Библиотека Qt представляет собой набор классов C++ и инструментов разработки программ для Windows, Linux, Mac OS X и встраиваемых систем (Embedded Linux). Исходные тексты библиотеки открыты, но лицензия GPL требует, чтобы программы, которые разрабатываются с использованием Qt, распространялись с открытым исходным кодом. Поэтому если вы не желаете открывать исходный код своей программы, то должны приобрести коммерческую версию Qt. На всех платформах библиотека Qt использует свой собственный набор визуальных элементов, в результате приложения, созданные на её основе, во всех системах выглядят и работают одинаково (исключение составляют декоративные элементы главного окна приложения и некоторые стандартные диалоги, которые реализуются не самой библиотекой Qt, а с помощью API текущей платформы). Более того, при запуске любого приложения Qt может быть указан параметр -style=ИмяСтиля, который управляет внешним видом всех элементов интерфейса. В качестве имени стиля на любой платформе допускается указывать Windows, CDE, Motif, Plastique или Cleanlooks. Другие стили (WindowXP и Mac) доступны только на своих "родных" платформах.
По сравнению с предыдущей версией библиотеки, Qt3, структура классов Qt4 существенно изменилась, поэтому старые приложения Qt3 требуют переработки своего исходного текста. Хотя процедура конвертации в достаточной степени автоматизирована (имеется утилита qt3to4), но в серьёзных проектах без "ручной" работы обойтись не получится.
Подобно программным продуктам Microsoft Office для Windows, функциональные возможности которых можно расширять с помощью встроенного языка Visual Basic, в приложения Qt тоже может быть встроен свой скриптовый язык QSA (Qt Script for Applications).
Библиотека Qt является безусловным лидером среди имеющихся средств разработки межплатформенных программ на языке C++. Широко известная и часто используемая в мире Linux, она, благодаря распространению графической оболочки KDE, стала де-факто стандартом проектирования программного обеспечения на этой платформе. К сожалению, для разработчиков Windows-приложений библиотека Qt долгое время не выходила на передний план, поскольку для Windows существовали более доступные и удобные средства быстрой разработки программ. Но последнее время расстановка сил в корне изменилась. Во-первых, новая, 4-я версия библиотеки Qt, наконец, дотянулась по своим возможностям до тех вершин, на которых долгое время господствовали Microsoft и Borland/Inprise. Во-вторых, самой Borland пришлось обратиться к Qt, когда встал вопрос о разработке межплатформенных программ. Набор универсальных компонентов CLX в Delphi/Kylix представляет собой всего лишь оболочку, позволяющую языку Object Pascal работать с определёнными на C++ классами Qt. В-третьих, версия Qt для Windows, наконец-то, стала свободной, а не только коммерческой, как это было раньше.
Данная справка входит в "Серию русских справок по C++Builder" и является ее неотъемлемой составляющей. По сравнению с предыдущими версиями 5.1 (ее демо-версия прилагалась к книге Архангельского А.Я "Программирование в C++Builder 5") и 5.2 справка существенно переработана и дополнена.
Справка не является переводом англоязычной справки, встроенной в среду C++Builder 6, и не повторяет ее структуру и темы. Она в значительной степени составлена на основе материалов книги Архангельского А.Я. "Программирование в C++Builder 6" и готовящейся к выпуску книги "C++Builder 6. Справочное пособие", но содержит больше справочных материалов.
Environmental Audio (дословно окружающий звук)- это новый стандарт звука, разработанный фирмой Creative Labs, создающий эффекты окружающей среды реального мира на компьютере. Environmental Audio сегодня ужк много больше простого surround -звука и 3D моделирования. Это и настоящее моделирование окружающей среды с помощью мощных эффектов с учётом размеров комнаты, её звуковых особенностей, реверберации, эхо и многих других эффектов, создающих ощущение реального аудио мира.
Как работает Environmental Audio
Эффекты окружающей среды моделируются при помощи технологии E-mu Environmental Modeling, поддерживаемой аудиопроцессором EMU10K1, установленного на серии звуковых карт SBLive! Технология Environmental Audio разработана с учётом работы на наушниках, двух или четырёх колонках. Чип EMU10K1 раскладывает любой звуковой поток на множество каналов, где накладывает эффекты в реальном времени. За счёт этого создаются уже новые звуки, такие, как они должны быть в природе. На стадии обработки звука кроме его пололжения в пространстве должны быть учтены, как минимум, два фактора: размер помещения и реверберация, так как человеческое ухо слышит не просто оригинальный звук, а звук с учётом дистанции, местоположения и громкости. Стандарт Environmental Audio обрабатывает все эти условия для получения высококачественного реального звука.
Environmental Audio использует координаты X, Y, Z, а также реверберацию и отражения звука. Эти координаты используются при базовой подготовки каналов аудио источника и эффектов "окраски" звуковой сцены. Основная мощность аудиопроцессора расходуется на обработку каждого звукового источника по всем каналам и на добаление эффектов в реальном времени. Как уже говорилось, для создания ощущения реального звука нужно учитывать как минимум 3 фактора: расстояние до источника звука, размер звукового помещения и реверберацию.
Environmental Audio Extensions (EAX)
Это API, разработанный фирмой Creative Labs для достижения реальных звуковых эффектов в компьютерных играх. EAX- это расширение API DirectSound3D от фирмы Microsoft На 18 Октября 1999 года единственной звуковой картой, поддерживающей этот стандарт является Sound Blaster Live! (в разных модификациях). На сегодня Creative выпустила три версии этого стандарта.
DirectSound3D управляет местоположением в 3D пространстве игры источников звука и слушателя. Например, игра может использовать DirectSound3D для создания раздельных источников звука для каждого существа в игре, получая, таким образом, звуки выстрелов и голоса в разных местах 3D-мира. Эти звуки, также как и слушатель, могут перемещаться в пространстве. Разработчики игр могут использовать такие звуковые возможности, как палитра направлений (звук в одном направлении может идти громче, чем в другом), эффект Допплера (звук может нарастать, достигнув слушателя, и потом спадать, как бы удаляясь в пространство).
EAX улучшает DirectSound3D созданием виртуального окружающего аудио мира вокруг источников звука и слушателя. Эта технология эмулирует реверберации и отражения, идущие со всех сторон от слушателя. Эти эффекты создают впечатление, что вокруг слушателя существует реальный мир со своими параметрами, как то: размер помещения, отражающие и поглощающие свойства стен и другие. Программисты игр могут создавать различные акустические эффекты для разных помещений. Таким образом, игрок, который играет в EAX игру может слышать разницу в звуке при переходе из коридора в пещеру.
В дополнении к созданию окружающих эффектов, EAX 1.0 может изменять параметры различных источников звука. При изменении местоположения источника звука относительно слушателя автоматически изменяются параметры реверберации.
Что касается программирования, то здесь EAX предоставляет следующие возможности.
* Выбор среди большого числа "пресетов" для моделирования эффектов окружающей среды.
* Возможность изменять параметры пресетов окружающей среды для каждого источника в отдельности.
* Автоматическое изменение критических параметров, применяемых к позиции. Когда источник звука движется по отношению к слушателю, EAX автоматически изменяет параметры отражения звука и реверберации для создания более реальных звуковых эффектов при движении источника звука через 3D звуковой мир.
Occlusions и Obstructions
Эффект occlusions создаёт впечатление, что источник звука находится в другой комнате, в другом месте, за стеной. Это свойство позволяет изменять параметры передачи звуковой характеристики для получения эффекта различных материалов стен и их толщину. Например, программа может использовать это свойство для создания звука, идущего из-за двери, или из-за стены.
Эффект obstructions позволяет эмулировать звуковые препятствия, создавая ощущение, что источник звука находится в той же комнате, но за препятствием. Например, можно сделать так, что звук будет идти из-за большого камня, находящегося в той же пещере, что и слушатель.
Геометрическое моделирование и EAX
Геометрическая модель сцены используется как в графических целях, так и для создания 3D звука. Для создания геометрической модели компьютер должен иметь данные о физических свойствах мира: какие объекты где расположены, какие звуконепроницаемые, какие звукопоглощающие и так далее. После того, как эта информация получена, производится расчёт некоторого количества слышимых отражений и поглощений звука от этих объектов для каждого источника звука. Это приводит к затуханиям звука, из-за препятствий, звуконепроницаемых стен и так далее. Расчёты отражений методом "зеркала" широко используются для создания акустики зданий. Этот метод подразумевает, что звук отражается прямо (как от зеркала) без преломлений и поглощений. На самом же деле, вместо того, чтобы в реальном времени рассчитывать все отражения и особенности среды (что на самом деле процесс трудоёмкий) используются заранее рассчитанные упрощённые модели геометрических аудио сред, которые отличаются от графических представлений о среде. То есть в игре используются одновременно отдельная среда для визуальных эффектов и более простая для звуковых эффектов. Это создаёт проблемы, как, например, если бы вы захотели передвинуть часть стены в комнате, то вам пришлось бы создавать новую среду для звука. В настоящее время над геометрическим моделирование звука ведутся работы во многих звуковых лабораториях.
EAX для разработчиков
EAX не требует того, чтобы источники звука привязывались к графическому представлению об окружающей среде. Но при желании разработчик, который хочет создать звуковые эффекты "повышенной реальности", которые максимально близки к графическому представлению о сцене может использовать дополнительное управление ранними отражениями, преломлениями и поглощениями. При создании своих эффектов EAX использует статические модели среды, а не её геометрические параметры. Эти модели автоматически рассчитывают реверберации и отражения относительно слушателя с учётом размеров помещения, направления звука и других параметров, которые программист может добавлять, для каждого источника звука. Поэтому EAX намного проще других стандартов, так как он не требует описания геометрической среды сцены, а использует подготовленные заранее модели. Игра может менять звуковые модели при переходе от одного места к другому для создания реальных эффектов. Я хочу рассмотреть это подробней. Допустим, у вас есть сцена в игре ввиде каменной пещеры. Есть два способа получить высокореалистичные эффекты. Первый из них- рассчитать геометрическую модель и использовать её как аудио маску для сцены, причём новые технологии будут позволять делать это в реальном времени. Второй способ- взять готовый пресет и, при необходимости, изменить его для получения более качественных эффектов. Разумеется, первый способ даст больший реализм, чем второй, но и потратит ресурсов в несколько раз больше. А если учитывать лень программистов, то в этом случае EAX наиболее благоприятный вариант.
Различия между EAX 1.0, 2.0 и 3.0
EAX 1.0
* Поддерживает изменение места в игре реверберации и отражений.
* Имеет большое количество пресетов.
* Позволяет (ограниченно) изменять реверберацию окружения.
* Позволяет автоматически изменять интенсивность реверберации, в зависимости от положения источника звука относительно слушателя.
EAX 1.0 строит звуковую сцену на основе заранее созданных пресетов, учитывая дистанцию между источниками звука и слушателем. Соответственно, EAX 1.0 предоставляет большой набор пресетов "на каждый случай жизни". Также имеется возможность изменять параметры поздней реверберации (дэмпинг, уровень) и автоматическое изменение уровня в зависимости от расстояния. Благодаря этому происходит улучшенное восприятие расстояния до источника.
EAX 2.0
* Обновлена реверберационная модель.
* Добавлены эффекты звуковых преград (Obstructions) и поглощений (Occlusions).
* Отдельное управление начальными отражениями и поздними реверберациями. Продолжительный контроль размеров помещений. Улучшенная дистанционная модель для автоматического управления реверберациями и начальными отражениями, основанными на местоположении источника звука относительно слушателя.
* Возможность учитывать звуковые свойства воздуха (поглощение звука).
* Теперь для использования эффектов Environmental Audio не не требуется описание геометрии помещения.
EAX 2.0 построен на возможностях первой версии и создаёт ещё более реалистичные эффекты засчёт поддержки преграждения и отражения звука, а также на улучшенной технологии определения направления звука.
EAX 3.0
* Контроль за ранними реверберациями и отражениями для каждого источника звука.
* Динамический переход между окружающими моделями.
* Улучшенная дистанционная модель для автоматического управления реверберацией и начальными отражениями в зависимости от положения источников звука относительно слушателя.
* Расчёты Ray-Tracing (отражение лучей) для получения параметров отражения для каждого источника звука.
* Отдельные отражения для дальних эхо.
* Улучшенное дистанционное представление, призванное заменить статические реверберационные модели.
EAX 3.0 совмещает вторую версию с более мощными возможностями. Новый уровень реализма достигается засчёт поддержки местных отражений, изолированных отражений, продолжительных переходов между звуковыми сценами и другими особенностями.
Вывод: по всему вышесказанному можно судить о том, что на сегодня EAX является очень перспективным и конкурентоспособным стандартом. Любой программист, несведующий в особенностях 3D звука сможет создавать реальные эффекты для своих игр с помощью пресетов. Что касается качества 3D звука, то оно вне конкуренции. Сейчас большинство игр не поддерживает (или поддерживает криво) такие эффекты, как преграждение и поглощение звука. Первой игрой, полностью поддерживающей EAX 2.0 обещает быть Unreal Tournament, если его не опередят. Там будет видно.
P.S. Я специально не стал сравнивать EAX с другими стандартами, как, например, A3D. Для этого нужны игры, поддерживающие одновременно и то и другое в полной форме. На сегодня таких игр нет.
Наверняка почти все читатели в той или иной степени знакомы с таким понятием как разгон, однако не все четко представляют себе как правильно и безболезненно разогнать свою видеокарту, и не знают некоторых тонкостей, встречающихся при разгоне. Этот материал предназначен как раз для новичков в разгоне, собравшихся разогнать свою видеокарту. Сейчас мы постараемся достаточно четко и понятно рассказать о многих проблемах, встречающихся при разгоне, способах их решения, и, конечно же, поделимся некоторыми полезными советами по разгону видеокарт.
Что такое разгон видеокарт?
Под разгоном видеокарт подразумевается увеличение рабочих частот видеокарты. Но также разгоном можно назвать и другие способы внештатного увеличения производительности, будь то разблокировка дополнительных конвейеров на Radeon 9500/9800SE, или включение HyperZ на Radeon LE.
Имеет ли это практический смысл?
Несомненно. Разгон видеокарты является, без преувеличения, самым эффективным средством увеличения производительности компьютера в играх и других 3D-приложениях, за исключением лишь тех случаев, когда производительность сдерживает скорость платформы (читай, связки процессор+память).
Опасно ли это?
Нет. Шанс сгорания видеокарты при разгоне гораздо меньше чем допустим процессора. Да и вообще видеокарта не может сгореть от самого разгона, зато может от перегрева, хотя в большинстве случаев, при перегреве графического процессора машина попросту зависнет.
С другой стороны, работа на внештатных частотах, равно как форсированная работа любого другого компонента компьютера значительно сокращает срок службы карты. И эта особенность могла бы быть весьма серьезным сдерживающим фактором, если бы не одно «но» - срок службы видеокарты составляет куда более восьми лет, и даже при разгоне он уж меньше, чем лет пять не будет. А если посмотреть на существующую гонку технологии, в игровых компах карты более лет двух не держатся, так что если Вы не планируете оставлять видеокарту лет эдак на шесть, Вы можете совершенно спокойно её разогнать.
Вопросы гарантии
Главным побочным эффектом является то, что теоретически Вы полностью теряете гарантию на приобретенную видеокарту. Но не следует расстраиваться, потому как даже если карточка выйдет из строя, то доказать, что это произошло из-за разгона очень и очень проблематично :)))
Младшие и старшие модели
Ни для кого не секрет, что новые модели видеокарт выпускают так называемыми «линейками». Происходит это следующим образом – выходит какой-либо чип, затем на его основе выпускают сразу несколько видеокарт с разными частотами, а в некоторых случаях и на разных дизайнах с разной шириной шины памяти.
Однако, в любом случае, младшая модель, имеющая значительно меньшие частоты, чем старшая будет построена на том же самом чипе, а следовательно, установленной на младшей модели чип в большинстве случаев сможет заработать на частоте старшего, а то и выше.
Но и здесь всё не так гладко, как хотелось бы это видеть нам. Дело в том, что при производстве видеокарт, чипы проходят предварительное тестирование, и часть чипов, которая не смогла пройти тесты на максимальных частотах, установленных для старшей модели, отправляется на производство младших. Но если учитывать тот факт, что современная технология производства достаточно тонка, подобный «брак» ныне встречается не так часто.
Что же до памяти, то тут всё немного хуже – младшие модели оснащается более медленными чем старшие чипами, и разогнать память на младшей модели до частот старшей удается далеко не всегда.
В целом же, если посмотреть на процентные показатели среднестатистического разгона младших моделей в сравнении со старшими, первые имеют значительное преимущество за счет изначального запаса по частотам. Старшие же модели работают практически на пределе, и выжать из них дополнительные мегагерцы будет сложнее.
Какой прирост можно получить при разгоне видеокарты?
Здесь все зависит от условий тестирования, ну и естественно от степени увеличения частот. Хуже всего с этим у noname-карт, произведенных китайскими умельцами и у флагманских моделей линеек (например, GeForce4 Ti4600 или RADEON 9700 PRO). В первом случае карты слабо разгоняются из-за некачественных компонентов, коими оснащают свои продукты китайские умельцы, во втором же случае, платы и без того работают почти на предельных частотах, как мы уже сказали в предыдущем абзаце.
Как правило, при разгоне таких карт можно достичь лишь 15-20% прироста частот. Со средними и младшими моделями в линейках ситуация обстоит получше, потенциал для повышения частот побольше и разгоном таких карт можно улучшить производительность на 20-40%.
Самый хороший вариант - всевозможные оверклокерские сэмплы. На них прирост может составить 35-50%, а порой и больше.
Теперь несколько слов о картах с пониженной структурой организации памяти. Бытует мнение, что на таких картах бессмысленно разгонять чип, однако лично я совершенно с этим не согласен. Дело в том, что пользователи таких карт, как правило, играют в режимах типа 800x600 или 1024x768, и низкая пропуская способность памяти в таких режимах несильно ограничивает производительность, а вот на графический процессор нагрузка, наоборот больше.
Что такое синхронные и асинхронные частоты?
Частоты чипа и памяти видеокарты могут быть синхронными, то есть одинаковыми, или же асинхронными, иначе говоря, различными. Но в чем разница?
При работе видеокарты и обмене данными между графическим процессором (чипом) и памятью видеокарты, происходит синхронизация сигналов. В случае, если чип и память работают на одинаковых частотах, сигналы проходят одновременно и не уходит дополнительного времени на их синхронизацию, если же частоты различны, перед обменом данных, видеокарта должна синхронизовать сигналы, на что, разумеется, уходит немного времени.
Из этого, недолго думая, можно сделать простое умозаключение о том, что на синхронных частотах видеокарта будет работать немного быстрее, нежели на асинхронных. Но есть один момент…
Синхронные частоты выгодно ставить лишь в том случае, если возможные асинхронные частоты не слишком сильно отличаются. Например, у нас есть возможность поставить максимальные частоты 450/460 и больше частоты выставить нельзя. В таком случае, намного эффективнее будет пожертвовать десятью мегагерцами памяти ради синхронности поставить 450/450 – в таком случае видеокарта почти наверняка будет быстрее. Однако если же у нас есть возможность поставить частоты, например 475/450 или 450/480, такие варианты будут предпочтительнее синхронных 450/450 за счет значительно больших результирующих частот.
Что такое технологический процесс чипа и время доступа памяти, как они влияют на разгон?
Любой оверклокер обязательно должен знать, что такое технологический процесс чипа и время доступа памяти. Знание этих двух определений значительно поморгает в примерном определении максимальных частот разгоняемой видеокарты.
Но что же это такое? При изготовлении любого чипа играет весьма важную роль размер элементов микросхемы, ведь степень интеграции может быть разной, в один чип можно «набить» два миллиона транзисторов, в другой – сто два. И когда физический размер кристалла микросхемы ограничен, играет очень большую роль размер элементов микросхемы и расстояние между элементами в кристалле. Этот размер и называют технологическим процессом, и чем он меньше, тем большее количество элементов поместить в чип, тем меньшие токи требуют элементы для питания, тем меньше энергии выделяет чип, и, наконец, на тем больших частотах он может работать.
В настоящий момент подавляющее большинство чипов выпускают по технологическому процессу 0,13 и 0,15 микрон, а на стадии активного освоения находится и 0,11 микрон.
Что же касается памяти, то здесь крайне важную роль играет время доступа. Любые чипы памяти имеют заявленное производителем время, в течение которого происходит считывание инфы из ячейки памяти, и чем это время меньше, тем соответственно, быстрее работает память, и тем больше ее рабочие частоты. Зависимость примерной рабочей частоты о т времени доступа памяти предельно проста, и ее можно описать следующими формулами:
Частота памяти DDR = (1000/время доступа) X 2
Частота памяти SDR = 1000/время доступа
Следующий вопрос заключается в том, как можно узнать время доступа памяти. Как правило, время доступа скрыто в конце первой строчки маркировки. Например, на микросхемах памяти Samsung в конце первой строчки можно найти надпись типа TC-33 или TC40. Это означает, что память имеет время доступа 3,3 и 4 наносекунд соответственно, хотя в некоторых случаях, время обозначается не цифрой, а специальной маркировкой, например чипы памяти Samsung со временем доступа 2,8 нс. обозначаются как GC2A.
Не забывайте также, что точную информацию о чипе памяти можно получить на сайте производителя, либо просто воспользовавшись поиском по строчке с маркировкой памяти в том же Google.
Увы, жесткий диск компьютера почему-то всегда оказывается забит под завязку “самыми нужными” программами и данными, а цифровой аппарат всенепременно сообщит о том, что память переполнена, в тот момент, когда фотограф, вскинув фотокамеру, уже готов нажать кнопку спуска, чтобы сделать “главный кадр всей жизни”. Столкнувшись с подобным, поневоле приходится признать за информацией уникальную особенность, присущую кроме нее разве что только газам – обе эти субстанции (и газ, и информация) способны нацело заполнять весь предоставленный им объем, сколь бы велик он ни был…
Однако ученые и изобретатели постоянно ищут возможности сохранения все больших объемов информации и думают над тем, как можно расширить уже имеющиеся хранилища данных в существующих цифровых устройствах. Что касается настольных систем, то тут все понятно: жесткие диски становятся объемистее, а количество микросхем оперативной памяти, втискиваемых в корпус компьютера, постепенно стремится к бесконечности. Труднее обстоит дело с наладонными устройствами. В данном случае габариты имеют не последнее значение, так что подцепить, к примеру, к цифровому фотоаппарату винчестер не так-то просто (хотя видеокамеры со встроенным жестким диском уже выпускаются серийно). Приходится довольствоваться твердотельными устройствами хранения данных на основе микросхем flash-памяти, которые, впрочем, по объемам вполне могут сравниться с жесткими дисками 5-7-летней давности.
И не ОЗУ, и не ПЗУ
flash-память ведет свою родословную от постоянного запоминающего устройства (ПЗУ) компьютера, но при этом может работать как оперативное запоминающее устройство (ОЗУ). Для тех, кто подзабыл, наверное, стоит напомнить, в чем же собственно состоит разница между ПЗУ и ОЗУ. Так вот, главное преимущество постоянного запоминающего устройства – возможность хранить данные даже при отключении питания компьютера (от того-то в термине и присутствует слово “постоянное”). Правда, чтобы записать информацию в недра микросхемы flash-памяти, требуется специальный программатор, а сами данные записываются один раз и навсегда – возможности перезаписи данных в “классическом” ПЗУ нет (еще говорят, что микросхема “прожигается”, что в общем-то верно отражает физическую суть записи в ПЗУ). Что касается оперативной памяти, ОЗУ то есть, то этот тип накопителя данных, наоборот, не в состоянии хранить информацию при отключении питания, зато позволяет мгновенно записывать и считывать данные в процессе текущей работы компьютера. Flash-микросхема объединяет в себе качества обоих типов памяти: она позволяет сравнительно быстро записывать и считывать данные, да еще плюс к тому “не забывает” записанное после выключения питания. Именно эта способность к “долговременной памяти” и позволяет использовать flash-микросхемы в качестве альтернативы дискетам, компакт-дискам и жестким дискам, то есть устройствам хранения данных, которые могут годами, если не столетиями, сохранять информацию без какого-либо изменения и без всяких потерь.
Появилась же flash-память благодаря усилиям японских ученых. В 1984 г. компания Toshiba объявила о создании нового типа запоминающих устройств, а годом позже начала производство микросхем емкостью 256 Кbit. Правда, событие это, вероятно в силу малой востребованности в то время подобной памяти, не всколыхнуло мировую общественность. Второе рождение flash-микросхем произошло уже под брэндом Intel в 1988 г., когда мировой гигант радиоэлектронной промышленности разработал собственный вариант flash-памяти. Однако в течение почти целого десятилетия новинка оставалась вещью, широко известной лишь в узких кругах инженеров-компьютерщиков. И только появление малогабаритных цифровых устройств, требовавших для своей работы значительных объемов памяти, стало началом роста популярности flash-устройств. Начиная с 1997 г. flash-накопители стали использоваться в цифровых фотоаппаратах, потом “ареал обитания” твердотельной памяти с возможностью хранения и многократной перезаписи данных стал охватывать MP3-плейеры, наладонные компьютеры, цифровые видеокамеры и прочие миниатюрные “игрушки” для взрослых любителей цифрового мира.
Такое странное слово flash
Кстати сказать, как до сих пор идут споры о том, какой же все-таки год, 1984 или 1988-й, нужно считать временем появления “настоящей” flash-памяти, точно так же споры вызывает и происхождение самого термина flash, применяемого для обозначения этого класса устройств. Если обратиться к толковому словарю, то выяснится многозначность слова flash. Оно может обозначать короткий кадр фильма, вспышку, мелькание или отжиг стекла.
Согласно основной версии, термин flash появился в лабораториях компании Toshiba как характеристика скорости стирания и записи микросхемы флэш-памяти “in a flash”, то есть в мгновение ока. С другой стороны, причиной появления термина может быть слово, используемое для обозначения процесса “прожигания” памяти ПЗУ, который достался новинке в наследство от предшественников. В английском языке “засвечивание” или “прожигание” микросхемы постоянного запоминающего устройства обозначается словом flashing.
По третьей версии слово flash отражает особенность процесса записи данных в микросхемах этого типа. Дело в том, что, в отличие от прежнего ПЗУ, запись и стирание данных во flash-памяти производится блоками-кадрами, а термин flash как раз и имеет в качестве одного из значений – короткий кадр фильма.
Поскольку качество видео на DVD носителях превосходное, то вопрос защиты от копирования стоит острее, чем защита от копирования фильмов на VCD и видеокассета. Может показаться, что вообще невозможно предотвратить незаконное копирование как цифровых так и аналоговых форматов и в любом случае найдутся "умельцы". Но все же принимаются меры. Какие мы вам расскажем далее.
Механизм защиты от копирования DVD
Во-первых, давайте посмотрим сколько дорожек доступно для копирования в DVD системе. Первая дорожка содержит необрабатываемые цифровые данные, считываемые с DVD привода, в возможные пиратские приборы встроены DVD видео декодеры, которые не будут принимать меры против защиты от копирования на дорожках 2 и 3. Система content scramble system (CSS) не позволяет добраться до содержания 2 и 3 дорожки без чтения первой. Сигнал со второй дорожки идет в аналоговом телевизионном формате NTSC или PAL. Поскольку VHS видеомагнитофоны очень распространены на сегодняшний день, то проще всего сделать копию в этом формате с DVD качеством.
content scramble system (система защиты от копирования)
основной целью CSS является защита содержания DVD от пиратского взлома и копирования через защиту от DVD видео декодеров и дисководов перезаписываемых дисков. Чтобы воспроизвести защищенный авторским правом материал с DVD ROM диска нужно согласие владельца авторского права, для чего и создана система content scramble. Три кода нанесены один за другим, что значит, что второй ключ может быть получен только при обладании первым, а третий только через получение второго. После этого, сжатое содержание может быть развернуто посредством третьего ключа. То есть для полного доступа нужно иметь три ключа. Конечно, алгоритм расшифровки можно получить через подписание документов, разрешающих тиражирование. Для предотвращения копирования с/на цифровые носители в среде персонального компьютера, предпринята попытка идентификации и шифровки данных. В среде персонального компьютера, для копирования необходимо два "компонента": DVD ROM привод и карта декодера, подсоединенные к PC шине. Поскольку данные с PC шины легко скопировать, то DVD ROM должен сам проверять законность получателя перед отправки данных. Также, для предотвращения воспроизведения нелегально скопированного материала, карта декодера должна проверять законность отправителя данных. Поэтому необходима обоюдная идентификация. А для предотвращения подмены диска после идентификации, DVD ROM привод должен периодически менять ключ шифра перед отсылкой.
Macrovision & CGMS/A (copy generation management system/analog (макровижн и система управления тиражированием/аналоговая))
Макровижн основан на различиях в работе видеомагнитофонов и телевизоров. Защита от копирования в этом случае состоит из двух элементов: AGC [Automatic Gain Control] автоматическая регулировка усиления и "полосатого" кода. Система AGC в телевизоре спроектирована так, что медленно реагирует на изменения, та же, схема, которая встроена в видеомагнитофоны, должна мгновенно реагировать на изменения. Именно это различие и лежит в основе системы. Суть в том, что макровижн изменяет сигнал так, что при воспроизведении картинка будет хорошей, а при записи на копии будут множественные качественные изменения. Что касается "полосатого" кода, то при воспроизведении он не оказывает никакого влияния на качество изображения, при просмотре копии на картинке появится ужасная вертикальная полосность.
В то время как макровижн направлен на устранение пиратских копий, CGMS/A направлена на контроль записи легальных копий. Информация CGMS/A вложена в выходящий видео сигнал. Для работы CGMS/A ( то есть для возможности сделать легальную копию) необходимо, чтобы записывающее оборудование распознавало CGMS. CGMS кодирует информацию на линии 21 системы NTSC, при этом CGMS имеет приоритет над антикопировальными сигналами макровижн, записываемых на ту же линию.
CGMS/D (система управления тиражированием/цифровая)
Эта система основана на стандарте IEEE 1394 и предназначена для ограничения ("copy once"- одна копия) и запрещение ("copy never"- запрещение копирования) создания цифровых копий. Цифровые приборы, такие, например как DVD плеер и цифровой TV, будут обмениваться ключами и идентификационными подтверждениями перед установлением канала. DVD плеер шифрует видео сигнал при отправке, а получающий прибор расшифровывает его. Пишущие цифровые приборы не смогут получать сигнал при внутренней маркировке "copy never", а при маркировке "copy once"- сделают копию и изменят маркер на "copy never". CGMS/D спроектирован для следующего поколения цифровых ТВ и видео рекордеров. Для этой системы нужны DVD проигрыватели нового поколения с цифровыми соединениями.
Код региона (код места)
Смысл этого кодирования состоит в том, что киностудии пожелали ввести дополнительную кодировку поскольку в большинстве случаев фильмы вышедшие на DVD в одной стране еще идут на киноэкране другой страны. Для увеличения доходов от проката фильмов для разных географических регионов устанавливаются разные коды. Этот код будет встраиваться в DVD проигрыватель на основании региона в котором он был продан. Это означает, что диски купленные в одной стране могут не проигрываться в другой.
Регионы разбиты так. Каждый диск будет идентифицироваться по цифре. Если диск разрешен к проигрыванию в более чем одном регионе, то соответственно и цифр будет больше.
1: Канада, США, Территории США.
2: Япония, Европа, Южная Африка, Средний Восток (включая Египет)
3: Южно-восточная Азия, Восточная Азия (включая Гонконг)
4: Австралия, Новая Зеландия, Центральная Америка, Мексика, Южная Америка, Карибы.
5: Бывший Советский Союз, Индия и Африка, Северная Корея, Монголия
6: Китай
Поиск по шаблону является настолько обычным занятием в разработке программного обеспечения, что для облегчения этой задачи была создана специальная технология — регулярные выражения. Узнайте, как можно использовать ее при написании кода, прочитав эту статью.
Все устройства получают входную информацию, выполняют какие-либо операции и выдают результат. Например, телефон во время разговора преобразует звуковую энергию в электрический сигнал и обратно. Двигатель потребляет топливо (пар, расщепление атомных ядер, бензин, мышечные усилия) и преобразует его в энергию. Блендер поглощает ром, лед, лайм и кюрасао и взбалтывает их в коктейль Mai Tai. (Или, если вам хочется чего-то изысканного, сделайте Bellini из шампанского и грушевого сока. Блендер – замечательное универсальное устройство.)
Так как программное обеспечение преобразует данные, то каждое приложение фактически является устройством (хоть и виртуальным, так как у него нет физических составляющих). Например, компилятор в качестве входной информации получает исходную программу и преобразует ее в двоичный исполняемый код. Программа прогнозирования погоды генерирует предсказания на основе результатов прошлых (исторических) замеров, а графический редактор обрабатывает пикселы, применяя правила к отдельным пикселам или их группам, чтобы, например, сделать изображение более четким или изменить его стиль.
Так же, как и любое другое устройство, программное обеспечение предназначено для работы с определенным исходным материалом, например, набором чисел, данными XML-схемы или протоколом. Если программе задать некорректную входную информацию — неподходящую по форме или типу, то существует большая вероятность того, что результат будет непредсказуемым и, возможно, даже катастрофическим. Как говорится: "Мусор заложишь - мусор получишь".
На самом деле для решения всех нетривиальных задач необходимо отделять правильные данные от некорректных и отклонять некорректные данные во избежание ошибок в результатах. Это, конечно же, актуально и для Web-приложений, написанных на языке PHP. Неважно, получены ли входные данные из формы для ввода с клавиатуры или в результате выполнения программного запроса Asynchronous JavaScript + XML (Ajax), прежде чем начать какие-либо вычисления, программа должна проверить входную информацию. Возможно, что числовые значения должны находиться в пределах определенного диапазона чисел или представлять собой только целые числа. Возможно, значение должно соответствовать определенному формату, например, почтового индекса. Например, почтовый индекс в США представляет собой пять цифр плюс дополнительный префикс "Plus 4", состоящий из дефиса и 4 дополнительных цифр. Возможно, другие строки также должны состоять из определенного количества символов, например, две буквы для указания аббревиатуры штата США. Строковые данные доставляют особенно много проблем: PHP-приложение должно быть начеку по отношению к злонамеренным программам-агентам, вложенным в SQL-запросы, код JavaScript или любой другой код, которые способны изменить поведение приложения или обойти защиту.
Однако каким образом программа может определить, являются ли входные данные числом или соответствуют ли определенным требованиям, например, к почтовому индексу? На самом деле для реализации проверки путем сопоставления с шаблоном необходим небольшой парсер, создающий конечный автомат, считывающий входные данные, обрабатывающий маркеры, отслеживающий состояние и выдающий результаты. Однако создание и обслуживание даже самого простого парсера может оказаться непростым делом.
К счастью, анализ на основе сопоставления с шаблоном настолько широко распространен в компьютерных технологиях, что с течением времени (примерно с момента появления UNIX®) были разработаны специальные технологии и, конечно же, механизмы обработки, чтобы облегчить рутинную работу. Регулярное выражение (regex) описывает шаблоны посредством лаконичных и удобочитаемых обозначений. Получив регулярное выражение и данные, механизм regex сообщает, совпадают ли эти данные с шаблоном, и если совпадение было обнаружено, что именно совпало.
Вот небольшой пример использования регулярного выражения, взятый из UNIX-утилиты, работающей в режиме командной строки, которая ищет заданный шаблон в содержимом одного или нескольких текстовых файлов UNIX. Команда grep -i -E '^Bat' ищет последовательность символов beginning-of-line (начало строки), обозначаемое "крышкой", [^]), за которым следуют буквы b, a, и t верхнего или нижнего регистра (ключ -i указывает на то, что при сопоставлении с шаблоном регистр не учитывается, таким образом, например, B и b - тождественны). Следовательно, для файла heroes.txt:
Листинг 1. heroes.txt
Вышеупомянутая команда grep выдаст два совпадения:
Batman
Batgirl
Регулярные выражения
PHP предлагает два программных интерфейса регулярных выражений: один -- для интерфейса переносимых операционных систем (POSIX), а второй - для регулярных выражений, совместимых с языком Perl (PCRE). В общем и целом второй интерфейс является более предпочтительным, так как PCRE сам по себе мощнее, чем POSIX, и предоставляет все операторы, используемые в языке Perl. Более подробная информация по обращению к regex-функциям POSIX представлена в документации по языку PHP (см. раздел Ресурсы). В данной статье мы сосредоточим свое внимание на свойствах PCRE.
Регулярные выражения PHP PCRE содержат операторы, позволяющие путем сопоставления находить конкретные символы или другие операторы, определенные местоположения, например, начало и конец строки, начало или конец слова. Регулярные выражения также позволяют описывать альтернативы, которые можно задать альтернативы типа "или"-"или"; повторения фиксированной, изменяемой или неопределенной длины; наборы символов (например, "любая буква от a до m"); и классы, или типы символов (печатаемые символы, знаки препинания). Специальные операторы также разрешают использовать группировку — возможность применить оператор к целой группе других операторов.
В таблице 1 показаны некоторые типичные операторы регулярных выражений. Для создания сложных выражений можно последовательно объединять элементарные операторы из таблицы 1 (и другие).
Таблица 1. Типичные операторы регулярных выражений
Оператор Значение
. (точка) Любой одиночный символ
^ (крышка) Пустая последовательность в начале строки или цепочки
$ (знак доллара) Пустая последовательность в конце строки
A Буква A верхнего регистра
a Буква a нижнего регистра
\d Любая цифра
\D Любой нецифровой символ
\w Любая буква или цифра; синоним - [:alnum:]
[A-E] Любая заглавная буква из A, B, C, D или E
[^A-E] Любой символ, за исключением заглавных букв A, B, C, D или E
X? Найти совпадение по отсутствию или наличию одной заглавной буквы X
X* Ни одной или любое количество заглавных букв X
X+ Одна или несколько заглавных букв X
X{n} Ровно n заглавных букв X
X{n,m} Не менее n и не более m заглавных букв X; если опустить m, то выражение будет искать не менее n заглавных букв X
(abc|def)+ По меньшей мере одно вхождение последовательности abc и def
В следующем примере показано типичное использование регулярного выражения. Например, для web-сайта необходимо, чтобы каждый пользователь регистрировался. Имя пользователя должно начинаться с буквы и содержать от 3 до 10 буквенно-цифровых символов. Для проверки имени пользователя на соответствие ограничениям при отправке данных в приложение можно использовать следующее регулярное выражение: ^[A-Za-z][A-Za-z0-9_]{2,9}$.
Знак "крышка" соответствует началу строки. Первый набор [A-Za-z] соответствует любой букве. Второй набор [A-Za-z0-9_]{2,9} соответствует последовательности, содержащей от 2 до 9 букв, цифр или символов подчеркивания. Знак доллара ($) соответствует концу строки.
На первый взгляд, знак доллара может показаться лишним, однако его использование важно. Если его пропустить, то условиям данного регулярного выражения будет отвечать любая строка, которая начинается с буквы, содержит от 2 до 9 буквенно-цифровых символов и любое количество других символов. Иными словами, если бы не было знака доллара как привязки к концу строки, то подошла бы недопустимо длинная строка с подходящим началом, например, "martin1234-cruft" .
Программирование на языке PHP и регулярные выражения
В PHP есть функции для поиска совпадений в тексте, замены каждого совпадения на другой текст (похоже на операцию "найти и заменить") и поиска совпадений среди элементов списка. Вот эти функции:
Чтобы показать, как работают эти функции, давайте создадим небольшое PHP-приложение, которое будет просматривать список слов на соответствие определенному шаблону. Слова и регулярные выражения будут вводиться из обычной web-формы, а результаты отображаться в браузере посредством функции simple print_r(). Эта программка пригодится, если возникнет желание проверить или отладить регулярное выражение.
PHP-код показан в листинге 2. Все входные данные берутся из обычной HTML-формы. (Для краткости эту форму и PHP-код, отслеживающий ошибки, опустим.)
Листинг 2. Сравнение текста с шаблоном
Вначале с помощью функции preg_split() строка из слов, разделенных запятыми, преобразуется в отдельные элементы. Данная функция разбивает строку в тех местах, которые соответствуют условиям регулярного выражения. В данном случае регулярное выражение представляет собой просто "," , (запятая - разделитель списка слов, указанных через запятую). Слэш в начале и в конце просто показывает начало и конец regex.
Третий и четвертый аргументы функции preg_split() необязательны, но полезны. Добавьте в третий аргумент число n целого типа, если необходимо вернуть только первые n совпадений, или -1, если необходимо вернуть все совпадения. Если в качестве четвертого аргумента задать идентификатор PREG_SPLIT_NO_EMPTY, то функция preg_split() не будет возвращать пустые результаты.
Затем каждый элемент списка слов, разделенных запятыми, корректируется (убираются начальные и конечные пробелы) с помощью функции trim() и сравнивается с заданным регулярным выражением. Функция preg_grep() существенно упрощает процесс обработки списка: просто укажите в качестве первого аргумента шаблон, а в качестве второго - массив слов для сравнения. Функция возвращает массив совпадений.
Например, если в качестве шаблона задать регулярное выражение ^[A-Za-z][A-Za-z0-9_]{2,9}$ и список слов разной длины, то можно получить результат, показанный в листинге 3.
Листинг 3. Результат работы простого регулярного выражения
Кстати, с помощью дополнительного маркера PREG_GREP_INVERT можно инвертировать операцию preg_grep() и найти элементы, которые не совпадают с шаблоном (аналогично оператору grep -v в командной строке). Заменяя 22 строку на $matches = preg_grep( "/${_REQUEST[ 'regex' ]}/", $words, PREG_GREP_INVERT ) и используя входные данные из листинга 3, мы получим Array ( [1] => 1happy [2] => hermanmunster ).
Разбор строк
Функции preg_split() и preg_grep() очень удобны. Первая из них может разбирать строку на подстроки, если подстроки разделяются определенным шаблоном. Функция preg_grep() позволяет быстро отфильтровать список.
Но что произойдет, если строку нужно разобрать на составные части, используя одно или несколько сложных правил? Например, в США номера телефонов обычно выглядят следующим образом: "(305) 555-1212," "305-555-1212," или "305.555.1212." Если убрать пунктуацию, то количество символов сократится до 10 цифр, что легко можно определить с помощью регулярного выражения \d{10}. Однако код и префикс (каждый из которых состоит из трех цифр) телефонного номера США не могут начинаться с нуля или единицы (так как нуль и единица используются как префиксы для междугородных звонков). Вместо того чтобы разбивать числовую последовательность на отдельные цифры и создавать сложный код, для верификации можно использовать регулярное выражение.
Фрагмент кода позволяющий решить эту задачу, показан в листинге 4.
Листинг 4. Проверка американского телефонного номера
Давайте пройдем по этому коду:
* Как показано в таблице 1, в регулярных выражениях используется ограниченный набор специальных символов, например, квадратные скобки ([ ]) для наименования последовательности. Если надо найти такой символ в тексте, необходимо "выделить" специальный символ в регулярном выражении, поставив перед ним обратный слэш (\). Когда символ выделен, можно задать его посик, как и любого другого символа. Если нужно найти символ точки, например, в полном составном имени хоста, то напишите \.. При желании строку можно подать в функцию preg_quote() которая выполняет автоматическую изоляцию всех специальных символов регулярных выражений, как показано в строке 1. Если поставить echo() $punctuation после первой строки, то вы должны увидеть \(\)\.-.
* В строке 2 из телефонного номера убираются все знаки пунктуации. Функция preg_replace() заменяет все символы из $punctuation — операторы из набора [ ] - пустой строкой, эффективно устраняя такие символы. Возвращаемая новая строка присваивается переменной $number.
* В строке 4 определен шаблон верифицируемого телефонного номера США.
* Строка 5 реализует сопоставление, сравнивая телефонный номер, который теперь состоит только из цифр, с шаблоном. Функция preg_match() возвращает 1, если есть совпадение. Если совпадения нет, функция preg_match() возвращает нулевое значение. Если во время обработки возникла ошибка, то функция возвращает значение False (ложно). Таким образом, чтобы проверить удачное завершение, необходимо посмотреть, было ли возвращено значение 1. В противном случае проверьте итоговое значение функции preg_last_error() (если используется PHP версии 5.2.0 или выше). Если оно не равно нулю, то, возможно, был превышен лимит вычислений, например, разрешенная глубина рекурсии регулярного выражения. Обсуждение констант и ограничений, применяемых в регулярных выражениях PHP, представлено на странице, посвященной функциям регулярных выражений PCRE (см. раздел Ресурсы).
Извлечение данных
Во многих случаях необходимо только получить ответ на вопрос: "Соответствуют ли данные шаблону?" – например, при проверке данных. Однако чаще регулярные выражения используются для подтверждения соответствия и получения информации о совпадении.
Вернемся к примеру с телефонным номером. Пусть при соответствии шаблону нам необходимо сохранить код, префикс и номер линии в отдельных полях базы данных. Регулярные выражения могут запоминать совпадающие с шаблоном данные с помощью оператора capture. Оператор capture обозначается круглыми скобками и может использоваться в любой части регулярного выражения. Операции capture можно делать вложенными для поиска подсегментов в извлеченных сегментах данных. Например, чтобы из 10-значного номера телефона извлечь код города, префикс и номер линии, можно использовать следующую строку:
/([2-9][0-9]{2})([2-9][0-9]{2})([0-9]{4})/
Если входные данные соответствуют шаблону, первые три цифры захватываются первой парой круглых скобок, следующие три цифры - второй парой, а последние 4 цифры - последним оператором. Модификация вызова функции preg_match() возвращает извлеченные данные.
Листинг 5. Возврат извлеченных данных функцией preg_match()
Если в качестве третьего аргумента функции preg_match() указать переменную, например, в нашем коде, $matches, то в качестве ее значения будет выступать список извлеченных результатов. Нулевой элемент списка (с индексом 0) - это все совпадение целиком; первый элемент - совпадение, относящееся к первой паре круглых скобок, и так далее.
Вложенные операторы capture извлекают сегменты и подсегменты фактически любой глубины. Сложность с вложенными операторами capture состоит в том, чтобы определить, в какой части массива соответствий находится каждое соответствие, например, $matches. Действует следующее правило: подсчитайте порядковый номер открывающей скобки в регулярном выражении — этот номер и будет индексом нужного совпадения в массиве соответствий.
В листинге 6 показан пример (немного надуманный) извлечения частей городского адреса.
Листинг 6. Код для извлечения городского адреса
Опять все совпадение целиком хранится по индексу 0. А где хранится номер улицы? Если считать слева направо, номер улицы проверяется \d+. Это вторая открывающая круглая скобка слева, следовательно, значением $matches[2] будет 123. В $matches[4] оказывается название города, а в $matches[6] - почтовый индекс.
Продвинутые технологии
Обработка текста – широко распространенная задача, и PHP предоставляет ряд функций, упрощающих выполнение большого числа операций. Обратите внимание на следующее:
* Функция preg_replace() может работать как с одной строкой, так и с массивом строк. Если вызвать preg_replace() для массива строк, замена будет выполнена во всех элементах массива. В этом случае код preg_replace() возвращает массив измененных строк.
* Как и во всех остальных реализациях PCRE, здесь для осуществления замены можно прибегать к сравнению с вложенным шаблоном. Для наглядности давайте рассмотрим проблему стандартизации формата телефонного номера. Заменим все знаки пунктуации точками. Наше решение показано в листинге 7.
Листинг 7. Замена знаков пунктуации точками
Сопоставление с шаблоном и, в случае совпадения, перевод в стандартный телефонный номер выполняется за один шаг.
Компоненты Delphi для работы с базами данных были созданы в расчете на работу с SQL и архитектурой клиент/сервер. При работе с ними вы можете воспользоваться характеристиками расширенной поддержки удаленных серверов. Delphi осуществляет эту поддержку двумя способами.
1. Введение
Во-первых, непосредственные команды из Delphi позволяют разработчику управлять таблицами, устанавливать пределы, удалять, вставлять и редактировать существующие записи.
Второй способ заключается в использовании запросов на языке SQL, где строка запроса передается на сервер для ее разбора, оптимизации, выполнения и передачи обратно результатов.
Данный документ делает акцент на втором методе доступа к базам данных, на основе запросов SQL (pass-through). Авторы не стремились создать курсы по изучению синтаксиса языка SQL и его применения, они ставили перед собой цель дать несколько примеров использования компонентов TQuery и TStoredProc. Но чтобы сделать это, необходимо понимать концепцию SQL и знать как работают selects, inserts, updates, views, joins и хранимые процедуры (stored procedures). Документ также вскользь касается вопросов управления транзакциями и соединения с базой данных, но не акцентирует на этом внимание. Итак, приступая к теме, создайте простой запрос типа SELECT и отобразите результаты.
2. Компонент TQuery
Если в ваших приложениях вы собираетесь использовать SQL, то вам непременно придется познакомиться с компонентом TQuery. Компоненты TQuery и TTable наследуются от TDataset. TDataset обеспечивает необходимую функциональность для получения доступа к базам данных. Как таковые, компоненты TQuery и TTable имеют много общих признаков. Для подготовки данных для показа в визуальных компонентах используется все тот же TDatasource. Также, для определения к какому серверу и базе данных необходимо получить доступ, необходимо задать имя псевдонима. Это должно выполняться установкой свойства aliasName объекта TQuery.
Свойство SQL
Все же TQuery имеет некоторую уникальную функциональность. Например, у TQuery имеется свойство с именем SQL. Свойство SQL используется для хранения SQL-запроса. Ниже приведены основные шаги для составления запроса, где все служащие имеют зарплату свыше $50,000.
Создайте объект TQuery
Задайте псевдоним свойству DatabaseName. (Данный пример использует псевдоним IBLOCAL, связанный с демонстрационной базой данных employee.gdb).
Выберите свойство SQL и щелкните на кнопке с текстом - '...' (три точки, Инспектор Объектов - В.О.). Должен появиться диалог редактора списка строк (String List Editor).
Введите:
. Нажмите OK.
Выберите в Инспекторе Объектов свойство Active и установите его в TRUE.
Разместите на форме объект TDatasource.
Установите свойство Dataset у TDatasource в Query1.
Разместите на форме TDBGrid.
Установите его свойство Datasource в Datasource1.
Свойство SQL имеет тип TStrings. Объект TStrings представляет собой список строк, и чем-то похож на массив. Тип данных TStrings имеет в своем арсенале команды добавления строк, их загрузки из текстового файла и обмена данными с другим объектом TStrings. Другой компонент, использующий TStrings - TMemo. В демонстрационном проекте ENTRSQL.DPR (по идее, он должен находится на отдельной дискетте, но к "Советам по Delphi" она не прилагается - В.О.), пользователь должен ввести SQL-запрос и нажать кнопку "Do It" ("сделать это"). Результаты запроса отображаются в табличной сетке. В Листинге 1 полностью приведен код обработчика кнопки "Do It".
Листинг 1
Свойство Params
Этого должно быть достаточно для пользователя, знающего SQL. Тем не менее, большинство пользователей не знает этого языка. Итак, ваша работа как разработчика заключается в предоставлении интерфейса и создании SQL-запроса. В Delphi, для создания SQL-запроса на лету можно использовать динамические запросы. Динамические запросы допускают использование параметров. Для определения параметра в запросе используется двоеточие (:), за которым следует имя параметра. Ниже приведе пример SQL-запроса с использованием динамического параметра:
Если вам нужно протестировать, или установить для параметра значение по умолчанию, выберите свойство Params объекта Query1. Щелкните на кнопке '...'. Должен появиться диалог настройки параметров. Выберите параметр Dept_no. Затем в выпадающем списке типов данных выберите Integer. Для того, чтобы задать значение по умолчанию, введите нужное значение в поле редактирования "Value".
Для изменения SQL-запроса во время выполнения приложения, параметры необходимо связать (bind). Параметры могут изменяться, запрос выполняться повторно, а данные обновляться. Для непосредственного редактирования значения параметра используется свойство Params или метод ParamByName. Свойство Params представляет из себя массив TParams. Поэтому для получения доступа к параметру, необходимо указать его индекс. Для примера,
Query1.params[0].asInteger := 900;
Свойство asInteger читает данные как тип Integer (название говорит само за себя). Это не обязательно должно указывать но то, что поле имеет тип Integer. Например, если тип поля VARCHAR(10), Delphi осуществит преобразование данных. Так, приведенный выше пример мог бы быть записан таким образом:
Query1.params[0].asString := '900';
или так:
Query1.params[0].asString := edit1.text;
Если вместо номера индекса вы хотели бы использовать имя параметра, то воспользуйтесь методом ParamByName. Данный метод возвращает объект TParam с заданным именем. Например:
Query1.ParamByName('DEPT_NO').asInteger := 900;
В листинге 2 приведен полный код примера.
Листинг 2
Обратите внимание на процедуру, первым делом подготовливающую запрос. При вызове метода prepare, Delphi посылает SQL запрос на удаленный сервер. Сервер выполняет грамматический разбор и оптимизацию запроса. Преимущество такой подготовки запроса состоит в его предварительном разборе и оптимизации. Альтернативой здесь может служить подготовка сервером запроса при каждом его выполнении. Как только запрос подготовлен, подставляются необходимые новые параметры, и запрос выполняется.
[pagebreak]
Источник данных
В предыдущем примере пользователь мог ввести номер отдела, и после выполнения запроса отображался список сотрудников этого отдела. А как насчет использования таблицы DEPARTMENT, позволяющей пользователю легко перемещаться между пользователями и отделами?
Примечание: Следующий пример использует TTable с именем Table1. Для Table1 имя базы данных IBLOCAL, имя таблицы - DEPARTMENT. DataSource2 TDatasource связан с Table1. Таблица также активна и отображает записи в TDBGrid.
Способ подключения TQuery к TTable - через TDatasource. Есть два основных способа сделать это. Во-первых, разместить код в обработчике события TDatasource OnDataChange. Например, листинг 3 демонстрирует эту технику.
Листинг 3 - Использования события OnDataChange для просмотра дочерних записей
Техника с использованием OnDataChange очень гибка, но есть еще легче способ подключения Query к таблице. Компонент TQuery имеет свойство Datasource. Определяя TDatasource для свойства Datasource, объект TQuery сравнивает имена параметров в SQL-запросе с именами полей в TDatasource. В случае общих имен, такие параметры заполняются автоматически. Это позволяет разработчику избежать написание кода, приведенного в листинге 3 (*** приведен выше ***).
Фактически, техника использования Datasource не требует никакого дополнительного кодирования. Для поключения запроса к таблице DEPT_NO выполните действия, приведенные в листинге 4.
Листинг 4 - Связывание TQuery c TTable через свойство Datasource
Выберите у Query1 свойство SQL и введите:
Выберите свойство Datasource и назначьте источник данных, связанный с Table1 (Datasource2 в нашем примере)
Выберите свойство Active и установите его в True
Это все, если вы хотите создать такой тип отношений. Тем не менее, существуют некоторые ограничения на параметризованные запросы. Параметры ограничены значениями. К примеру, вы не можете использовать параметр с именем Column или Table. Для создания запроса, динамически изменяемого имя таблицы, вы могли бы использовать технику конкатенации строки. Другая техника заключается в использовании команды Format.
Команда Format
Команда Format заменяет параметры форматирования (%s, %d, %n и пр.) передаваемыми значениями. Например,
Format('Select * from %s', ['EMPLOYEE'])
Результатом вышеприведенной команды будет 'Select * from EMPLOYEE'. Функция буквально делает замену параметров форматирования значениями массива. При использовании нескольких параметров форматирования, замена происходит слева направо. Например,
Результатом команды форматирования будет 'Select * from EMPLOYEE where EMP_ID=3'. Такая функциональность обеспечивает чрезвычайную гибкость при динамическом выполнении запроса. Пример, приведенный ниже в листинге 5, позволяет вывести в результатах поле salary. Для поля salary пользователь может задавать критерии.
Листинг 5 - Использование команды Format для создания SQL-запроса
В этом примере мы используем методы Clear и Add свойства SQL. Поскольку "подготовленный" запрос использует ресурсы сервера, и нет никакой гарантии что новый запрос будет использовать те же таблицы и столбцы, Delphi, при каждом изменении свойства SQL, осуществляет операцию, обратную "подготовке" (unprepare). Если TQuery не был подготовлен (т.е. свойство Prepared установлено в False), Delphi автоматически подготавливает его при каждом выполнении. Поэтому в нашем случае, даже если бы был вызван метод Prepare, приложению от этого не будет никакой пользы.
Open против ExecSQL
В предыдущих примерах TQuerie выполняли Select-запросы. Delphi рассматривает результаты Select-запроса как набор данных, типа таблицы. Это просто один класс допустимых SQL-запросов. К примеру, команда Update обновляет содержимое записи, но не возвращает записи или какого-либо значения. Если вы хотите использовать запрос, не возвращающий набор данных, используйте ExecSQL вместо Open. ExecSQL передает запрос для выполнения на сервер. В общем случае, если вы ожидаете, что получите от запроса данные, то используйте Open. В противном случае допускается использование ExecSQL, хотя его использование с Select не будет конструктивным. Листинг 6 содержит код, поясняющий сказанное на примере.
Листинг 6
Все приведенные выше примеры предполагают использования в ваших приложениях запросов. Они могут дать солидное основание для того, чтобы начать использовать в ваших приложениях TQuery. Но все же нельзя прогнозировать конец использования SQL в ваших приложених. Типичные серверы могут предложить вам другие характеристики, типа хранимых процедур и транзакций. В следующих двух секциях приведен краткий обзор этих средств.
[pagebreak]
3. Компонент TStoredProc
Хранимая процедура представляет собой список команд (SQL или определенного сервера), хранимых и выполняемых на стороне сервера. Хранимые процедуры не имеют концептуальных различий с другими типами процедур. TStoredProc наследуется от TDataset, поэтому он имеет много общих характеристик с TTable и TQuery. Особенно заметно сходство с TQuery. Поскольку хранимые процедуры не требуют возврата значений, те же правила действуют и для методов ExecProc и Open. Каждый сервер реализует работу хранимых процедур с небольшими различиями. Например, если в качестве сервера вы используете Interbase, хранимые процедуры выполняются в виде Select-запросов. Например, чтобы посмотреть на результаты хранимой процедуры, ORG_CHART, в демонстрационной базе данных EMPLOYEE, используйте следующих SQL-запрос:
При работе с другими серверами, например, Sybase, вы можете использовать компонент TStoredProc. Данный компонент имеет свойства для имен базы данных и хранимой процедуры. Если процедура требует на входе каких-то параметров, используйте для их ввода свойство Params.
4. TDatabase
Компонент TDatabase обеспечивает функциональность, которой не хватает TQuery и TStoredProc. В частности, TDatabase позволяет создавать локальные псевдонимы BDE, так что приложению не потребуются псевдонимы, содержащиеся в конфигурационном файле BDE. Этим локальным псевдонимом в приложении могут воспользоваться все имеющиеся TTable, TQuery и TStoredProc. TDatabase также позволяет разработчику настраивать процесс подключения, подавляя диалог ввода имени и пароля пользователя, или заполняя необходимые параметры. И, наконец, самое главное, TDatabase может обеспечивать единственную связь с базой данных, суммируя все операции с базой данных через один компонент. Это позволяет элементам управления для работы с БД иметь возможность управления транзакциями.
Транзакцией можно считать передачу пакета информации. Классическим примером транзакции является передача денег на счет банка. Транзакция должна состоять из операции внесения суммы на новый счет и удаления той же суммы с текущего счета. Если один из этих шагов по какой-то причине был невыполнен, транзакция также считается невыполненной. В случае такой ошибки, SQL сервер позволяет выполнить команду отката (rollback), без внесения изменений в базу данных. Управление транзакциями зависит от компонента TDatabase. Поскольку транзакция обычно состоит из нескольких запросов, вы должны отметить начало транзакции и ее конец. Для выделения начала транзакции используйте TDatabase.BeginTransaction. Как только транзакция начнет выполняться, все выполняемые команды до вызова TDatabase.Commit или TDatabase.Rollback переводятся во временный режим. При вызове Commit все измененные данные передаются на сервер. При вызове Rollback все изменения теряют силу. Ниже в листинге 7 приведен пример, где используется таблица с именем ACCOUNTS. Показанная процедура пытается передать сумму с одного счета на другой.
Листинг 7
И последнее, что нужно учесть при соединении с базой данных. В приведенном выше примере, TDatabase использовался в качестве единственного канала для связи с базой данных, поэтому было возможным выполнение только одной транзакции. Чтобы выполнить это, было определено имя псевдонима (Aliasname). Псевдоним хранит в себе информацию, касающуюся соединения, такую, как Driver Type (тип драйвера), Server Name (имя сервера), User Name (имя пользователя) и другую. Данная информация используется для создания строки соединения (connect string). Для создания псевдонима вы можете использовать утилиту конфигурирования BDE, или, как показано в примере ниже, заполнять параметры во время выполнения приложения.
TDatabase имеет свойство Params, в котором хранится информация соединения. Каждая строка Params является отдельным параметром. В приведенном ниже примере пользователь устанавливает параметр User Name в поле редактирования Edit1, а параметр Password в поле Edit2. В коде листинга 8 показан процесс подключения к базе данных:
Листинг 8
Этот пример показывает как можно осуществить подключение к серверу без создания псевдонима. Ключевыми моментами здесь являются определение DriverName и заполнение Params информацией, необходимой для подключения. Вам не нужно определять все параметры, вам необходимо задать только те, которые не устанавливаются в конфигурации BDE определенным вами драйвером базы данных. Введенные в свойстве Params данные перекрывают все установки конфигурации BDE. Записывая параметры, Delphi заполняет оставшиеся параметры значениями из BDE Config для данного драйвера. Приведенный выше пример также вводит такие понятия, как сессия и метод GetTableNames. Это выходит за рамки обсуждаемой темы, достаточно упомянуть лишь тот факт, что переменная session является дескриптором database engine. В примере она добавлена только для "показухи".
Другой темой является использование SQLPASSTHRU MODE. Этот параметр базы данных отвечает за то, как натив-команды базы данных, такие, как TTable.Append или TTable.Insert будут взаимодействовать с TQuery, подключенной к той же базе данных. Существуют три возможных значения: NOT SHARED, SHARED NOAUTOCOMMIT и SHARED AUTOCOMMIT. NOT SHARED означает, что натив-команды используют одно соединение с сервером, тогда как запросы - другое. Со стороны сервера это видится как работа двух разных пользователей. В любой момент времени, пока транзакция активна, натив-команды не будут исполняться (committed) до тех пор, пока транзакция не будет завершена. Если был выполнен TQuery, то любые изменения, переданные в базу данных, проходят отдельно от транзакции.
Два других режима, SHARED NOAUTOCOMMIT и SHARED AUTOCOMMIT, делают для натив-команд и запросов общим одно соединение с сервером. Различие между двумя режимами заключаются в передаче выполненной натив-команды на сервер. При выбранном режиме SHARED AUTOCOMMIT бессмысленно создавать транзакцию, использующую натив-команды для удаления записи и последующей попыткой осуществить откат (Rollback). Запись должна быть удалена, а изменения должны быть сделаны (committed) до вызова команды Rollback. Если вам нужно передать натив-команды в пределах транзакции, или включить эти команды в саму транзакцию, убедитесь в том, что SQLPASSTHRU MODE установлен в SHARED NOAUTOCOMMIT или в NOT SHARED.
5. Выводы
Delphi поддерживает множество характеристик при использовании языка SQL с вашими серверами баз данных. На этой ноте разрешите попрощаться и пожелать почаще использовать SQL в ваших приложениях.
Доступность оборудования и простота организации делают беспроводные локальные сети всё более популярными. Даже небольшие компании стараются идти в ногу со временем и избавляются от традиционных кабельных "локалок". Использование беспроводных сетей не ограничивается небольшими офисами и домашними системами - крупные же фирмы применяют Wi-Fi для подключения к корпоративным сетевым ресурсам в тех местах, где технически невозможна прокладка кабелей.
Однако решение об устройстве беспроводной сети далеко не всегда оправданно, тем более что во многих случаях безопасности таких сетей уделяется слишком мало внимания. По оценкам специалистов, почти 70 процентов удачных хакерских атак через беспроводные сети связаны с неправильной настройкой точек доступа и клиентского программного обеспечения, а также с установкой чересчур низкого уровня безопасности при слишком сильном сигнале, с лёгкостью "пробивающего" стены офиса.
По каким-то необъяснимым причинам организаторы беспроводных сетей нередко считают, что при их включении автоматически обеспечивается надлежащий уровень безопасности. Производители оборудования, в свою очередь, устанавливают низкие настройки безопасности "по умолчанию", либо вовсе отключают их, чтобы при развёртывании сети клиенты случайно не столкнулись с невозможностью доступа. При минимальных настройках безопасность оборудование лучше всего совместимо с самым широким спектром других устройств и практически с любым современным программным обеспечением. Поэтому после настройки и проверки сети на совместимость с существующей инфраструктурой системный администратор должен изменить настройки безопасности, для того чтобы предотвратить несанкционированное проникновение в корпоративную сеть.
В отличие от проводных сетей, беспроводные требуют повышенного внимания к безопасности, поскольку проникнуть в них гораздо проще, поскольку для этого не нужен физический доступ к каналу. Радиоволны можно принимать на любое совместимое устройство, а если данные не защищены, то их сможет перехватить любой желающий. Разумеется, не стоит отказываться от паролей прочих традиционных средств авторизации, однако их явно недостаточно для защиты от несанкционированного доступа. Рассмотрим вкратце несколько способов повышения защищённости беспроводных сетей.
Отключаем передачу SSID
Последовательность цифр и букв, называемая SSID (Service Set Identifier) - это уникальный идентификатор вашей беспроводной сети. Передача идентификатора сети является встроенным средством защиты, по умолчанию включённым в большей части продающегося сегодня оборудования, и оно позволяет с лёгкостью обнаружить имеющиеся точки доступа в процессе развёртывания сети. Передача SSID требуется именно для того, чтобы ваше оборудование смогло подключиться к сети.
Точки доступа, которые являются базовыми станциями для подключаемых к сети компьютеров, являются потенциальным слабым местом, через которое злоумышленник может проникнуть в сеть. На уровне точек доступа отсутствует система авторизации по умолчанию, что делает внутренние сети незащищёнными, поэтому системные администраторы должны реализовать существующую корпоративную систему в беспроводных базовых станциях.
Для обеспечения повышенной безопасности можно запретить трансляцию точками доступа идентификатора сети. При этом возможность подключения к сети остаётся только у тех, кто знает правильный SSID, то есть, у сотрудников вашей компании, а случайные пользователи, обнаружившие вашу сеть при помощи сканирования, просто не смогут получить к ней доступ. Отключение передачи SSID возможно в подавляющем большинстве устройств ведущих производителей, что позволяет фактически скрыть вашу сеть от чужих. Если ваша сеть не передаёт идентификаторов, и если вы не афишируете использование беспроводной технологии, то этим вы осложните задачу злоумышленников. Подробные инструкции по отключению SSID обычно приводятся в руководствах по эксплуатации беспроводных точек доступа или маршрутизаторов.
Включаем средства шифрования
Уже давно используемое при пересылке важной электронной корреспонденции шифрование данных нашло применение и в беспроводных сетях. Для защиты данных от чужих глаз, в аппаратуре для беспроводной связи реализованы различные криптографические алгоритмы. При покупке оборудования важно убедиться в том, что оно поддерживает не только низкоуровневое 40-разрядное шифрование, но и 128-битный шифр повышенной стойкости.
Чтобы включить криптографическую защиту можно задействовать системы WEP (Wired Equivalent Privacy - "эквивалент проводной безопасности") или WPA (Wi-Fi Protected Access - "защищённый доступ к Wi-Fi"). Первая система менее стойкая, поскольку в ней используются статические (постоянные) ключи. Защищённые по этому протоколу сети взламываются хакерами без особого труда - соответствующие утилиты нетрудно найти в интернете. Тем не менее, по оценкам специалистов, даже этот протокол не задействован в более половины работающих корпоративных беспроводных сетей. Одним из средств повышения действенности WEP является регулярная автоматическая смена ключей, но даже в этом случае сеть не получает стопроцентной защиты. Попытки проникнуть в такую сеть оставят лишь случайные люди, обнаружившие её, но злонамеренных специалистов WEP не остановит, поэтому для полноценной защиты корпоративных сетей данный протокол использоваться не может.
В недалёком прошлом у организаторов беспроводных сетей не было иного выбора, как использовать протокол WEP, поддержка которого сохраняется в современных устройствах как в целях обеспечения совместимости оборудования, так и для обеспечения хотя бы минимального уровня безопасности в случае невозможности использования более современных протоколов. Сегодня WEP реализуется в двух модификациях: с 64- и 128-разрядным шифрованием. Однако корректнее было бы говорить о ключах длиной 40 и 104 бит, поскольку 24 бит из каждого ключа содержат служебную информацию и никак не влияют на стойкость кода. Однако это не столь важно, поскольку главным недостатком WEP являются статические ключи, для подбора которых злоумышленникам необходимо лишь в течение определённого времени сканировать сеть, перехватывая передаваемую информацию.
Повторим, что более-менее приемлемый уровень безопасность можно лишь при помощи регулярной смены ключей и при использовании 128-битного шифрования. Частота смены ключей зависит от частоты и длительности соединений, при этом необходимо обеспечить отработанную защищённую процедуру передачи новых ключей тем сотрудникам, которые пользуются доступом в беспроводную сеть.
Более эффективное шифрование обеспечивает протокол WPA, в котором реализовано динамическое создание ключей, что исключает возможность перехвата или подбора ключа, а также система идентификации (логин-пароль) при подключении к сети на основе протокола EAC (Extensible Authentication Protocol - "расширяемый протокол аутентификации"). В протоколе WPA 128-разрядные ключи генерируются автоматически при передаче каждых десяти килобайт данных, причём число этих ключей достигает сотен миллиардов, что делает практически невозможным подбор при помощи сканирования даже при отработанной методике перехвата информации. Кроме того, в этом протоколе реализован алгоритм проверки целостности данных MIC (Message Integrity Check), предотвращающий возможность злонамеренного изменения передаваемых данных. А вот выбору паролей следует уделять особое внимание: по мнению экспертов, для обеспечения высокого уровня безопасности длина пароля должна составлять не менее 20 знаков, причём он не должен представлять собой набор слов или какую-то фразу, поскольку такие пароли легко вскрываются методом словарного подбора.
Проблема с WPA заключается в том, что официально он был внесён в спецификации IEEE 802.11 лишь в середине 2004 года, поэтому далеко не всё беспроводное оборудование, выпущенное более полутора лет назад, способно работать по этому стандарту. Более того, если в сети есть хотя бы одно устройство, не поддерживающее WPA, будет применяться простое шифрование WEP, даже если WPA включён в настройках всего прочего оборудования.
Тем не менее, оборудование постоянно совершенствуется и в современных устройствах поддерживается новая, ещё более защищённая версия WPA2, работающая с динамическими ключами длиной 128, 192 и 256 бит. К таким устройствам, относится, например, трёхдиапазонный контроллер Intel PRO/Wireless 2915ABG.
Регулируем силу сигнала и его направленность
Технология беспроводной связи сама по себе по своей природе меньше защищена от постороннего вмешательства, поэтому при организации таких сетей особенно важно максимально затруднить несанкционированное проникновение в них. Среди чисто технических способов самым эффективным является снижение мощности транслируемого сигнала, ведь радиоволны с лёгкостью преодолевают стены зданий, а в сельской равнинной местности могут преодолевать весьма большие расстояния. Злоумышленники могут поставить свой автомобиль рядом со зданием, в котором расположен ваш офис, и в комфортной обстановке неторопливо подбирать ключ к вашей сети. Поэтому важно отрегулировать мощность сигнала, чтобы он не проникал за границы вашей территории. Кроме того, точки доступа следует располагать вдалеке от окон, внешних стен зданий, общих коридоров, холлов и лестниц.
Беспроводные сети являются очень удобным средством связи быстрого развёртывания, позволяющим объёдинить в сеть компьютеры даже в тех местах, где по тем или иным причинам невозможна прокладка кабеля. Однако поскольку незащищённые беспроводные сети куда проще поддаются взлому, чем проводные, следует уделять повышенное внимание защите от постороннего проникновения. Разумеется, стопроцентной гарантии безопасности дать невозможно, но некоторые действенные способы затруднения несанкционированного доступа в беспроводные сети мы описали в данном материале. Более подробные инструкции по реализации этих методов на практике обычно приводятся в документации к сетевому оборудованию, поэтому мы не ставили перед собой цели описать конкретные действия, тем более что они различаются в зависимости от модели и производителя беспроводных точек доступа и маршрутизаторов. Надеемся, что этот материал привлечёт внимание к проблеме обеспечения защиты беспроводных сетей.
Flash и трехмерная графика, становятся всё более популярными и востребованными. Программа Swift 3D совместила в себе обе популярные технологии. В пятой версии возможности программы вплотную приблизилась к настоящему 3D-редактору и при этом она не стала громоздкой. Программа не требует от пользователя знаний программирования так же, разработчикам удалось сделать ее легкой в освоении даже для того, кто никогда не имел дело с 3D.
Два в одном, флеш и 3D.
Flash и трехмерная графика, становятся всё более популярными и востребованными. Программа Swift 3D совместила в себе обе популярные технологии. В пятой версии возможности программы вплотную приблизилась к настоящему 3D-редактору и при этом она не стала громоздкой. Программа не требует от пользователя знаний программирования так же, разработчикам удалось сделать ее легкой в освоении даже для того, кто никогда не имел дело с 3D.
Для того чтобы начать работу с программой, необходимо знать «азбуку» создания трехмерной графики. Во-первых, на основе простейших трехмерных объектов строятся трехмерные модели. Затем, для этих моделей настраивается освещение, подбираются материалы. На следующем этапе, если это необходимо, создается анимация и, наконец, последний этап – сохранение визуализированного изображения или анимации в файл.
Scene Editor.
На этапе работы с редактором сцены, выполняется общая настройка объектов, задаются геометрические размеры, выбирается их положение и освещение.
В программе можно использовать стандартный набор простейших шаблонов. Помимо этого, в сцену можно импортировать трехмерные модели в формате 3ds, а также изображения в векторном формате. Такие изображения будут автоматически открываться как трехмерные объекты.
Один из самых востребованных типов объектов, который часто используется при создании логотипов это текст. Для получения объемного текста в каком-нибудь полноценном 3D-редакторе (например, в 3ds Max) сначала нужно создать 2D-форму, а затем придать ей объемность при помощи модификатора Bevel или Extrude. В Swift 3D этот процесс упрощен – текст становится объемным сразу же после нажатия кнопки Create Text. Используя панель свойств, можно выбрать профиль фаски, подходящую гарнитуру шрифта и задать другие параметры.
Несмотря на то, что в программе есть базовый набор 3D-объектов, разработчики также предоставили пользователю возможность создавать трехмерные модели самостоятельно. В зависимости от того, какой метод будет выбран, можно использовать одну из вкладок - Extrusion Editor, Lathe Editor или Advanced Modeler.
Extrusion Editor.
Принцип работы редактора выдавливания, прост: создается некоторая сплайновая форма, которая используется для создания трехмерного объекта с заданным сечением. Такой метод очень удобен для моделирования предметов, имеющих постоянное поперечное сечение вдоль одной из осей.
Принцип построения сплайна по точкам мало чем отличается от создания кривой в любой программе для векторной графики. Для каждой точки можно выбрать один из трех типов излома, а форму линии можно корректировать с помощью касательных. На панели инструментов редактора выдавливания можно найти инструмент для замыкания кривой, а также кнопки для быстрого создания 2D-форм самых распространенных типов: звездочки, стрелки, значка "плюс" и прочих.
Чтобы увидеть результат работы с этим инструментом, нужно вернуться на этап работы с редактором сцены.
Выдавливание можно также производить со скосом, что даст возможность получить несколько иной профиль конечной модели.
Lathe Editor
Еще один инструмент для создания трехмерных поверхностей, на этот раз образованных вращением профиля вокруг некоторой оси. Lathe Editor напоминает редактор выдавливания. Тут опять требуется создать кривую определенной формы, основные инструменты те же самые, разве что нет кнопок для быстрого создания кривых часто используемой формы.
В окне редактора поверхностей вращения следует нарисовать профиль, который будет иметь будущая трехмерная модель. Затем нужно перейти на вкладку Scene Editor и при необходимости настроить параметры созданного объекта, например, указать угол поворота профиля модели или определить число радиальных сегментов. Если в строке Sweep Angle изменить угол, заданный по умолчанию, поверхность вращения будет незамкнутой.
Интересно, что и при работе с редактором выдавливания, и при использовании редактора поверхностей вращения можно анимировать форму кривой.
Advanced Modeler
Режим Advanced Modeler – это настоящая гордость Swift 3D. Главная особенность этого режима – редактирование оболочки трехмерных объектов. Перед вами раскрываются неограниченные возможности управления их формой.
Для перехода в режим редактирования оболочки используется кнопка Edit Mesh. После этого на панели инструментов становятся активными кнопки для редактирования модели на разных уровнях подобъектов.
Можно выделять вершины, ребра, поверхности, а затем выполнять с выделенными подобъектами разные действия, такие как выдавливание, уплотнение сетки, зеркальное отражение, округление и пр.
Возможность работы в режиме редактирования поверхности дает еще одно преимущество – появляется возможность использовать разные материалы для разных частей объекта.
Добавление материалов
После завершения работы над формой объекта нужно выбрать для него материал. Материалы в Swift 3D выбираются исходя из имеющихся в наличии заготовок, которые находятся в палитре материалов. Библиотека пестрит разнообразием. Материалы разделены на несколько категорий: с прозрачностью, блестящие, имитирующие дерево, кирпич, мрамор, камень и т.д.
Назначается материал очень просто: нужно перетащить выбранный образец на объект. При необходимости, настройки материала можно подкорректировать. Для этого нужно дважды щелкнуть по образцу. Можно создать и собственный материал, используя для этого растровое изображение.
Освещение и камеры
Разработчики Swift 3D уделили достаточно много внимания системе освещения. По умолчанию, в виртуальном пространстве используется двухточечная система освещения, причем, положение источников света, добавленных программой по умолчанию, можно изменять (в большинстве 3D-редакторов такой возможности нет). Для этого используется схематический трекбол с двумя отметками источников света. Центр трекбола соответствует центру сцены. С его помощью также удобно подбирать угол освещения объектов трехмерной сцены новыми источниками.
Несмотря на то, что для такой нереалистичной визуализации, как «рисованный» флэш, освещение не очень важно, авторы Swift 3D добавили в программу четыре разных типа источника. Комбинируя их, можно имитировать освещение в разное время суток.
Для того чтобы иметь возможность точно и гибко выбрать угол съемки, в сцене можно использовать виртуальные камеры. Камеры могут быть двух видов – свободные и направленные, с мишенью.
Анимация объектов
Работа с анимацией выполняется на вкладке Scene Editor. Оживление трехмерных объектов происходит благодаря режиму автоматического создания ключей анимации. Этот режим активируется на временной шкале кнопкой Animate. Для того чтобы заставить двигаться объекты сцены, достаточно в этом режиме передвинуть ползунок на нужный кадр и попробовать изменить положение объекта в сцене, например, повернуть его на некоторый угол.
Если выделить в сцене объект, на шкале анимации отобразится список анимируемых параметров. При дальнейшем создании анимации выбранного объекта напротив каждого параметра, который будет анимироваться, будут появляться метки – ключи анимации. Ключи анимации можно перемещать и копировать. Кроме этого, есть возможность изменять характер протекания анимации.
Анимацию объектов можно также создавать, устанавливая траекторию их движения. Для этого служит режим Animation Path Mode, который также активируется кнопкой на временной шкале. Траекторию движения можно установить вручную, хотя в большинстве случаев удобнее использовать готовые варианты движений, находящиеся в библиотеке предварительных заготовок, о которой мы говорили выше.
Поскольку флэш-анимация в большинстве случаев используется для создания анимированного логотипа, как правило, движения такой эмблемы можно заранее предвидеть – логотип может вращаться, перемещаться вдоль окружности или другой геометрической фигуры.
Чтобы воспользоваться заранее заданными параметрами анимации, достаточно перетащить образец анимации из библиотеки на объект в сцене.
Сохранение проекта
Последний этап работы в Swift 3D – предварительный просмотр анимации и экспорт в выбранный формат. Все это выполняется на вкладке Preview And Export Editor. Тут можно покадрово просмотреть анимацию, задать параметры экспорта и выбрать формат файла.
Программа работает с большим числом форматов и дает возможность сохранить анимацию как файл Mov, Flv, Swf, Avi. Кроме этого, возможно сохранение в виде графического файла или в один из форматов векторной графики – Ai или Eps.
Сразу хотим отметить, что при помощи демонстрационной версии программы сохранить проект не удастся. Она дает возможность оценить все функции Swift 3D, однако результат работы можно просматривать только в окне предварительного просмотра, сохранение в файл не работает. Кроме этого, не удастся экспортировать созданные в программе модели в 3ds.
Триал-версию программы можно скачать с официального сайта. Полная версия Swift 3D оценивается в $250. Кроме версии для Windows, существует также версия для Mac OS.
Сам термин «фоторобот» и метод был придуман еще в 1952 году во Франции криминалистом Пьером Шабо. Первый фторобот предполагаемого преступника был сделан из фрагментов разных фотографий и переснятый в отдельный снимок. Постепенно фотографии заменили на рисунки.
Программы и инструменты, которые помогают создавать фотороботы.
Сам термин «фоторобот» и метод был придуман еще в 1952 году во Франции криминалистом Пьером Шабо. Первый фоторобот предполагаемого преступника был сделан из фрагментов разных фотографий и переснятый в отдельный снимок. Постепенно фотографии заменили на рисунки.
Казалось бы зачем нам нужен фоторобот, ведь его основное применение это розыск преступников? Ответов может быть несколько. Возможно кому то захочется вернутся в детство к играм в сыщиков а кому то захочется нарисовать шарж или смешного человека.
Есть и еще одно применение с помощью физиогномического анализа можно создавать не только визуальный портрет но и психологический.
Ultimate Flash Face 0.42 beta.
Ultimate Flash Face (http://flashface.ctapt.de) — это онлайн-фоторобот, лучший из бесплатных сервисов подобной тематики. Лицо человека разделяется на десять составляющих (если смотреть сверху вниз): прическа, форма головы, брови, глаза, очки, нос, усы, рот, подбородок, борода. Каждую «деталь» надо подобрать в соответствующей картотеке.
Чтобы добиться наилучшего результата, фрагменты портрета можно не только перемещать в пространстве, но и растягивать/сжимать по вертикали и горизонтали. Еще одна полезная возможность — выравнивание всего лица относительно выбранного элемента по вертикали. Она пригодится, если вы захотите переместить портрет внутри рамки или не уверены, что удачно расположили тот или иной фрагмент.
Полученный портрет можно распечатать или сохранить на сервере — он будет доступен для просмотра всем желающим. Соответственно, можно изучить и чужие работы. Единственным серьезным недостатком сервиса является невозможность сохранить рисунок на свой компьютер.
«Фоторобот 1.00»
Эта утилита предназначена для создания шаржей и рожиц, так что пытаться добиться с ее помощью портретного сходства бесполезно. Портрет предельно упрощен: глаза, уши, нос и рот — вот и все, с чем можно работать. Перемещаются эти «детали» по лицу с помощью четырех кнопок-стрелок, внутри которых спрятаны кнопки переключения на следующий вариант «детали». К изображению можно добавить подпись.
Веб-сайт: http://superperls.narod.ru/photorobot
Виртуальные стилисты.
Многие женщины часто задают себе и окружающим такие вопросы. Какую прическу мне выбрать? В какой цвет покрасится? Пойдут ли мне очки? Чтобы помочь им с выбором используют метод копирующий фоторобот. Только здесь берется фотография реального человека и «гримируется» с помощью накладных париков, макияжа, головных уборов и т. д.
Именно так устроены специализированные онлайн-сервисы предложенные порталом iVillage Makeover-o-Matic (http://beauty.ivillage.com/stc/hair-styllst/halrstyllst.htlm) или русскоязычный «Виртуальный салон красоты» (http://virtualmakeover.ru).
Загружаем свое фото или выбираем подходящий портрет другого человека, если понравился создаем образ - сохраняем изображение. В «Виртуальном салоне» мужчинам уделено не мало внимания.
Digital Physiognomy 1.60
В этом редакторе представлено необычное использование фоторобота — изучение лица с точки зрения физиогномики. Относиться к этой области знания можно по-разному, сами же разработчики честно предупреждают: «Полученная диагностика свидетельствует не столько о действительно вашем характере и возможном поведении, а о том, как вас в большинстве случаев воспринимает незнакомый, непредубежденный человек, увидевший вас впервые».
Составить фоторобот в Digital Physiognomy можно двумя способами: подбирая подходящие кусочки по картинкам или на основании «словесного портрета» — предложенного программой текстового описания той или иной черты лица (лоб узкий, низкий, глаза маленькие, глубоко посаженные). Когда портрет готов, утилита предлагает три варианта его расшифровки: текст, диаграмма с психологическими характеристиками и типы с точки зрения соци-оники.
Есть в Digital Physiognomy интересная функция — подбор портрета по заданным психологическим характеристикам. Можно узнать, как выглядит самый невезучий человек или самый хитрый. Кроме того, разработчики подготовили около 500 портретов исторических деятелей, политиков, известных актеров, во внешности которых можно детально разобраться.
Мультроботы.
Фотороботы бывают и мультяшными. Это те же составные картинки. Благодаря им можно представить себя художником-мультипликатором.
Наиболее мощным мультяшным фотороботом является South Park Studio (http://sp-studio.de). Этот сервис на основе известного сериала позволяет создавать персонажей в духе мультфильма. К услугам пользователей огромные запасы шаблонов рук, ног, туловищ, глаз, ртов... Всего, чего душе угодно.
Мультробот Dream Avatar (www.tek-tek.org/ dream/dream.php) посвящен ани-ме — фрагменты человечка прорисованы в соответствующей манере. Еще один ресурс такого типа инструментов — Avatares (www.buscarmessenger.com/ avatars. html). Правда, не известно, к какому стилю или направлению его отнести. Но то, что всеми чертами фоторобота он обладает — это точно.
Все-таки хорошая идея пришла в голову Пьеру Шабо. Вроде пустяк, а какова область применений!
В наше время почти у каждого есть цифровая камера. Однако не все знают всех возможностей своего аппарата. Найдется мало желающих экспериментировать с настройками выдержки, чувствительности ISO и другими параметрами съемки, пользователи предпочитают делать цифровые фотографии в режиме – автоматической съемки.
2D – графика. Создаем панораму в редакторе PTGui Pro 8.
В наше время почти у каждого есть цифровая камера. Однако не все знают всех возможностей своего аппарата. Найдется мало желающих экспериментировать с настройками выдержки, чувствительности ISO и другими параметрами съемки, пользователи предпочитают делать цифровые фотографии в режиме – автоматической съемки.
Но почти в каждом современном фотоаппарате есть еще один режим, режим создания панорам. Этот режим позволяет избавится от некоторых ограничений фотоаппарата, такие как максимально допустимое разрешение снимка и максимальный угол обзора. Если же в вашем цифровике такого режима нет - не беда. Создать панораму можно и без специальной функции фотокамеры. Даже используя камеру мобильного телефона, можно получить широкоугольный снимок высокого разрешения. Все что нужно сделать – это выполнить несколько снимков в обычном режиме и установить специальную программу, с помощью которой кадры будут сшиваться в один снимок. Об одной из таких программ и пойдет речь в этом обзоре.
Свое название программа PTGui Pro получила в результате сокращения Graphical User Interface for Panorama Tools (Графический интерфейс для Panorama Tools).
Для создания панорамы, предлагается пройти несколько шагов с помощью мастера создания панорам Project Assistant. Наличие пошагового мастера в программе не означает, что PTGui Pro создаст панораму после нескольких щелчков мыши. Напротив, программа имеет огромное количество средств для настройки панорамы, в чем можно убедиться, включив режим Advanced. В этом режиме будет отображены дополнительные вкладки, каждая из которых содержит настройки для того или иного инструмента, например, для обрезки изображения, компенсации искажений, вызванных конструктивными особенностями объектива фотокамеры, для выбора способа проецирования панорамы и пр.
Шаг первый – загрузка изображений для будущей панорамы. Нажимаем кнопку Load images и указываем на диске заранее подготовленные фотографии.
Открытые в программе снимки отобразятся в виде ленты.
Если щелкнуть по этой ленте, откроется дополнительное окно Source Images, в котором можно установить порядок размещения изображений.
Нажав кнопку Correct в этом окне, можно выполнить коррекцию изображения, искаженного в результате паразитной дисперсии света, проходящего через оптическую систему объектива, или вследствие других причин.
Шаг второй – выравнивание кадров относительно друг друга. После нажатия кнопки Align images программа запустит свой алгоритм и определит для каждого изображения свое место в панорамном снимке. После автоматического выравнивания на экране появится окно Panorama Editor, в котором можно изменять ориентацию отдельных частей панорамы или всей панорамы целиком.
Если составляющие элементы панорамы сделаны максимально аккуратно, то есть, из одной точки, и имеют небольшую площадь перекрытия, скорее всего, создание панорамы на этом может быть завершено, и файл можно сохранять, нажав кнопку Create Panorama.
Если же снимки были не совсем удачные, и программа неточно определила места их "сшивания", необходимо вручную выполнить процедуру соединения изображений. Для склейки изображений PTGui Pro использует набор контрольных точек. Эти контрольные точки представляют собой пары отметок на соединяемых изображениях, которые обозначают совпадающие детали на снимках. Чем точнее расположены контрольные точки и чем больше будет их число, тем правильнее будет составлен шов между изображениями.
Для управления контрольными точками фотографий следует перейти на вкладку Control Points. В двух окнах показаны объединяемые снимки, на которых видны пары контрольных точек. Все эти точки пронумерованы и выделены цветом. Ниже, под изображениями показана таблица, в которой представлена подробная информация о координатах правых и левых контрольных точек.
Алгоритм программы несовершенен, поэтому иногда контрольные точки могут определяться недостаточно верно. В этом случае нужно щелкнуть правой кнопкой мыши на проблемной точке и удалить неудачную отметку, выбрав команду Delete. После этого можно вручную проставить контрольные точки, щелкая по изображению. Парную контрольную точку программа создаст сама, останется лишь проследить за правильностью ее расположения и, в случае необходимости, передвинуть ее на правильную позицию.
PTGui Pro может также сохранять результат соединения частей панорамы в файл Photoshop со слоями, что дает возможность редактировать изображение в популярном графическом редакторе. Изображение может также сохраняться в формате Tiff или Jpeg.
Панорамные снимки делают не только для того чтобы хранить память о местах, в которых побывал фотограф, они имеют и другое практическое применение. Круговые панорамы на 360 градусов могут использоваться разработчиками компьютерных игр для имитации естественного окружения. При помощи PTGui Pro можно получить интерактивную панораму в формате QuickTime VR (*.mov). Запустив такой файл, пользователь сможет совершить виртуальный осмотр местности из той точки, откуда производилась съемка панорамы. Панорамы QuickTime VR можно внедрять в веб-страницы. Для конвертирования панорамы в формат QuickTime VR нужно выполнить команду Utilities > Convert to QTVR.
Для 3D-дизайнеров программа PTGui Pro предлагает создание панорамных изображений в формате HDR, то есть с широким динамическим диапазоном. Использование технологии HDR при создании панорам может быть реализовано двумя методами коррекции изображения - True HDR и Exposure Fusion. Первый вариант позволяет создавать HDR-панораму на основе группы фотографий, сделанных с разной выдержкой, а также из HDR-изображений.
Второй вариант следует использовать в тех случаях, когда HDR-панорама не является конечной целью и необходимо лишь получить изображение с правильной экспозицией. В некоторых случаях, подобрать правильную выдержку довольно сложно. В основном это связано с тем, что на момент съемки освещение объектов неудобно для фотографа. В этом случае можно сделать несколько одинаковых снимков с разной выдержкой. Важно, чтобы они были сделаны с одной точки. Объединив информацию из всех этих снимков в формат HDR, можно получить изображение с более выгодным освещением. Затем выполняется преобразование диапазона яркостей HDRI к диапазону яркостей, отображаемых монитором (tone mapping), и на выходе мы имеем улучшенное изображение. Именно это и можно сделать в режиме Exposure Fusion.
Улучшить конечное изображение можно также, поэкспериментировав с настройками алгоритма PTGui Pro. Вызвать окно настроек можно, выполнив команду Tools > Options. Среди параметров, при помощи которых можно управлять тонкой настройкой программы: количество контрольных точек на паре сшиваемых изображений, настройки чувствительности при определении одинаковых фрагментов на частях панорамы и т.д.
Для создания одной панорамы требуется три, четыре и более снимков. А если панорам несколько то снимков получается очень много. Объединение кадров панорамы в один снимок требует много времени. Чтобы упростить задачу, в PTGui Pro предусмотрена пакетная обработка файлов.
Для того чтобы обработать сразу несколько панорамных изображений, необходимо сохранить проекты, которые должны быть обработаны, в формате программы (*.pts). После этого необходимо запустить утилиту Batch Stitcher, которая устанавливается вместе с PTGui Pro и доступна из меню "Пуск", составить в ней список заданий и запустить их выполнение.
Вы можете подумать, а для чего вообще нужна эта программа, ведь есть Photoshop, с прекрасным инструментом Photomerge? Однако его применение далеко не всегда позволяет получить идеальное изображение. Часто, особенно при склеивании ночных панорам, можно получить неприятное сообщение о том, что слои не могут быть корректно выровнены относительно друг друга. И тут PTGui Pro может стать хорошей альтернативой средствам популярного графического редактора.
С одной стороны, PTGui Pro достаточно проста в использовании, с другой – содержит множество настроек для коррекции снимков вручную, благодаря чему можно гибко управлять результатом.
Ниже приведены несколько панорам, которые были созданы при помощи программы.
Триал-версию PTGui Pro для Windows и Mac OS X можно скачать с официального сайта.
Анимированное кино существует и развивается уже сто лет. Оно стало считаться одним из видов искусства. Год от года неуклонно возрастет число анимационных проектов. Такие картины, как Final Fantasy, Shrek, Little Stuart, The Incredibles, Finding Nemo претендуют на престижную премию Оскара. Возможно наступит момент, когда актеров заменят их трехмерные двойники.
Трехмерные сцены становятся все реалистичными, а их себестоимость снижается. Без трехмерных декораций не обходится ни один современный экшн.
Как создается трехмерная анимация.
Анимированное кино существует и развивается уже сто лет. Оно стало считаться одним из видов искусства. Год от года неуклонно возрастет число анимационных проектов. Такие картины, как Final Fantasy, Shrek, Little Stuart, The Incredibles, Finding Nemo претендуют на престижную премию Оскара. Возможно наступит момент, когда актеров заменят их трехмерные двойники.
Трехмерные сцены становятся все реалистичными, а их себестоимость снижается. Без трехмерных декораций не обходится ни один современный экшн.
Трехмерная анимация постепенно вытесняет классическую двухмерную мультипликацию. Многие мультяшные герои или "уходят на пенсию" (с ними просто больше не делают новых мультфильмов), или обретают новую жизнь в 3D. Например, мультфильм с моряком Папаем, сделанный при помощи 3D-редактора Softimage|XSI.
В 2004-ом году известная анимационная студия Blur Studio представила первый анимационный трехмерный проект про Микки Мауса и других диснеевских героев.
Три мультфильма общей продолжительностью 40 минут стали самым крупным проектом за девятилетнюю историю Blur Studio.
Работа над проектом велась совместно 3D-аниматорами Blur и художниками Disney Studios, которые в свое время рисовали Дональда, Плуто и прочих персонажей. Для того чтобы максимально сохранить особенности движения и внешнего вида персонажей при переносе их в трехмерный мир, ведущий аниматор студии Disney Андреас Дежа (Andreas Deja) все время давал советы коллегам-3D-художникам. Результатом остались довольны все, и в Blur и в Studio надеются, что проект не будет последним.
Метод ключевых кадров.
Современная техника анимации кардинально отличается от анимационных фильмов выпускавшихся двадцать, пятьдесят лет назад.
А до появления трехмерной графики существовала так называемая кукольная анимация. Делалась она так: снимался один кадр с мультипликационным героем, затем, например, руку персонажа передвигали на очень небольшое расстояние и опять снимали один кадр. Вся работа состояла в том, чтобы снять на пленку все положения руки мультяшного героя. Что же касается рисованной анимации, каждый кадр рисовался вручную.
В компьютерной анимации все гораздо проще. Аниматор задает в программе только два положения руки - верхнее и нижнее, а все промежуточные положения просчитываются компьютером. Кадры, которые фиксируют начальное и конечное положение тела, называютсяключевыми.
Используя метод ключевых кадров, можно "оживить" практически любые параметры анимационной сцены. Продолжительность анимации зависит от количества промежуточных кадров между ключевыми.
Если математически отобразить зависимость анимированного параметра (или ключа анимации, как его еще называют) от времени, каждый ключевой кадр будет характеризоваться двумя кривыми, которые определяют функциональные зависимости анимированного параметра на промежутке между текущим ключевым кадром и предыдущим, а также настоящим ключевым кадром и следующим. Во многих редакторах для работы с трехмерной графиков подобной графической зависимостью можно управлять, определяя характер анимации.
Преимущество метода ключевых кадров перед классической техникой создания анимации очевидно: аниматор тратит на создание проекта гораздо меньше времени. Большая часть рутинной работы, которая ранее выполнялась вручную, сегодня переложена на компьютер.
Проблемы при создании анимации методом ключевых кадров.
Несмотря на универсальность и простоту техники ключевых кадров, существуют случаи, когда использование этого метода не позволяет добиться желаемого результата. Это касается тех сцен, в которых необходимо отобразить эффекты, подчиняющиеся законам физики.
В реальной жизни все, что нас окружает, постоянно изменяется - шторы слабо двигаются, по озеру бежит мелкая рябь и так далее. Аниматору очень трудно воссоздать такую картину методом ключевых кадров.
Если сцена содержит большое количество анимированных объектов, установить для каждого из них свой набор ключевых кадров очень сложно. Поскольку подбор параметров значений анимированных параметров в каждом из ключевых кадров производится методом проб и ошибок, на подгонку такой сцены уйдет очень много времени.
Кроме этого, при помощи ключевых кадров 3D-аниматору бывает очень сложно воссоздать реалистичную анимацию некоторых объектов: жидкости, материи, огня, волос, разбивающихся предметов. Алгоритм решения этих проблем настолько сложен, что его разработкой занимаются целые институты.
Каждая программа для создания динамики в трехмерных сценах по-своему уникальна, имеет свои преимущества и недостатки. Поэтому при выборе программного обеспечения руководитель анимационного проекта обычно учитывает задачи, которые планируется выполнить на данном этапе.
Помимо проблем, связанных с моделированием физических процессов, существует еще одна трудность, связанная с анимированием большого количества объектов в сцене. Создать простую, на первый взгляд, сцену с горящим бенгальским огнем при помощи ключевых кадров невозможно. Вручную задать траекторию движения для каждой из огромного количества разлетающихся искр - задача практически невыполнимая. В этом случае в трехмерной анимации используются так называемые источники частиц. Их особенность в том, что они позволяют одновременно управлять большим количеством объектов. Значимость частиц в трехмерной графике столь велика, что некоторые 3D-редакторы имеют сложные системы управления источниками частиц, которые позволяют тонко настроить анимационные эффекты с учетом изменения скорости движения частиц, размера, цвета, формы, изменения положения в пространстве и т.д.
Персонажная анимация.
Создание персонажной анимации - это один из важнейших этапов создания трехмерного проекта.
Любую анимацию можно условно разделить на два типа: реалистичная и нереалистичная. Персонажная анимация может быть как реалистичной, так и нереалистичной, однако, зрителем она лучше воспринимается, если напоминает движения, совершаемые реальными существами. Даже если персонаж анимации - это вымышленное существо, плод воображения художника, лучше, чтобы его движения были правдоподобны. В противном случае персонаж будет выглядеть безжизненным манекеном.
Характер движения любого существа определяется анатомическим строением его скелета. Поэтому при создании трехмерной анимации сначала создается модель скелета существа, на который позже "одевается" оболочка.
"Одевание" оболочки - это тоже достаточно трудоемкий процесс, ведь нужно "привязать" кости к соответствующим частям тела таким образом, чтобы при изменении положения скелета оболочка деформировалась реалистично.
Создавать анимацию скелета будущего персонажа можно двумя способами: вручную, с помощью ключевых кадров, и используя систему захвата движения Motion Capture. Последний способ получил широкое распространение и используется практически по всех коммерческих анимационных проектах, так как имеет ряд преимуществ перед методом ключевых кадров.
Технология Motion Capture использовалась, например, в анимационном фильме - <Полярный экспресс> (The Polar Express). В этом фильме известный актер Том Хенкс, играл сразу несколько ролей: маленького мальчика, проводника поезда, бродягу и Санта Клауса. При этом, во многих анимационных сценах актер играл сам с собой. Конечно же, все герои мультфильма были трехмерными, но Том Хенкс управлял их действиями, жестами и даже мимикой. Актер одевал специальное одеяние с датчиками, напоминающее гидрокостюм, совершал действия перед специальным устройством, а компьютер получал информацию об изменении положения отметок на костюме и моделировал, таким образом, движения трехмерного персонажа. Подобные датчики были установлены и на лице актера, что позволило переносить на анимационных героев его мимику.
Понятно, что анимация персонажей, созданная с использованием технологии Motion Capture, более реалистична, чем полученная методом ключевых кадров.
Мимика персонажа.
Для создания мимики трехмерного персонажа, кроме метода Motion Capture, используется также метод морфинга. Все современные 3D-редакторы обычно имеют средства для создания морфинга.
Добиться высокой реалистичности при имитации мимики методом Motion Capture не всегда удается. Чтобы она была правдоподобной, необходимо имитировать движения огромного количества мускулов, а ведь на каждый мускул датчик повесить невозможно.
Поэтому для имитации мимики используется метод морфинга. Он заключается в том, что на основе модели, которая будет анимирована, создается определенное количество клонированных объектов. Затем каждый из этих объектов редактируется вручную - форма лица изменяется таким образом, чтобы на нем присутствовала та или иная гримаса. При создании мимики очень важно, чтобы лицо персонажа при анимации не выглядело однообразным. Для этого необходимо использовать модели-заготовки с самыми разными гримасами. Пусть на одной заготовке персонаж будет моргать, на другой - щуриться, на третьей - надувать щеки и т.д.
На основе этих моделей при помощи метода морфинга создается анимация. При этом, просчитывается, как изменяется лицо персонажа при переходе от выражения лица одной модели до гримасы, созданной на второй модели и т.д. Таким образом, каждая из моделей служит ключом анимации, в результате использования морфинга форма объекта изменяется, и создается мимика персонажа.
3D-аниматор, который профессионально занимается "оживлением" персонажей, должен быть не только художником, но и знатоком анатомии. Знания о строении тела и работе мускулов помогают создать реалистичные движения и выражения лица.
Если же персонаж не только ходит и кривляется, но еще и говорит, 3D-аниматор обязан превратиться еще и в лингвиста. Каждый звук, который произносит человек, сопровождается определенными движениями его губ, языка, челюсти. Для того чтобы перенести эти движения на трехмерную анимацию, нужно уметь разбивать речь на фонемы и создавать соответствующие их произношению движения на лице персонажа.
Виртуальные камеры.
Многие трехмерные анимационные эффекты создаются с помощью виртуальных камер. Эти вспомогательные объекты предназначены для того, чтобы изменять положение точки съемки в виртуальном пространстве.
Виртуальные камеры обладают всеми основными параметрами, которые присущи настоящим камерам. Так, например, для виртуальной камеры можно указать фокусное расстояние, установить свой тип линз и т.д.
Виртуальная камера, в отличие от настоящей, - это лишь вспомогательный объект, которого вы никогда не увидите на трехмерной анимации.
Трехмерная анимация заметно упрощает реализацию многих спецэффектов. Так, например, хорошо всем известный "эффект Матрицы", когда, камера медленно объезжает вокруг человека, замершего в прыжке, гораздо проще создать при помощи виртуальной камеры. Для реализации этого эффекта в фильме "Матрица" использовалось большое количество камер, расположенных вокруг объекта съемки. Все они зафиксировали положение человека в один и тот же момент времени. Из этих кадров была создана анимация, имитирующая "облет" вокруг объекта.
В трехмерной анимации законы физики не действуют, поэтому для создания такого эффекта достаточно зафиксировать в прыжке трехмерную модель человека и задать плавное движение виртуальной камеры вокруг него.
В реальном мире при съемке фото или видеокамерой быстро движущиеся объекты остаются на полученном изображении смазанными. Причем, размытие изображения в конкретном кадре указывает на направление движения заснятого объекта. Присутствие этого эффекта в трехмерной анимации делает ее более реалистичной.
Эффект смазанного движения (Motion Blur) позволяет создать в трехмерных анимированных сценах смазанный шлейф от быстродвижущихся объектов, и отобразить их такими, какими они выглядят при реальных съемках. Возможность использования эффекта смазанного движения имеется практически во всех модулях просчета изображения, которые используются в 3D-графике.
Сегодня 3D-анимация находится на ранней стадии своего развития но за ней большое будущее. Потребуется еще немало времени, пока в 3D будут созданы анимационные шедевры, которые можно будет сравнить с лучшими образцами классической анимации.
А пока все с удовольствием смотрят мультфильмы, выпущенные много лет назад. Такой например как мультфильм "Бемби", созданный студией Диснея шестьдесят три года назад и отреставрированный при помощи современных средств видеообработки.
Хочется надеяться, что такую же популярность, нерушимую временем, смогут снискать и трехмерные анимационные проекты будущего.
Чаще всего аналоговое кодирование используется при передаче информации по каналу с узкой полосой пропускания, например, по телефонным линиям в глобальных сетях. Кроме того, аналоговое кодирование применяется в радиоканалах, что позволяет обеспечивать связь между многими пользователями одновременно.
Код RZ
Код RZ (Return to Zero – с возвратом к нулю) – этот трехуровневый код получил такое название потому, что после значащего уровня сигнала в первой половине битового интервала следует возврат к некоему "нулевому", среднему уровню (например, к нулевому потенциалу). Переход к нему происходит в середине каждого битового интервала. Логическому нулю, таким образом, соответствует положительный импульс, логической единице – отрицательный (или наоборот) в первой половине битового интервала.
В центре битового интервала всегда есть переход сигнала (положительный или отрицательный), следовательно, из этого кода приемник легко может выделить синхроимпульс (строб). Возможна временная привязка не только к началу пакета, как в случае кода NRZ, но и к каждому отдельному биту, поэтому потери синхронизации не произойдет при любой длине пакета.
Еще одно важное достоинство кода RZ – простая временная привязка приема, как к началу последовательности, так и к ее концу. Приемник просто должен анализировать, есть изменение уровня сигнала в течение битового интервала или нет. Первый битовый интервал без изменения уровня сигнала соответствует окончанию принимаемой последовательности бит (рис. 3.12). Поэтому в коде RZ можно использовать передачу последовательностями переменной длины.
Определение начала и конца приема при коде RZ
Рис. 3.12. Определение начала и конца приема при коде RZ
Недостаток кода RZ состоит в том, что для него требуется вдвое большая полоса пропускания канала при той же скорости передачи по сравнению с NRZ (так как здесь на один битовый интервал приходится два изменения уровня сигнала). Например, для скорости передачи информации 10 Мбит/с требуется пропускная способность линии связи 10 МГц, а не 5 МГц, как при коде NRZ (рис. 3.13).
Скорость передачи и пропускная способность при коде RZ
Рис. 3.13. Скорость передачи и пропускная способность при коде RZ
Другой важный недостаток – наличие трех уровней, что всегда усложняет аппаратуру как передатчика, так и приемника.
Код RZ применяется не только в сетях на основе электрического кабеля, но и в оптоволоконных сетях. Правда, в них не существует положительных и отрицательных уровней сигнала, поэтому используется три следующие уровня: отсутствие света, "средний" свет, "сильный" свет. Это очень удобно: даже когда нет передачи информации, свет все равно присутствует, что позволяет легко определить целостность оптоволоконной линии связи без дополнительных мер (рис. 3.14).
Использование кода RZ в оптоволоконных сетях
Рис. 3.14. Использование кода RZ в оптоволоконных сетях
Манчестерский код
Манчестерский код (или код Манчестер-II) получил наибольшее распространение в локальных сетях. Он также относится к самосинхронизирующимся кодам, но в отличие от RZ имеет не три, а всего два уровня, что способствует его лучшей помехозащищенности и упрощению приемных и передающих узлов. Логическому нулю соответствует положительный переход в центре битового интервала (то есть первая половина битового интервала – низкий уровень, вторая половина – высокий), а логической единице соответствует отрицательный переход в центре битового интервала (или наоборот).
Как и в RZ, обязательное наличие перехода в центре бита позволяет приемнику манчестерского кода легко выделить из пришедшего сигнала синхросигнал и передать информацию сколь угодно большими последовательностями без потерь из-за рассинхронизации. Допустимое расхождение часов приемника и передатчика может достигать 25%.
Подобно коду RZ, при использовании манчестерского кода требуется пропускная способность линии в два раза выше, чем при применении простейшего кода NRZ. Например, для скорости передачи 10 Мбит/с требуется полоса пропускания 10 МГц (рис. 3.15).
Скорость передачи и пропускная способность при манчестерском коде
Рис. 3.15. Скорость передачи и пропускная способность при манчестерском коде
Как и при коде RZ, в данном случае приемник легко может определить не только начало передаваемой последовательности бит, но и ее конец. Если в течение битового интервала нет перехода сигнала, то прием заканчивается. В манчестерском коде можно передавать последовательности бит переменной длины (рис. 3.16). Процесс определения времени передачи называют еще контролем несущей, хотя в явном виде несущей частоты в данном случае не присутствует.
Определение начала и конца приема при манчестерском коде
Рис. 3.16. Определение начала и конца приема при манчестерском коде
Манчестерский код используется как в электрических, так и в оптоволоконных кабелях (в последнем случае один уровень соответствует отсутствию света, а другой – его наличию).
Основное достоинство манчестерского кода – постоянная составляющая в сигнале (половину времени сигнал имеет высокий уровень, другую половину – низкий). Постоянная составляющая равна среднему значению между двумя уровнями сигнала.
Если высокий уровень имеет положительную величину, а низкий – такую же отрицательную, то постоянная составляющая равна нулю. Это дает возможность легко применять для гальванической развязки импульсные трансформаторы. При этом не требуется дополнительного источника питания для линии связи (как, например, в случае использования оптронной гальванической развязки), резко уменьшается влияние низкочастотных помех, которые не проходят через трансформатор, легко решается проблема согласования.
Если же один из уровней сигнала в манчестерском коде нулевой (как, например, в сети Ethernet), то величина постоянной составляющей в течение передачи будет равна примерно половине амплитуды сигнала. Это позволяет легко фиксировать столкновения пакетов в сети (конфликт, коллизию) по отклонению величины постоянной составляющей за установленные пределы.
Частотный спектр сигнала при манчестерском кодировании включает в себя только две частоты: при скорости передачи 10 Мбит/с это 10 МГц (соответствует передаваемой цепочке из одних нулей или из одних единиц) и 5 МГц (соответствует последовательности из чередующихся нулей и единиц: 1010101010...). Поэтому с помощью простейших полосовых фильтров можно легко избавиться от всех других частот (помехи, наводки, шумы).
Бифазный код
Бифазный код часто рассматривают как разновидность манчестерского, так как их характеристики практически полностью совпадают.
Данный код отличается от классического манчестерского кода тем, что он не зависит от перемены мест двух проводов кабеля. Особенно это удобно в случае, когда для связи применяется витая пара, провода которой легко перепутать. Именно этот код используется в одной из самых известных сетей Token-Ring компании IBM.
Принцип данного кода прост: в начале каждого битового интервала сигнал меняет уровень на противоположный предыдущему, а в середине единичных (и только единичных) битовых интервалов уровень изменяется еще раз. Таким образом, в начале битового интервала всегда есть переход, который используется для самосинхронизации. Как и в случае классического манчестерского кода, в частотном спектре при этом присутствует две частоты. При скорости 10 Мбит/с это частоты 10 МГц (при последовательности одних единиц: 11111111...) и 5 МГц (при последовательности одних нулей: 00000000...).
Имеется также еще один вариант бифазного кода (его еще называют дифференциальным манчестерским кодом). В этом коде единице соответствует наличие перехода в начале битового интервала, а нулю – отсутствие перехода в начале битового интервала (или наоборот). При этом в середине битового интервала переход имеется всегда, и именно он служит для побитовой самосинхронизации приемника. Характеристики этого варианта кода также полностью соответствуют характеристикам манчестерского кода.
Здесь же стоит упомянуть о том, что часто совершенно неправомерно считается, что единица измерения скорости передачи бод – это то же самое, что бит в секунду, а скорость передачи в бодах равняется скорости передачи в битах в секунду. Это верно только в случае кода NRZ. Скорость в бодах характеризует не количество передаваемых бит в секунду, а число изменений уровня сигнала в секунду. И при RZ или манчестерском кодах требуемая скорость в бодах оказывается вдвое выше, чем при NRZ. В бодах измеряется скорость передачи сигнала, а в битах в секунду – скорость передачи информации. Поэтому, чтобы избежать неоднозначного понимания, скорость передачи по сети лучше указывать в битах в секунду (бит/с, Кбит/с, Мбит/с, Гбит/с).
Другие коды
Все разрабатываемые в последнее время коды призваны найти компромисс между требуемой при заданной скорости передачи полосой пропускания кабеля и возможностью самосинхронизации. Разработчики стремятся сохранить самосинхронизацию, но не ценой двукратного увеличения полосы пропускания, как в рассмотренных RZ, манчестерском и бифазном кодах.
Чаще всего для этого в поток передаваемых битов добавляют биты синхронизации. Например, один бит синхронизации на 4, 5 или 6 информационных битов или два бита синхронизации на 8 информационных битов. В действительности все обстоит несколько сложнее: кодирование не сводится к простой вставке в передаваемые данные дополнительных битов. Группы информационных битов преобразуются в передаваемые по сети группы с количеством битов на один или два больше. Приемник осуществляет обратное преобразование, восстанавливает исходные информационные биты. Довольно просто осуществляется в этом случае и обнаружение несущей частоты (детектирование передачи).
Так, например, в сети FDDI (скорость передачи 100 Мбит/с) применяется код 4В/5В, который 4 информационных бита преобразует в 5 передаваемых битов. При этом синхронизация приемника осуществляется один раз на 4 бита, а не в каждом бите, как в случае манчестерского кода. Но зато требуемая полоса пропускания увеличивается по сравнению с кодом NRZ не в два раза, а только в 1,25 раза (то есть составляет не 100 МГц, а всего лишь 62,5 МГц). По тому же принципу строятся и другие коды, в частности, 5В/6В, используемый в стандартной сети 100VG-AnyLAN, или 8В/10В, применяемый в сети Gigabit Ethernet.
В сегменте 100BASE-T4 сети Fast Ethernet использован несколько иной подход. Там применяется код 8В/6Т, предусматривающий параллельную передачу трех трехуровневых сигналов по трем витым парам. Это позволяет достичь скорости передачи 100 Мбит/с на дешевых кабелях с витыми парами категории 3, имеющих полосу пропускания всего лишь16 МГц (см. табл. 2.1). Правда, это требует большего расхода кабеля и увеличения количества приемников и передатчиков. К тому же принципиально, чтобы все провода были одной длины и задержки сигнала в них не слишком различались.
Иногда уже закодированная информация подвергается дополнительному кодированию, что позволяет упростить синхронизацию на приемном конце. Наибольшее распространение для этого получили 2-уровневый код NRZI, применяемый в оптоволоконных сетях (FDDI и 100BASE-FX), а также 3-уровневый код MLT-3, используемый в сетях на витых парах (TPDDI и 100BASE-TХ). Оба эти кода (рис. 3.17) не являются самосинхронизирующимися.
Коды NRZI и MLT-3
Рис. 3.17. Коды NRZI и MLT-3
Код NRZI (без возврата к нулю с инверсией единиц – Non-Return to Zero, Invert to one) предполагает, что уровень сигнала меняется на противоположный в начале единичного битового интервала и не меняется при передаче нулевого битового интервала. При последовательности единиц на границах битовых интервалов имеются переходы, при последовательности нулей – переходов нет. В этом смысле код NRZI лучше синхронизируется, чем NRZ (там нет переходов ни при последовательности нулей, ни при последовательности единиц).
Код MLT-3 (Multi-Level Transition-3) предполагает, что при передаче нулевого битового интервала уровень сигнала не меняется, а при передаче единицы – меняется на следующий уровень по такой цепочке: +U, 0, –U, 0, +U, 0, –U и т.д. Таким образом, максимальная частота смены уровней получается вчетверо меньше скорости передачи в битах (при последовательности сплошных единиц). Требуемая полоса пропускания оказывается меньше, чем при коде NRZ.
Все упомянутые в данном разделе коды предусматривают непосредственную передачу в сеть цифровых двух- или трехуровневых прямоугольных импульсов.
Однако иногда в сетях используется и другой путь – модуляция информационными импульсами высокочастотного аналогового сигнала (синусоидального). Такое аналоговое кодирование позволяет при переходе на широкополосную передачу существенно увеличить пропускную способность канала связи (в этом случае по сети можно передавать несколько бит одновременно). К тому же, как уже отмечалось, при прохождении по каналу связи аналогового сигнала (синусоидального) не искажается форма сигнала, а только уменьшается его амплитуда, а в случае цифрового сигнала форма сигнала искажается (см. рис. 3.2).
К самым простым видам аналогового кодирования относятся следующие (рис. 3.18):
* Амплитудная модуляция (АМ, AM – Amplitude Modulation), при которой логической единице соответствует наличие сигнала (или сигнал большей амплитуды), а логическому нулю – отсутствие сигнала (или сигнал меньшей амплитуды). Частота сигнала при этом остается постоянной. Недостаток амплитудной модуляции состоит в том, что АМ-сигнал сильно подвержен действию помех и шумов, а также предъявляет повышенные требования к затуханию сигнала в канале связи. Достоинства – простота аппаратурной реализации и узкий частотный спектр.
Аналоговое кодирование цифровой информации
Рис. 3.18. Аналоговое кодирование цифровой информации
* Частотная модуляция (ЧМ, FM – Frequency Modulation), при которой логической единице соответствует сигнал более высокой частоты, а логическому нулю – сигнал более низкой частоты (или наоборот). Амплитуда сигнала при частотной модуляции остается постоянной, что является большим преимуществом по сравнению с амплитудной модуляцией.
* Фазовая модуляция (ФМ, PM – Phase Modulation), при которой смене логического нуля на логическую единицу и наоборот соответствует резкое изменение фазы синусоидального сигнала одной частоты и амплитуды. Важно, что амплитуда модулированного сигнала остается постоянной, как и в случае частотной модуляции.
Применяются и значительно более сложные методы модуляции, являющиеся комбинацией перечисленных простейших методов. Чаще всего аналоговое кодирование используется при передаче информации по каналу с узкой полосой пропускания, например, по телефонным линиям в глобальных сетях. Кроме того, аналоговое кодирование применяется в радиоканалах, что позволяет обеспечивать связь между многими пользователями одновременно. В локальных кабельных сетях аналоговое кодирование практически не используется из-за высокой сложности и стоимости как кодирующего, так и декодирующего оборудования.
Средой передачи информации называются те линии связи (или каналы связи), по которым производится обмен информацией между компьютерами. В подавляющем большинстве компьютерных сетей (особенно локальных) используются проводные или кабельные каналы связи, хотя существуют и беспроводные сети, которые сейчас находят все более широкое применение, особенно в портативных компьютерах.
Информация в локальных сетях чаще всего передается в последовательном коде, то есть бит за битом. Такая передача медленнее и сложнее, чем при использовании параллельного кода. Однако надо учитывать то, что при более быстрой параллельной передаче (по нескольким кабелям одновременно) увеличивается количество соединительных кабелей в число раз, равное количеству разрядов параллельного кода (например, в 8 раз при 8-разрядном коде). Это совсем не мелочь, как может показаться на первый взгляд. При значительных расстояниях между абонентами сети стоимость кабеля вполне сравнима со стоимостью компьютеров и даже может превосходить ее. К тому же проложить один кабель (реже два разнонаправленных) гораздо проще, чем 8, 16 или 32. Значительно дешевле обойдется также поиск повреждений и ремонт кабеля.
Но это еще не все. Передача на большие расстояния при любом типе кабеля требует сложной передающей и приемной аппаратуры, так как при этом необходимо формировать мощный сигнал на передающем конце и детектировать слабый сигнал на приемном конце. При последовательной передаче для этого требуется всего один передатчик и один приемник. При параллельной же количество требуемых передатчиков и приемников возрастает пропорционально разрядности используемого параллельного кода. В связи с этим, даже если разрабатывается сеть незначительной длины (порядка десятка метров) чаще всего выбирают последовательную передачу.
К тому же при параллельной передаче чрезвычайно важно, чтобы длины отдельных кабелей были точно равны друг другу. Иначе в результате прохождения по кабелям разной длины между сигналами на приемном конце образуется временной сдвиг, который может привести к сбоям в работе или даже к полной неработоспособности сети. Например, при скорости передачи 100 Мбит/с и длительности бита 10 нс этот временной сдвиг не должен превышать 5—10 нс. Такую величину сдвига дает разница в длинах кабелей в 1—2 метра. При длине кабеля 1000 метров это составляет 0,1—0,2%.
Надо отметить, что в некоторых высокоскоростных локальных сетях все-таки используют параллельную передачу по 2—4 кабелям, что позволяет при заданной скорости передачи применять более дешевые кабели с меньшей полосой пропускания. Но допустимая длина кабелей при этом не превышает сотни метров. Примером может служить сегмент 100BASE-T4 сети Fast Ethernet.
Промышленностью выпускается огромное количество типов кабелей, например, только одна крупнейшая кабельная компания Belden предлагает более 2000 их наименований. Но все кабели можно разделить на три большие группы:
* электрические (медные) кабели на основе витых пар проводов (twisted pair), которые делятся на экранированные (shielded twisted pair, STP) и неэкранированные (unshielded twisted pair, UTP);
* электрические (медные) коаксиальные кабели (coaxial cable);
* оптоволоконные кабели (fiber optic).
Каждый тип кабеля имеет свои преимущества и недостатки, так что при выборе надо учитывать как особенности решаемой задачи, так и особенности конкретной сети, в том числе и используемую топологию.
Можно выделить следующие основные параметры кабелей, принципиально важные для использования в локальных сетях:
* Полоса пропускания кабеля (частотный диапазон сигналов, пропускаемых кабелем) и затухание сигнала в кабеле. Два этих параметра тесно связаны между собой, так как с ростом частоты сигнала растет затухание сигнала. Надо выбирать кабель, который на заданной частоте сигнала имеет приемлемое затухание. Или же надо выбирать частоту сигнала, на которой затухание еще приемлемо. Затухание измеряется в децибелах и пропорционально длине кабеля.
* Помехозащищенность кабеля и обеспечиваемая им секретность передачи информации. Эти два взаимосвязанных параметра показывают, как кабель взаимодействует с окружающей средой, то есть, как он реагирует на внешние помехи, и насколько просто прослушать информацию, передаваемую по кабелю.
* Скорость распространения сигнала по кабелю или, обратный параметр – задержка сигнала на метр длины кабеля. Этот параметр имеет принципиальное значение при выборе длины сети. Типичные величины скорости распространения сигнала – от 0,6 до 0,8 от скорости распространения света в вакууме. Соответственно типичные величины задержек – от 4 до 5 нс/м.
* Для электрических кабелей очень важна величина волнового сопротивления кабеля. Волновое сопротивление важно учитывать при согласовании кабеля для предотвращения отражения сигнала от концов кабеля. Волновое сопротивление зависит от формы и взаиморасположения проводников, от технологии изготовления и материала диэлектрика кабеля. Типичные значения волнового сопротивления – от 50 до 150 Ом.
В настоящее время действуют следующие стандарты на кабели:
* EIA/TIA 568 (Commercial Building Telecommunications Cabling Standard) – американский;
* ISO/IEC IS 11801 (Generic cabling for customer premises) – международный;
* CENELEC EN 50173 (Generic cabling systems) – европейский.
Эти стандарты описывают практически одинаковые кабельные системы, но отличаются терминологией и нормами на параметры.