узел - источник пакета, либо сетью, номер которой указан в адресе назначения. Поэтому деление сети с помощью маршрутизаторов на части локализует широковещательный шторм пределами одной из составляющих общую сеть частей просто потому, что нет способа адресовать пакет одновременно всем узлам всех сетей составной сети.
Отображение физических адресов на IP-адреса: протоколы ARP и RARP
В протоколе IP-адрес узла, то есть адрес компьютера или порта маршрутизатора, назначается произвольно администратором сети и прямо не связан с его локальным адресом, как это сделано, например, в протоколе IPX. Подход, используемый в IP, удобно использовать в крупных сетях и по причине его независимости от формата локального адреса, и по причине стабильности, так как в противном случае, при смене на компьютере сетевого адаптера это изменение должны бы были учитывать все адресаты всемирной сети Internet (в том случае, конечно, если сеть подключена к Internet'у).
Локальный адрес используется в протоколе IP только в пределах локальной сети при обмене данными между маршрутизатором и узлом этой сети. Маршрутизатор, получив пакет для узла одной из сетей, непосредственно подключенных к его портам, должен для передачи пакета сформировать кадр в соответствии с требованиями принятой в этой сети технологии и указать в нем локальный адрес узла, например его МАС-адрес. В пришедшем пакете этот адрес не указан, поэтому перед маршрутизатором встает задача поиска его по известному IP-адресу, который указан в пакете в качестве адреса назначения. С аналогичной задачей сталкивается и конечный узел, когда он хочет отправить пакет в удаленную сеть через маршрутизатор, подключенный к той же локальной сети, что и данный узел.
Для определения локального адреса по IP-адресу используется протокол разрешения адреса Address Resolution Protocol, ARP. Протокол ARP работает различным образом в зависимости от того, какой протокол канального уровня работает в данной сети - протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещательного доступа одновременно ко всем узлам сети, или же протокол глобальной сети (X.25, frame relay), как правило не поддерживающий широковещательный доступ. Существует также протокол, решающий обратную задачу - нахождение IP-адреса по известному локальному адресу. Он называется реверсивный ARP - RARP (Reverse Address Resolution Protocol) и используется при старте бездисковых станций, не знающих в начальный момент своего IP-адреса, но знающих адрес своего сетевого адаптера.
В локальных сетях протокол ARP использует широковещательные кадры протокола канального уровня для поиска в сети узла с заданным IP-адресом.
Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно. Все узлы локальной сети получают ARP запрос и сравнивают указанный там IP-адрес с собственным. В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP запросе отправитель указывает свой локальный адрес. ARP-запросы и ответы используют один и тот же формат пакета. Так как локальные адреса могут в различных типах сетей иметь различную длину, то формат пакета протокола ARP зависит от типа сети.
В поле типа сети для сетей Ethernet указывается значение 1. Поле типа протокола позволяет использовать пакеты ARP не только для протокола IP, но и для других сетевых протоколов.
Длина локального адреса для протокола Ethernet равна 6 байтам, а длина IP-адреса - 4 байтам. В поле операции для ARP запросов указывается значение 1 для протокола ARP и 2 для протокола RARP.
Узел, отправляющий ARP-запрос, заполняет в пакете все поля, кроме поля искомого локального адреса (для RARP-запроса не указывается искомый IP-адрес). Значение этого поля заполняется узлом, опознавшим свой IP-адрес.
В глобальных сетях администратору сети чаще всего приходится вручную формировать ARP-таблицы, в которых он задает, например, соответствие IP-адреса адресу узла сети X.25, который имеет смысл локального адреса. В последнее время наметилась тенденция автоматизации работы протокола ARP и в глобальных сетях. Для этой цели среди всех маршрутизаторов, подключенных к какой-либо глобальной сети, выделяется специальный маршрутизатор, который ведет ARP-таблицу для всех остальных узлов и маршрутизаторов этой сети.
При таком централизованном подходе для всех узлов и маршрутизаторов вручную нужно задать только IP-адрес и локальный адрес выделенного маршрутизатора. Затем каждый узел и маршрутизатор регистрирует свои адреса в выделенном маршрутизаторе, а при необходимости установления соответствия между IP-адресом и локальным адресом узел обращается к выделенному маршрутизатору с запросом и автоматически получает ответ без участия администратора.
[pagebreak]
Отображение символьных адресов на IP-адреса: служба DNS
DNS (Domain Name System) - это распределенная база данных, поддерживающая иерархическую систему имен для идентификации узлов в сети Internet. Служба DNS предназначена для автоматического поиска IP-адреса по известному символьному имени узла. Спецификация DNS определяется стандартами RFC 1034 и 1035. DNS требует статической конфигурации своих таблиц, отображающих имена компьютеров в IP-адрес.
Протокол DNS является служебным протоколом прикладного уровня. Этот протокол несимметричен - в нем определены DNS-серверы и DNS-клиенты. DNS-серверы хранят часть распределенной базы данных о соответствии символьных имен и IP-адресов. Эта база данных распределена по административным доменам сети Internet. Клиенты сервера DNS знают IP-адрес сервера DNS своего административного домена и по протоколу IP передают запрос, в котором сообщают известное символьное имя и просят вернуть соответствующий ему IP-адрес.
Если данные о запрошенном соответствии хранятся в базе данного DNS-сервера, то он сразу посылает ответ клиенту, если же нет - то он посылает запрос DNS-серверу другого домена, который может сам обработать запрос, либо передать его другому DNS-серверу. Все DNS-серверы соединены иерархически, в соответствии с иерархией доменов сети Internet. Клиент опрашивает эти серверы имен, пока не найдет нужные отображения. Этот процесс ускоряется из-за того, что серверы имен постоянно кэшируют информацию, предоставляемую по запросам. Клиентские компьютеры могут использовать в своей работе IP-адреса нескольких DNS-серверов, для повышения надежности своей работы.
База данных DNS имеет структуру дерева, называемого доменным пространством имен, в котором каждый домен (узел дерева) имеет имя и может содержать поддомены. Имя домена идентифицирует его положение в этой базе данных по отношению к родительскому домену, причем точки в имени отделяют части, соответствующие узлам домена.
Корень базы данных DNS управляется центром Internet Network Information Center. Домены верхнего уровня назначаются для каждой страны, а также на организационной основе. Имена этих доменов должны следовать международному стандарту ISO 3166. Для обозначения стран используются трехбуквенные и двухбуквенные аббревиатуры, а для различных типов организаций используются следующие аббревиатуры:
* com - коммерческие организации (например, microsoft.com);
* edu - образовательные (например, mit.edu);
* gov - правительственные организации (например, nsf.gov);
* org - некоммерческие организации (например, fidonet.org);
* net - организации, поддерживающие сети (например, nsf.net).
Каждый домен DNS администрируется отдельной организацией, которая обычно разбивает свой домен на поддомены и передает функции администрирования этих поддоменов другим организациям. Каждый домен имеет уникальное имя, а каждый из поддоменов имеет уникальное имя внутри своего домена. Имя домена может содержать до 63 символов. Каждый хост в сети Internet однозначно определяется своим полным доменным именем (fully qualified domain name, FQDN), которое включает имена всех доменов по направлению от хоста к корню.
Автоматизация процесса назначения IP-адресов узлам сети - протокол DHCP
Как уже было сказано, IP-адреса могут назначаться администратором сети вручную. Это представляет для администратора утомительную процедуру. Ситуация усложняется еще тем, что многие пользователи не обладают достаточными знаниями для того, чтобы конфигурировать свои компьютеры для работы в интерсети и должны поэтому полагаться на администраторов.
Протокол Dynamic Host Configuration Protocol (DHCP) был разработан для того, чтобы освободить администратора от этих проблем. Основным назначением DHCP является динамическое назначение IP-адресов. Однако, кроме динамического, DHCP может поддерживать и более простые способы ручного и автоматического статического назначения адресов.
В ручной процедуре назначения адресов активное участие принимает администратор, который предоставляет DHCP-серверу информацию о соответствии IP-адресов физическим адресам или другим идентификаторам клиентов. Эти адреса сообщаются клиентам в ответ на их запросы к DHCP-серверу.
При автоматическом статическом способе DHCP-сервер присваивает IP-адрес (и, возможно, другие параметры конфигурации клиента) из пула наличных IP-адресов без вмешательства оператора. Границы пула назначаемых адресов задает администратор при конфигурировании DHCP-сервера. Между идентификатором клиента и его IP-адресом по-прежнему, как и при ручном назначении, существует постоянное соответствие. Оно устанавливается в момент первичного назначения сервером DHCP IP-адреса клиенту. При всех последующих запросах сервер возвращает тот же самый IP-адрес.
При динамическом распределении адресов DHCP-сервер выдает адрес клиенту на ограниченное время, что дает возможность впоследствии повторно использовать IP-адреса другими компьютерами. Динамическое разделение адресов позволяет строить IP-сеть, количество узлов в которой намного превышает количество имеющихся в распоряжении администратора IP-адресов.
DHCP обеспечивает надежный и простой способ конфигурации сети TCP/IP, гарантируя отсутствие конфликтов адресов за счет централизованного управления их распределением. Администратор управляет процессом назначения адресов с помощью параметра "продолжительности аренды" (lease duration), которая определяет, как долго компьютер может использовать назначенный IP-адрес, перед тем как снова запросить его от сервера DHCP в аренду.
Примером работы протокола DHCP может служить ситуация, когда компьютер, являющийся клиентом DHCP, удаляется из подсети. При этом назначенный ему IP-адрес автоматически освобождается. Когда компьютер подключается к другой подсети, то ему автоматически назначается новый адрес. Ни пользователь, ни сетевой администратор не вмешиваются в этот процесс. Это свойство очень важно для мобильных пользователей.
Протокол DHCP использует модель клиент-сервер. Во время старта системы компьютер-клиент DHCP, находящийся в состоянии "инициализация", посылает сообщение discover (исследовать), которое широковещательно распространяется по локальной сети и передается всем DHCP-серверам частной интерсети. Каждый DHCP-сервер, получивший это сообщение, отвечает на него сообщением offer (предложение), которое содержит IP-адрес и конфигурационную информацию.
Компьютер-клиент DHCP переходит в состояние "выбор" и собирает конфигурационные предложения от DHCP-серверов. Затем он выбирает одно из этих предложений, переходит в состояние "запрос" и отправляет сообщение request (запрос) тому DHCP-серверу, чье предложение было выбрано.
Выбранный DHCP-сервер посылает сообщение DHCP-acknowledgment (подтверждение), содержащее тот же IP-адрес, который уже был послан ранее на стадии исследования, а также параметр аренды для этого адреса. Кроме того, DHCP-сервер посылает параметры сетевой конфигурации. После того, как клиент получит это подтверждение, он переходит в состояние "связь", находясь в котором он может принимать участие в работе сети TCP/IP. Компьютеры-клиенты, которые имеют локальные диски, сохраняют полученный адрес для использования при последующих стартах системы. При приближении момента истечения срока аренды адреса компьютер пытается обновить параметры аренды у DHCP-сервера, а если этот IP-адрес не может быть выделен снова, то ему возвращается другой IP-адрес.
В протоколе DHCP описывается несколько типов сообщений, которые используются для обнаружения и выбора DHCP-серверов, для запросов информации о конфигурации, для продления и досрочного прекращения лицензии на IP-адрес. Все эти операции направлены на то, чтобы освободить администратора сети от утомительных рутинных операций по конфигурированию сети.
Однако использование DHCP несет в себе и некоторые проблемы. Во-первых, это проблема согласования информационной адресной базы в службах DHCP и DNS. Как известно, DNS служит для преобразования символьных имен в IP-адреса. Если IP-адреса будут динамически изменятся сервером DHCP, то эти изменения необходимо также динамически вносить в базу данных сервера DNS. Хотя протокол динамического взаимодействия между службами DNS и DHCP уже реализован некоторыми фирмами (так называемая служба Dynamic DNS), стандарт на него пока не принят.
Во-вторых, нестабильность IP-адресов усложняет процесс управления сетью. Системы управления, основанные на протоколе SNMP, разработаны с расчетом на статичность IP-адресов. Аналогичные проблемы возникают и при конфигурировании фильтров маршрутизаторов, которые оперируют с IP-адресами.
Наконец, централизация процедуры назначения адресов снижает надежность системы: при отказе DHCP-сервера все его клиенты оказываются не в состоянии получить IP-адрес и другую информацию о конфигурации. Последствия такого отказа могут быть уменьшены путем использовании в сети нескольких серверов DHCP, каждый из которых имеет свой пул IP-адресов.
|
|
|
Сетевой уровень в первую очередь должен предоставлять средства для решения следующих задач:
* доставки пакетов в сети с произвольной топологией,
* структуризации сети путем надежной локализации трафика,
* согласования различных протоколов канального уровня.
Локализация трафика и изоляция сетей
Трафик в сети складывается случайным образом, однако в нем отражены и некоторые закономерности. Как правило, некоторые пользователи, работающие над общей задачей, (например, сотрудники одного отдела) чаще всего обращаются с запросами либо друг к другу, либо к общему серверу, и только иногда они испытывают необходимость доступа к ресурсам компьютеров другого отдела.
Желательно, чтобы структура сети соответствовала структуре информационных потоков. В зависимости от сетевого трафика компьютеры в сети могут быть разделены на группы (сегменты сети). Компьютеры объединяются в группу, если большая часть порождаемых ими сообщений, адресована компьютерам этой же группы.
Для разделения сети на сегменты используются мосты и коммутаторы. Они экранируют локальный трафик внутри сегмента, не передавая за его пределы никаких кадров, кроме тех, которые адресованы компьютерам, находящимся в других сегментах. Тем самым, сеть распадается на отдельные подсети. Это позволяет более рационально выбирать пропускную способность имеющихся линий связи, учитывая интенсивность трафика внутри каждой группы, а также активность обмена данными между группами.
Однако локализация трафика средствами мостов и коммутаторов имеет существенные ограничения.
С одной стороны, логические сегменты сети, расположенные между мостами, недостаточно изолированы друг от друга, а именно, они не защищены от, так называемых, широковещательных штормов. Если какая-либо станция посылает широковещательное сообщение, то это сообщение передается всем станциям всех логических сегментов сети. Защита от широковещательных штормов в сетях, построенных на основе мостов, имеет количественный, а не качественный характер: администратор просто ограничивает количество широковещательных пакетов, которое разрешается генерировать некоторому узлу.
С другой стороны, использование механизма виртуальных сегментов, реализованного в коммутаторах локальных сетей, приводит к полной локализации трафика - такие сегменты полностью изолированы друг от друга, даже в отношении широковещательных кадров. Поэтому в сетях, построенных только на мостах и коммутаторах, компьютеры, принадлежащие разным виртуальным сегментам, не образуют единой сети.
Приведенные недостатки мостов и коммутаторов связаны с тем, что они работают по протоколам канального уровня, в которых в явном виде не определяется понятие части сети (или подсети, или сегмента), которое можно было бы использовать при структуризации большой сети. Вместо того, чтобы усовершенствовать канальный уровень, разработчики сетевых технологий решили поручить задачу построения составной сети новому уровню - сетевому.
Согласование протоколов канального уровня
Современные вычислительные сети часто строятся с использованием нескольких различных базовых технологий - Ethernet, Token Ring или FDDI. Такая неоднородность возникает либо при объединении уже существовавших ранее сетей, использующих в своих транспортных подсистемах различные протоколы канального уровня, либо при переходе к новым технологиям, таким, как Fast Ethernet или 100VG-AnyLAN.
Именно для образования единой транспортной системы, объединяющей несколько сетей с различными принципами передачи информации между конечными узлами, и служит сетевой уровень. Когда две или более сетей организуют совместную транспортную службу, то такой режим взаимодействия обычно называют межсетевым взаимодействием (internetworking). Для обозначения составной сети в англоязычной литературе часто также используется термин интерсеть (internetwork или internet).
Создание сложной структурированной сети, интегрирующей различные базовые технологии, может осуществляться и средствами канального уровня: для этого могут быть использованы некоторые типы мостов и коммутаторов. Однако возможностью трансляции протоколов канального уровня обладают далеко не все типы мостов и коммутаторов, к тому же возможности эти ограничены. В частности, в объединяемых сетях должны совпадать максимальные размеры полей данных в кадрах, так как канальные протоколы, как правило, не поддерживают функции фрагментации пакетов.
Маршрутизация в сетях с произвольной топологией
Среди протоколов канального уровня некоторые обеспечивают доставку данных в сетях с произвольной топологией, но только между парой соседних узлов (например, протокол PPP), а некоторые - между любыми узлами (например, Ethernet), но при этом сеть должна иметь топологию определенного и весьма простого типа, например, древовидную.
При объединении в сеть нескольких сегментов с помощью мотов или коммутаторов продолжают действовать ограничения на ее топологию: в получившейся сети должны отсутствовать петли. Действительно, мост или его функциональный аналог - коммутатор - могут решать задачу доставки пакета адресату только тогда, когда между отправителем и получателем существует единственный путь. В то же время наличие избыточных связей, которые и образуют петли, часто необходимо для лучшей балансировки нагрузки, а также для повышения надежности сети за счет существования альтернативного маршрута в дополнение к основному.
Сетевой уровень позволяет передавать данные между любыми, произвольно связанными узлами сети.
Реализация протокола сетевого уровня подразумевает наличие в сети специального устройства - маршрутизатора. Маршрутизаторы объединяют отдельные сети в общую составную сеть. Внутренняя структура каждой сети не показана, так как она не имеет значения при рассмотрении сетевого протокола. К каждому маршрутизатору могут быть присоединены несколько сетей (по крайней мере две).
В сложных составных сетях почти всегда существует несколько альтернативных маршрутов для передачи пакетов между двумя конечными узлами. Задачу выбора маршрутов из нескольких возможных решают маршрутизаторы, а также конечные узлы.
Маршрут - это последовательность маршрутизаторов, которые должен пройти пакет от отправителя до пункта назначения.
Маршрутизатор выбирает маршрут на основании своего представления о текущей конфигурации сети и соответствующего критерия выбора маршрута. Обычно в качестве критерия выступает время прохождения маршрута, которое в локальных сетях совпадает с длиной маршрута, измеряемой в количестве пройденных узлов маршрутизации (в глобальных сетях принимается в расчет и время передачи пакета по каждой линии связи).
[pagebreak]
Сетевой уровень и модель OSI
В модели OSI, называемой также моделью взаимодействия открытых систем (Open Systems Interconnection - OSI) и разработанной Международной Организацией по Стандартам (International Organization for Standardization - ISO), средства сетевого взаимодействия делятся на семь уровней, для которых определены стандартные названия и функции.
Сетевой уровень занимает в модели OSI промежуточное положение: к его услугам обращаются протоколы прикладного уровня, сеансового уровня и уровня представления. Для выполнения своих функций сетевой уровень вызывает функции канального уровня, который в свою очередь обращается к средствам физического уровня.
Рассмотрим коротко основные функции уровней модели OSI.
Физический уровень выполняет передачу битов по физическим каналам, таким, как коаксиальный кабель, витая пара или оптоволоконный кабель. На этом уровне определяются характеристики физических сред передачи данных и параметров электрических сигналов.
Канальный уровень обеспечивает передачу кадра данных между любыми узлами в сетях с типовой топологией либо между двумя соседними узлами в сетях с произвольной топологией. В протоколах канального уровня заложена определенная структура связей между компьютерами и способы их адресации. Адреса, используемые на канальном уровне в локальных сетях, часто называют МАС-адресами.
Сетевой уровень обеспечивает доставку данных между любыми двумя узлами в сети с произвольной топологией, при этом он не берет на себя никаких обязательств по надежности передачи данных.
Транспортный уровень обеспечивает передачу данных между любыми узлами сети с требуемым уровнем надежности. Для этого на транспортном уровне имеются средства установления соединения, нумерации, буферизации и упорядочивания пакетов.
Сеансовый уровень предоставляет средства управления диалогом, позволяющие фиксировать, какая из взаимодействующих сторон является активной в настоящий момент, а также предоставляет средства синхронизации в рамках процедуры обмена сообщениями.
Уровень представления. В отличии от нижележащих уровней, которые имеют дело с надежной и эффективной передачей битов от отправителя к получателю, уровень представления имеет дело с внешним представлением данных. На этом уровне могут выполняться различные виды преобразования данных, такие как компрессия и декомпрессия, шифровка и дешифровка данных.
Прикладной уровень - это в сущности набор разнообразных сетевых сервисов, предоставляемых конечным пользователям и приложениям. Примерами таких сервисов являются, например, электронная почта, передача файлов, подключение удаленных терминалов к компьютеру по сети.
При построении транспортной подсистемы наибольший интерес представляют функции физического, канального и сетевого уровней, тесно связанные с используемым в данной сети оборудованием: сетевыми адаптерами, концентраторами, мостами, коммутаторами, маршрутизаторами. Функции прикладного и сеансового уровней, а также уровня представления реализуются операционными системами и системными приложениями конечных узлов. Транспортный уровень выступает посредником между этими двумя группами протоколов.
Функции сетевого уровня
Протоколы канального уровня не позволяют строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Для того, чтобы, с одной стороны, сохранить простоту процедур передачи пакетов для типовых топологий, а с другой стороны, допустить использование произвольных топологий, вводится дополнительный сетевой уровень.
Прежде, чем приступить к рассмотрению функций сетевого уровня , уточним, что понимается под термином "сеть". В протоколах сетевого уровня термин "сеть" означает совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи пакетов общую базовую сетевую технологию. Внутри сети сегменты не разделяются маршрутизаторами, иначе это была бы не одна сеть, а несколько сетей. Маршрутизатор соединят несколько сетей в интерсеть.
Основная идея введения сетевого уровня состоит в том, чтобы оставить технологии, используемые в объединяемых сетях в неизменном в виде, но добавить в кадры канального уровня дополнительную информацию - заголовок сетевого уровня, на основании которой можно было бы находить адресата в сети с любой базовой технологией. Заголовок пакета сетевого уровня имеет унифицированный формат, не зависящий от форматов кадров канального уровня тех сетей, которые могут входить в объединенную сеть.
Заголовок сетевого уровня должен содержать адрес назначения и другую информацию, необходимую для успешного перехода пакета из сети одного типа в сеть другого типа. К такой информации может относиться, например:
* номер фрагмента пакета, нужный для успешного проведения операций сборки-разборки фрагментов при соединении сетей с разными максимальными размерами кадров канального уровня,
* время жизни пакета, указывающее, как долго он путешествует по интерсети, это время может использоваться для уничтожения "заблудившихся" пакетов,
* информация о наличии и о состоянии связей между сетями, помогающая узлам сети и маршрутизаторам рационально выбирать межсетевые маршруты,
* информация о загруженности сетей, также помогающая согласовать темп посылки пакетов в сеть конечными узлами с реальными возможностями линий связи на пути следования пакетов,
* качество сервиса - критерий выбора маршрута при межсетевых передачах - например, узел-отправитель может потребовать передать пакет с максимальной надежностью, возможно в ущерб времени доставки.
В качестве адресов отправителя и получателя в составной сети используется не МАС-адрес, а пара чисел - номер сети и номер компьютера в данной сети. В канальных протоколах поле "номер сети" обычно отсутствует - предполагается, что все узлы принадлежат одной сети. Явная нумерация сетей позволяет протоколам сетевого уровня составлять точную карту межсетевых связей и выбирать рациональные маршруты при любой их топологии, используя альтернативные маршруты, если они имеются, что не умеют делать мосты.
Таким образом, внутри сети доставка сообщений регулируется канальным уровнем. А вот доставкой пакетов между сетями занимается сетевой уровень.
Существует два подхода к назначению номера узла в заголовке сетевого пакета. Первый основан на использовании для каждого узла нового адреса, отличного от того, который использовался на канальном уровне. Преимуществом такого подхода является его универсальность и гибкость - каков бы ни был формат адреса на канальном уровне, формат адреса узла на сетевом уровне выбирается единым. Однако, здесь имеются и некоторые неудобства, связанные с необходимостью заново нумеровать узлы, причем чаще всего вручную.
Второй подход состоит в использовании на сетевом уровне того же адреса узла, что был дан ему на канальном уровне. Это избавляет администратора от дополнительной работы по присвоению новых адресов, снимает необходимость в установлении соответствия между сетевым и канальным адресом одного и того же узла, но может породить сложную задачу интерпретации адреса узла при соединении сетей с разными форматами адресов.
Протоколы передачи данных и протоколы обмена маршрутной информацией
Для того, чтобы иметь информацию о текущей конфигурации сети, маршрутизаторы обмениваются маршрутной информацией между собой по специальному протоколу. Протоколы этого типа называются протоколами обмена маршрутной информацией (или протоколами маршрутизации). Протоколы обмена маршрутной информацией следует отличать от, собственно, протоколов сетевого уровня. В то время как первые несут чисто служебную информацию, вторые предназначены для передачи пользовательских данных, также, как это делают протоколы канального уровня.
Для того, чтобы доставить удаленному маршрутизатору пакет протокола обмена маршрутной информацией, используется протокол сетевого уровня, так как только он может передать информацию между маршрутизаторами, находящимися в разных сетях. Пакет протокола обмена маршрутной информацией помещается в поле данных пакета сетевого уровня, поэтому с точки зрения вложенности пакетов протоколы маршрутизации следует отнести к более высокому уровню, чем сетевой. Но функционально они решают общую задачу с пакетами сетевого уровня - доставляют кадры адресату через разнородную составную сеть.
С помощью протоколов обмена маршрутной информацией маршрутизаторы составляют карту межсетевых связей той или иной степени подробности и принимают решение о том, какому следующему маршрутизатору нужно передать пакет для образования рационального пути.
На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов - Address Resolution Protocol, ARP. Иногда их относят не к сетевому уровню, а к канальному, хотя тонкости классификации не изменяют их сути.
|
|
Внимание! Если у вас не получилось найти нужную информацию, используйте рубрикатор или воспользуйтесь поиском
.
книги по программированию исходники компоненты шаблоны сайтов C++ PHP Delphi скачать
|
|