Итак вы решили создать сайт. Ну что же, давно пора :) Однако прежде чем создавать его сядьте и немного подумайте. Многие начинающие веб мастера думают, что все размышления о раскрутке интернет проекта будут уместны уже потом, после того как сам проект будет создан. Это в корне не верно. Начинать нужно заранее. Во первых продумайте контент, т.е. ту информацию, которая будет у вас на сайте, зайдите в поисковые системы и оцените, есть ли конкуренция по данной тематике и насколько она велика.
Затем подготовьте материалы. Продумайте, какая информация будет выложена у вас на сайте. Подбирая материал, подумайте о том, чтобы его не было слишком мало. Интернет проект, претендующий на то, чтобы стать популярным, должен состоять как минимум из нескольких сотен страниц. С меньшим объемом контента сложно рассчитывать на серьезные успехи в поисковых машинах. Да и пользователь случайно забредший к вам на сайт, вряд ли будет находиться там долго, если все, что вы сможете ему предложить - это десяток страниц текста. Итак начать нужно с того, что продумайте качество и количество контента.
Далее необходимо продумать по каким ключевым словам пользователь будет находить ваш сайт? На яндексе есть сервис предоставляющий возможность веб мастеру оценить популярность поисковых запросов. Например, когда я перед созданием своего портала Портал InternetCity ввел запрос на популярность ключевого слова культуризм, то получил, что за прошедший месяц это слово запрашивалось в Яндексе около 1500 раз. А вот словосочетания "культуризм грудь" спрашивалось только 6 раз. Догадываетесь куда я клоню, к необходимости оптимизировать текст на ваших страницах, так, чтобы пользователь мог вас найти. Например я счел, оптимизировать страницы моего портала под словосочетание "культуризм грудь" смысла не имеет, так как дополнительные 6 посетителей в месяц мне погоду не сделают, а вот оптимизировать под слово культуризм страницы нужно. Кстати по этому слову мой портал будет где то в первой тройке.
Старайтесь продумать все основные ключевые слова, по которым ваш сайт будут находить в поисковых запросах. В последствии это сбережет вам массу времени. Чтобы вы лучше поняли о чем идет речь приведу еще такой пример: Как я уже писал, я оптимизировал свой сайт под ряд ключевых запросов, одним из которых был культуризм, а вот оптимизировать под слово бодибилдинг (надеюсь ни кому не нужно объяснять что это такое) не догадался и уже после создания сайта проверив популярность этого слова, выяснил, что оно ищется пользователями поисковиков в 4 раза чаще, чем слово культуризм.
Следовательно мне сейчас придется думать о том, как оптимизировать еще свои страницы и по этому слову, значит нужно расширить портал, внести исправления в уже существующий текст, закачать все исправленное и переделанное на сервер и т.д. Одним словом потратить кучу времени. А все это по тому, что я вовремя не подумал о том, что ключевое слово бодибилдинг популярно в рунете.
Привык все время говорить культуризм да культуристы, а заморское словечко бодибилдинг в моем лексиконе не прижилось, а зря, мог бы себе немало времени сэкономить.
Итак контент подобран, ключевые слова тоже, дизайн сайта продуман, пора приступать непосредственно к его созданию. Я не буду здесь писать о том как вам создать дизайн сайта, это тема отдельной статьи. Здесь мы поговорим только об оптимизации страниц для поисковых систем. Прежде чем начинать сайтотворчество не забудьте зайти на Рамблер, Яндекс и Апорт и почитать что нужно сделать, а чего не надо делать для того, чтобы поисковый робот вас смог найти.
Итак, что нужно сделать для того, чтобы вашу страницу легко можно найти.
Заходим в Яндекс и читаем: Необходимо задавать уникальные заголовке в теге title, но не более 20-25 слов. К слову сказать на моем портале каждый заголовок уникален. Не стремитесь писать в заголовках название своего сайта, в заголовке вы должны отразить краткое содержание каждой страницы. Например: Индексация сайта в поисковых машинах. Что нужно знать для поисковой индексации. Давайте каждому документу описание в тэге description Собственно говоря не все поисковые машины учитывают этот тег, но тем не менее некоторые выводят его как краткое описание сайта при выдачи поискового запроса. Само собой описание в этом теге также должно быть уникальным для каждой странички.
Не забывайте о ключевых словах, по возможности уникальных для каждой страницы в теге Keywords. Однако используйте в этом теге только те слова, которые встречаются в тексте страницы. Делайте подписи к картинкам в тэге alt. Поисковым системам важно: есть ли искомое слово на странице документа, насколько часто оно в нем повторяется, промежутки между ключевыми словами, вес каждого слова.
О весе слова нужно поговорить особо, слово набранное в теге alt будет иметь меньший вес по сравнению со словами в тексте документа, а вот слово набранное в теге title или используемое в гиперссылках будет иметь больший вес. Также некоторый приоритет имеют слова, заключенные тегами H, B. Наличие искомого слова в теге Keywords также повышает его значимость, но лишь в том случае если это же слово присутствует и в тексте документа. Если же такого слова в тексте документа нет, а присутствует только в мета теге, то поисковая система эту страницу в результате поиска скорее всего вообще не покажет. Играет также значение месторасположение слова, чем ближе оно к вершине документа, тем больший вес будет иметь. К примеру слово культуризм расположенное в начале странице на моем портале имеет гораздо больший вес, чем слово культуризм расположенное всередине страницы.
Конечно поисковая оптимизация страниц вашего сайта сильно замедлит работу по его созданию, но не оптимизировав страницы практически невозможно будет добиться каких-нибудь серьезных результатов в поисковиках и следовательно раскрутить ваш ресурс, а раз так, то возникает вопрос, зачем его вообще создавать.
Итак, вы создали список ключевых слов, которые будете использовать для поисковиков. Теперь пришло время узнать, как правильно разместить эти слова для того, чтобы получить максимальную оценку от поисковой системы. Эта статья посвящена всем вебмастерам, которые занимаются не только созданием сайтов, но и их продвижением в сети интернет.
Создайте "входные страницы" (дорвеи) для вашего сайта, используя всевозможные комбинации ключевых слов на странице. В идеале, необходимо создать каждую отдельную страницу для конкретного ключевого слова и для конкретной поисковой машины, так как каждая поисковая система использует свой алгоритм оценки релевантности. Сразу должен сказать, что дорвеи - это хорошая идея, но на практике их разработка может занять массу времени. С тех пор, как поисковые системы стали регулярно менять алгоритмы оценки страниц, вебмастерам приходится постоянно работать над созданием новых дорвеев, обеспечивающих высокий рейтинг в поисковой системе. Более того, если вы работаете над большим количеством ключевых слов, вам придется создавать сотни дорвеев! И вскоре, вы столкнетесь с тем, что их создание будет отнимать больше времени, чем обычная работа над сайтом.
Метод, который я хочу предложить работает. Изначально, не беспокойтесь о разных алгоритмах в поисковых системах. Создайте разные дорвеи, пропишите их в поисковые системы, и отслеживайте траффик. Регулярно создавайте дорвеи и проверяйте статистику посещений, до тех пор, пока не определите рейтинг ваших страниц в поисковиках (почти все поисковые системы дают эту возможность). Когда вы определили нахождение страниц в рейтинге, создайте новый дорвей - в котором неоднократно повторяется конкретное ключевое слово в смеси с другими ключевыми словами. Зарегистрируйте этот дорвей в поисковиках и следите за его рейтингом. Как только вы определили поисковики, которые низко оценивают этот дорвей, создайте новые дорвеи для конкретной поисковой системы, основываясь на рейтинге предыдущих дорвеев. Продолжайте оптимизировать его до тех пор, пока не достигните должного результата.
Пойдем дальше. Я надеюсь, вы вкурсе, что такое meta tags, tittle tags, meta-description tags, meta-keywordstags, the heading tags, и alt tags. Если вы не знаете, что это такое, бросайте читать эту статью и отправляйтесь в магазин за руководством по созданию HTML-страниц.
Предположим, у вас сайт туристической фирмы и вам необходимо использовать ключевые слова "Путешествие в Австралию". Приступим к созданию нашего дорвея.
Самый важный тэг в создании дорвея. Всегда вписывайте основное ключевое слово вначало, повторяя его в середине и в конце тэгов .Но НИКОГДА не вписывайте ключевое слово (или два ключевых слова) два раза подряд - поисковые системы воспримут это как спам. Также, содержимое тэгов является заголовком в результатах поиска поисковой системы, т.е.вы должны создать абсолютно читаемый заголовок. Вот пример: "Путешествие в Австралию - открой для себя как можно совершить путешествие в Австралию всего за ***$". Здесь мы создали заголовок, в котором ключевые слова используются в начале и повторяются в середине. Также, чередуйте заглавные и прописные буквы в слове "путешествие". Создайте подобные дорвеи, используя варианты: "путешествие в австралию", "Путешествие в Австралию", "путешествие в Австралию" и т.п.
Содержимое страницы. ALT-тэг Переходим к содержимому страницы. Начните свою страницу с изображения рисунка, имеющего прямое отношение к теме вашего сайта. Поместите его вверху страницы. В ALT тэге рисунка впишите "Путешествие в Австралию". Можете дополнить тэг другими словами, но начните обязательно с основных. Теперь создайте заголовок. Используйте размер H1 для заголовка. Снова, впишите основные ключевые слова в заголовок. Также как и в ALT-тэг, вы можете добавить другие слова, но после основных. Переходим к тексту страницы. От текста, расположенного в начале страницы зависит практически все. Содержанием текста вы должны направить посетителя к вашей основной странице сайта. Вставьте ссылку на основную страницу сайта на видном месте, чтобы посетитель мог не напрягаясь уйти по ней. Не вставляйте лишних ссылок и лишних баннеров - не давайте посетителю уйти.
Придерживайтесь следующих правил:
1) Первое, что необходимо помнить: некоторые поисковые системы не читают Meta-тэги, и используют первые слова на странице в качестве ключевых. Поэтому первые строки должны быть качественно составлены и удобочитаемы для посетителя.
2) Составьте предложения так, чтобы в них обязательно присутствовали ключевые слова - по одному разу в предложении. При этом ваши предложения должны иметь грамматический смысл, а не представлять из себя набор фраз. Посетитель должен получить приятное впечатление при чтении текста.
3) Не делайте ваши параграфы слишком длинными. Каждый должен быть от силы из 3-4 предложений. Посетители веб-страниц просто не будут читать большие громоздкие тексты.
4) Попытайтесь сделать так, чтобы текстовые ссылки включали в себя ключевые слова. Зачастую поисковики высоко ранжируют такие страницы.
5) Если это возможно, делайте ссылки на страницы которые имеют ключевое слово в имени файла. Поисковые системы учитывают это.
6) Нет конкретного ограничения на количество слов в странице - но постарайтесь создать ваш дорвей с 500-600 словами.
Созданную страницу назовите ключевыми словами, разделенными дефисом:travel-to-australia.html Это даст вам высокую оценку поисковиками (например Nothern Light), которые обращают внимание на присутствие ключевого слова в URL.
Теперь вам нужно правильно прописать дорвеи в поисковых системах. Многие вебмастера, загрузив дорвеи на сервер начинают регистрировать их один за другим в поисковых системах. Это распространенная ошибка. Поисковые системы низко оценивают страницу, с которой есть несколько ссылок, но нет ссылок на нее, а бывает так, что такие страницы оцениваются как дорвеи и тогда поисковая машина заносит URL в черный список - блэклист.
Что вам еще нужно сделать, так это сделать ссылку на дорвей с вашей основной страницы, но сделать это так, чтобы ссылка существовала только для поисковой машины - но не для посетителя. Однако не делайте текстовые ссылки под цвет фона - 99% поисковиков занесут вас в блэклист за такие проделки. Вот здесь я вам открою свой маленький секрет Создайте небольшую картинку под цвет вашего фона. Назовите рисунок именем дорвея - travel-to-australia.gif Вставьте рисунок в конец основной страницы и сделайте с него ссылку на дорвей. В ALT-тэг рисунка также вставьте ключевые слова . Не забудьте установить border=0 для рисунка.
Создайте подобные дорвеи для других ключевых слов, скопируйте тот же рисунок на основной странице еще раз, изменив его имя, ALT-тэг и ссылку. Повторяйте этот процесс для каждого ключевого слова или фразы. Таким образом, когда будет создано достаточное количество дорвеев, вы можете прописать вашу основную страницу сайта в поисковые системы. Не прописывайте все страницы сайта - пропишите только основную страницу. Несмотря на то, что на обнаружение всех страниц сайта уйдет больше времени, я настоятельно рекомендую поступить именно так: спайдер, пройдясь по ссылкам и обнаружив тем самым дорвеи и не узнав их, придаст более высокое ранжирование им!
В мире информационных технологий такое понятие, как доступность сайта - это одна из самых важных составляющих. В Сети уже есть достаточное количество сервисов, с помощью которых можно проследить “доступность” (uptime - время работы). В данной статье рассмотрим три таких сервиса, один из которых работает на русском языке.
Бинoкль (http://www.binokl.info/) - изначально сервис разработан для хостинг-компаний, веб-мастеров и интернет-провайдеров. В зависимости от выбранного тарифного пакета проверка доступности (uptime'а) вашего сервера происходит через 15, 20 или 30 минут.
Если вам лень каждый раз заходить в раздел статистики и смотреть показатели работы хостинга, то можно настроить автоматическое уведомление на e-mail, когда ваш сервер будет недоступен. Предусмотрена и отправка отчетов за определенны интервал времени - раз в неделю, месяц.
Есть возможность установить у себя на сайте графическую кнопку, которая будет информировать о том, что ваш сайт находится под наблюдением сервиса "Бинокль". Единственный недостаток такой кнопки - это ее информативность лишь в популяризации сервиса, потому как числовых данных она не выдает.
mon.itor.us (http://mon.itor.us/) - uptime сервис от американской компании. Очень информативен и предлагает возможность контроля множества параметров. Информация может выводиться в виде графика, таблицы или диаграммы - это кому как удобнее и понятнее воспринимать. Также можно организовать получение уведомлений через e-mail. Среди недостатков - это удаленность сервера от просторов рунета, что, естественно, замедляет проверку хостинга на доступность.
Montastic (http://montastic.com/) - простой (можно сказать, что даже очень простой), но, тем не менее, удобный сервис для определения uptima'а. Здесь статистика отсутствует как таковая, и вообще есть только два состояния - работает и не работает. Но изюминка в способах того, как вы узнаете статус сайта - это и рассылка по электронной почте, подписка на RSS и даже Yahoo Widget.
Интерфейс, как и функциональность весьма прост, просто вводите адрес сайта, e-mail и все! В принципе если вы не заморачиваетесь подсчетом денег, которые вы потеряли пока ваш сайт не работает или у вас нет желания высылать подробные жалобные письма в адрес своего хостера, то этот сервис то, что вам надо.
Сделаем выводы:
mon.itor.us - следует использовать только в том случае, если ваш сайт (а желательно и вы тоже) живет близко к этому сервису, то он просто идеально подходит для вас, только следите чтобы ваш сайт работал всегда.
Montastic - этот сервис для тех, кому нужен ответ - работает/не работает сайт
Бинoкль - подробный, надежный и главное что на русском языке.
К примеру, решили обратиться хостинг-компанию для размещения собственного веб-сайта. У вас уже есть зарегистрированное доменное имя или вы его вскоре планируете зарегистрировать. Ведь какой толк от хостинга без домена? Но выбор хостинга и конкретного тарифного плана не такая простая штука, как кажется на первый взгляд.
Очень важно прочитать отзывы о нескольких хостерах на форумах, проверить аптайм их серверов и внимательно ознакомиться с техническими возможностями хостинга.
1. Техподдержка
В наше время существует очень много хостинг-провайдеров, список которых можно найти в любом поисковике. Остановимся на вопросе о быстроте работы службы техподдержки. Некоторые из них отвечают своим клиентам быстро, а ответа от некоторых приходится ждать часами, а то и днями.
Нередки случаи, когда после 6 вечера и до самого утра вообще никого нет, не говоря уже о праздничных днях. Но ведь оборудование и программное обеспечение вещь ненадежная – возьмет и сгорит блок питания, отпадет проводок или повиснет база данных – “ну у вас и запросы, сказала база данных и повисла”.
От таких хостеров нужно бежать поскорее и подальше, даже не ведитесь на то, что у них цены ниже, зато проблем будет больше. Вообще есть универсальное правило – если вам не ответят в течение часа, это говорит о некачественной работе службы техподдержки.
2. Оборудование, программное обеспечение, скорость каналов, бэкапы
Сервера составляют основу инфраструктуры любого хостинг-провайдера. Ясное дело, что они имеют свои характеристики, такие как тип и производительность процессора, объем оперативной памяти, размер жесткого диска, версии программного обеспечения (операционная система – Linux, FreeBSD, сервер баз данных - MySQL, сам сервер - apache).
Немаловажно, чтобы раз в сутки производился бэкап всего вашего сайта (с БД), был резервный канал данных и подвода электричества.
3. Финансовое положение и доходность хостера
Очень важно знать хотя бы приблизительно, в каком финансовом положении находится ваш хостинг-провайдер. Естественно, о убытках или прибыльности компании вам никто просто так не скажет. Но есть моменты, которые говорят сами за себя.
К примеру, посмотрите характеристики серверного оборудования и ширину каналов у ведущих и авторитетных хостеров. Потом сравните ее с вашим предполагаемым будущим хостером. Если технические характеристики процессоров, типа и емкости оперативной памяти значительно устарели, то видимо не все у них гладко с деньгами или же они попросту экономят на своих клиентах. Тоже самое можно сказать о ширине канала и наличии собственного дата-центра.
К примеру, на одном сервере хостятся 50 сайтов (виртуальный хостинг), всем хватает ресурсов процессора и оперативной памяти, БД не виснет от большого количества запросов в единицу времени. Но если еще добавить на этот сайт 10-20 сайтов и не увеличить производительность оборудования, то проблемы с работоспособностью будут у всех сайтов.
4. Виды услуг, предоставляемых хостингом
Что именно поставщик услуг хостинга собирается вам предложить? В зависимости от ваших требований, он должен быть в состоянии предоставить все, что вам необходимо для работы вашего сайта.
Ведь если вы собираетесь делать лишь домашнюю страничку или сайт-визитку на 10 страниц без использования скриптов, то вам совсем необязательно брать 1 гигабайт дискового пространства, 10 баз данных, и десятки гигабайт трафика.
Другое дело, когда вы собираетесь делать сайт с использованием технологий PHP, asp.net и Java вплоть до скриптов, форумов, покупательских тележек, plesk, CMS и систем электронной коммерции.
Важно, чтобы все необходимые вам технологии поддерживались хостингом в полной мере. Если вы планируете сделать по-настоящему интерактивным по своему содержанию сайт, в том числе в форме видео, потокового медиа, блогов, чатов и многое другое, Вы должны убедиться, что ваш поставщик услуг может предоставить вам все это.
5. Какие гарантии дает ваш провайдер в плане надежности и гарантию по времени доступности сервера (аптайм)?
Поинтересуйтесь у провайдера, какой у них аптайм сервером. Желательно, чтобы была не просто указана цифра на сайте, а был линк на независимый сервис мониторинга аптайма серверов.
Приемлемой величиной аптайма является от 99% до 99,9%. Если эта величина хотя бы за один отчетный период (день, неделю, месяц) ниже, лучше поискать другого хостера.
Доменное имя - это имя, по которому посетители интернета будут находить ваш сайт в интернете. Оно отличает один сайт от другого. Вы можете рекламировать свой бизнес, выбрав доменное имя более тщательно.
Доменные имена являются постоянными и сохраняются на вас до тех пор, пока вы будет оплачивать его делегацию (продление). Как правило, компании используют название своей компании или торговой марки в качестве доменного имени.
World Wide Web - название, которое получила огромная сеть, которую мы называем интернетом. Она содержит миллионы сайтов. Новые и новые сайты добавляются ежедневно. Все больше и больше людей используют интернет для своего бизнеса и труда. И этот прекрасный средний бизнес действительно стал глобальным.
Продукты можно заказать в домах и служебных помещениях с помощью интернета. Бизнес перспективы увеличились за последние годы. Это придало новое измерение современному бизнесу. В будущем ожидается, что предприятие будет сделано только в онлайновом режиме. Уже сейчас онлайновые транзакции являются наиболее предпочтительным видом бизнеса для большого процента потребителей в развитых странах.
Таким образом, мы можем с уверенностью считать, что современные бизнесмены не смогут обойтись без онлайновых транзакций.
Всем известно о важности визитной карточки компании. Доменные имена превратились в современные визитки. Визитные карточки имеют свои ограничения, в то время как сайты обладает потенциалом для получения многочисленных клиентов.
Она способствует развитию бизнеса и может привлечь новых клиентов. Домены должны быть в состоянии отобразить имидж компании. Доменное имя должно быть также использовано для поиска пользователей, чтобы они могли легко найти вашу компанию. Это делает вашу продукцию доступной для миллионов пользователей во всем мире. Современный бизнес стал очень конкурентным и доменное имя укрепляет перспективы компании.
Следующий шагом после выбора домена заключается в том, чтобы зарегистрировать его. Доменное имя зарегистрировать очень просто. Вы можете обратиться к хостинговой компании чтобы она зарегистрировала имя для вас. Процесс регистрации займет всего несколько минут.
Компьютеры находят доменные имена в интернете по IP-адресам. Но человеку трудно запомнить IP-адреса, поэтому доменные имена имеют буквенные названия, а специальные сервисы в интернете преобразуют их в IP-адрес.
Доменные имена являются более удобными и легко запоминающимися, что позволяет потенциальным клиентам найти ваш сайт в интернете. Доменные имена, как правило, состоят из простых слов или фраз. Крайне важно выбирать слова, выражения, которые имеют отношение к вашей компании, насколько это возможно. Кроме того, целесообразно выбирать короткие имена, которые легко запомнить.
Все протоколы обмена маршрутной информацией стека TCP/IP относятся к классу адаптивных протоколов, которые в свою очередь делятся на две группы, каждая из которых связана с одним из следующих типов алгоритмов:
* дистанционно-векторный алгоритм (Distance Vector Algorithms, DVA),
* алгоритм состояния связей (Link State Algorithms, LSA).
В алгоритмах дистанционно-векторного типа каждый маршрутизатор периодически и широковещательно рассылает по сети вектор расстояний от себя до всех известных ему сетей. Под расстоянием обычно понимается число промежуточных маршрутизаторов через которые пакет должен пройти прежде, чем попадет в соответствующую сеть. Может использоваться и другая метрика, учитывающая не только число перевалочных пунктов, но и время прохождения пакетов по связи между соседними маршрутизаторами.
Получив вектор от соседнего маршрутизатора, каждый маршрутизатор добавляет к нему информацию об известных ему других сетях, о которых он узнал непосредственно (если они подключены к его портам) или из аналогичных объявлений других маршрутизаторов, а затем снова рассылает новое значение вектора по сети. В конце-концов, каждый маршрутизатор узнает информацию об имеющихся в интерсети сетях и о расстоянии до них через соседние маршрутизаторы.
Дистанционно-векторные алгоритмы хорошо работают только в небольших сетях. В больших сетях они засоряют линии связи интенсивным широковещательным трафиком, к тому же изменения конфигурации могут отрабатываться по этому алгоритму не всегда корректно, так как маршрутизаторы не имеют точного представления о топологии связей в сети, а располагают только обобщенной информацией - вектором дистанций, к тому же полученной через посредников. Работа маршрутизатора в соответствии с дистанционно-векторным протоколом напоминает работу моста, так как точной топологической картины сети такой маршрутизатор не имеет.
Наиболее распространенным протоколом, основанным на дистанционно-векторном алгоритме, является протокол RIP.
Алгоритмы состояния связей обеспечивают каждый маршрутизатор информацией, достаточной для построения точного графа связей сети. Все маршрутизаторы работают на основании одинаковых графов, что делает процесс маршрутизации более устойчивым к изменениям конфигурации. Широковещательная рассылка используется здесь только при изменениях состояния связей, что происходит в надежных сетях не так часто.
Для того, чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами со своими ближайшими соседями. Этот трафик также широковещательный, но он циркулирует только между соседями и поэтому не так засоряет сеть.
Протоколом, основанным на алгоритме состояния связей, в стеке TCP/IP является протокол OSPF.
Дистанционно-векторный протокол RIP
Протокол RIP (Routing Information Protocol) представляет собой один из старейших протоколов обмена маршрутной информацией, однако он до сих пор чрезвычайно распространен в вычислительных сетях. Помимо версии RIP для сетей TCP/IP, существует также версия RIP для сетей IPX/SPX компании Novell.
В этом протоколе все сети имеют номера (способ образования номера зависит от используемого в сети протокола сетевого уровня), а все маршрутизаторы - идентификаторы. Протокол RIP широко использует понятие "вектор расстояний". Вектор расстояний представляет собой набор пар чисел, являющихся номерами сетей и расстояниями до них в хопах.
Вектора расстояний итерационно распространяются маршрутизаторами по сети, и через несколько шагов каждый маршрутизатор имеет данные о достижимых для него сетях и о расстояниях до них. Если связь с какой-либо сетью обрывается, то маршрутизатор отмечает этот факт тем, что присваивает элементу вектора, соответствующему расстоянию до этой сети, максимально возможное значение, которое имеет специальный смысл - "связи нет". Таким значением в протоколе RIP является число 16.
При необходимости отправить пакет в сеть D маршрутизатор просматривает свою базу данных маршрутов и выбирает порт, имеющий наименьшее расстояния до сети назначения (в данном случае порт, связывающий его с маршрутизатором 3).
Для адаптации к изменению состояния связей и оборудования с каждой записью таблицы маршрутизации связан таймер. Если за время тайм-аута не придет новое сообщение, подтверждающее этот маршрут, то он удаляется из маршрутной таблицы.
При использовании протокола RIP работает эвристический алгоритм динамического программирования Беллмана-Форда, и решение, найденное с его помощью является не оптимальным, а близким к оптимальному. Преимуществом протокола RIP является его вычислительная простота, а недостатками - увеличение трафика при периодической рассылке широковещательных пакетов и неоптимальность найденного маршрута.
При обрыве связи с сетью 1 маршрутизатор М1 отмечает, что расстояние до этой сети приняло значение 16. Однако получив через некоторое время от маршрутизатора М2 маршрутное сообщение о том, что от него до сети 1 расстояние составляет 2 хопа, маршрутизатор М1 наращивает это расстояние на 1 и отмечает, что сеть 1 достижима через маршрутизатор 2. В результате пакет, предназначенный для сети 1, будет циркулировать между маршрутизаторами М1 и М2 до тех пор, пока не истечет время хранения записи о сети 1 в маршрутизаторе 2, и он не передаст эту информацию маршрутизатору М1.
Для исключения подобных ситуаций маршрутная информация об известной маршрутизатору сети не передается тому маршрутизатору, от которого она пришла.
Существуют и другие, более сложные случаи нестабильного поведения сетей, использующих протокол RIP, при изменениях в состоянии связей или маршрутизаторов сети.
Комбинирование различных протоколов обмена. Протоколы EGP и BGP сети Internet
Большинство протоколов маршрутизации, применяемых в современных сетях с коммутацией пакетов, ведут свое происхождение от сети Internet и ее предшественницы - сети ARPANET. Для того, чтобы понять их назначение и особенности, полезно сначала познакомится со структурой сети Internet, которая наложила отпечаток на терминологию и типы протоколов.
Internet изначально строилась как сеть, объединяющая большое количество существующих систем. С самого начала в ее структуре выделяли магистральную сеть (core backbone network), а сети, присоединенные к магистрали, рассматривались как автономные системы (autonomous systems). Магистральная сеть и каждая из автономных систем имели свое собственное административное управление и собственные протоколы маршрутизации. Далее маршрутизаторы будут называться шлюзами для следования традиционной терминологии Internet.
Шлюзы, которые используются для образования подсетей внутри автономной системы, называются внутренними шлюзами (interior gateways), а шлюзы, с помощью которых автономные системы присоединяются к магистрали сети, называются внешними шлюзами (exterior gateways). Непосредственно друг с другом автономные системы не соединяются. Соответственно, протоколы маршрутизации, используемые внутри автономных систем, называются протоколами внутренних шлюзов (interior gateway protocol, IGP), а протоколы, определяющие обмен маршрутной информацией между внешними шлюзами и шлюзами магистральной сети - протоколами внешних шлюзов (exterior gateway protocol, EGP). Внутри магистральной сети также может использоваться любой собственный внутренний протокол IGP.
Смысл разделения всей сети Internet на автономные системы в ее многоуровневом представлении, что необходимо для любой крупной системы, способной к расширению в больших масштабах. Внутренние шлюзы могут использовать для внутренней маршрутизации достаточно подробные графы связей между собой, чтобы выбрать наиболее рациональный маршрут. Однако, если информация такой степени детализации будет храниться во всех маршрутизаторах сети, то топологические базы данных так разрастутся, что потребуют наличия памяти гигантских размеров, а время принятия решений о маршрутизации непременно возрастет.
Поэтому детальная топологическая информация остается внутри автономной системы, а автономную систему как единое целое для остальной части Internet представляют внешние шлюзы, которые сообщают о внутреннем составе автономной системы минимально необходимые сведения - количество IP-сетей, их адреса и внутреннее расстояние до этих сетей от данного внешнего шлюза.
При инициализации внешний шлюз узнает уникальный идентификатор обслуживаемой им автономной системы, а также таблицу достижимости (reachability table), которая позволяет ему взаимодействовать с другими внешними шлюзами через магистральную сеть.
Затем внешний шлюз начинает взаимодействовать по протоколу EGP с другими внешними шлюзами и обмениваться с ними маршрутной информацией, состав которой описан выше. В результате, при отправке пакета из одной автономной системы в другую, внешний шлюз данной системы на основании маршрутной информации, полученной от всех внешних шлюзов, с которыми он общается по протоколу EGP, выбирает наиболее подходящий внешний шлюз и отправляет ему пакет.
Каждая функция работает на основе обмена сообщениями запрос-ответ.
Так как каждая автономная система работает под контролем своего административного штата, то перед началом обмена маршрутной информацией внешние шлюзы должны согласиться на такой обмен. Сначала один из шлюзов посылает запрос на установление соседских отношений (acquisition request) другому шлюзу. Если тот согласен на это, то он отвечает сообщением подтверждение установления соседских отношений (acquisition confirm), а если нет - то сообщением отказ от установления соседских отношений (acquisition refuse), которое содержит также причину отказа.
После установления соседских отношений шлюзы начинают периодически проверять состояние достижимости друг друга. Это делается либо с помощью специальных сообщений (привет (hello) и Я-услышал-тебя (I-heard-you)), либо встраиванием подтверждающей информации непосредственно в заголовок обычного маршрутного сообщения.
Обмен маршрутной информацией начинается с посылки одним из шлюзов другому сообщения запрос данных (poll request) о номерах сетей, обслуживаемых другим шлюзом и расстояниях до них от него. Ответом на это сообщение служит сообщение обновленная маршрутная информация (routing ). Если же запрос оказался некорректным, то в ответ на него отсылается сообщение об ошибке.
Все сообщения протокола EGP передаются в поле данных IP-пакетов. Сообщения EGP имеют заголовок фиксированного формата.
Поля Тип и Код совместно определяют тип сообщения, а поле Статус - информацию, зависящую от типа сообщения. Поле Номер автономной системы - это номер, назначенный той автономной системе, к которой присоединен данный внешний шлюз. Поле Номер последовательности служит для синхронизации процесса запросов и ответов.
[pagebreak]
Поле IP-адрес исходной сети в сообщениях запроса и обновления маршрутной информации обозначает сеть, соединяющую два внешних шлюза.
Сообщение об обновленной маршрутной информации содержит список адресов сетей, которые достижимы в данной автономной системе. Этот список упорядочен по внутренним шлюзам, которые подключены к исходной сети и через которые достижимы данные сети, а для каждого шлюза он упорядочен по расстоянию до каждой достижимой сети от исходной сети, а не от данного внутреннего шлюза. Для примера внешний шлюз R2 в своем сообщении указывает, что сеть 4 достижима с помощью шлюза R3 и расстояние ее равно 2, а сеть 2 достижима через шлюз R2 и ее расстояние равно 1 (а не 0, как если бы шлюз измерял ее расстояние от себя, как в протоколе RIP).
Протокол EGP имеет достаточно много ограничений, связанных с тем, что он рассматривает магистральную сеть как одну неделимую магистраль.
Развитием протокола EGP является протокол BGP (Border Gateway Protocol), имеющий много общего с EGP и используемый наряду с ним в магистрали сети Internet.
Протокол состояния связей OSPF
Протокол OSPF (Open Shortest Path Firs) является достаточно современной реализацией алгоритма состояния связей (он принят в 1991 году) и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях.
Протокол OSPF вычисляет маршруты в IP-сетях, сохраняя при этом другие протоколы обмена маршрутной информацией.
Непосредственно связанные (то есть достижимые без использования промежуточных маршрутизаторов) маршрутизаторы называются "соседями". Каждый маршрутизатор хранит информацию о том, в каком состоянии по его мнению находится сосед. Маршрутизатор полагается на соседние маршрутизаторы и передает им пакеты данных только в том случае, если он уверен, что они полностью работоспособны. Для выяснения состояния связей маршрутизаторы-соседи достаточно часто обмениваются короткими сообщениями HELLO.
Для распространения по сети данных о состоянии связей маршрутизаторы обмениваются сообщениями другого типа. Эти сообщения называются router links advertisement - объявление о связях маршрутизатора (точнее, о состоянии связей). OSPF-маршрутизаторы обмениваются не только своими, но и чужими объявлениями о связях, получая в конце-концов информацию о состоянии всех связей сети. Эта информация и образует граф связей сети, который, естественно, один и тот же для всех маршрутизаторов сети.
Кроме информации о соседях, маршрутизатор в своем объявлении перечисляет IP-подсети, с которыми он связан непосредственно, поэтому после получения информации о графе связей сети, вычисление маршрута до каждой сети производится непосредственно по этому графу по алгоритму Дэйкстры. Более точно, маршрутизатор вычисляет путь не до конкретной сети, а до маршрутизатора, к которому эта сеть подключена. Каждый маршрутизатор имеет уникальный идентификатор, который передается в объявлении о состояниях связей. Такой подход дает возможность не тратить IP-адреса на связи типа "точка-точка" между маршрутизаторами, к которым не подключены рабочие станции.
Маршрутизатор вычисляет оптимальный маршрут до каждой адресуемой сети, но запоминает только первый промежуточный маршрутизатор из каждого маршрута. Таким образом, результатом вычислений оптимальных маршрутов является список строк, в которых указывается номер сети и идентификатор маршрутизатора, которому нужно переслать пакет для этой сети. Указанный список маршрутов и является маршрутной таблицей, но вычислен он на основании полной информации о графе связей сети, а не частичной информации, как в протоколе RIP.
Описанный подход приводит к результату, который не может быть достигнут при использовании протокола RIP или других дистанционно-векторных алгоритмов. RIP предполагает, что все подсети определенной IP-сети имеют один и тот же размер, то есть, что все они могут потенциально иметь одинаковое число IP-узлов, адреса которых не перекрываются. Более того, классическая реализация RIP требует, чтобы выделенные линии "точка-точка" имели IP-адрес, что приводит к дополнительным затратам IP-адресов.
В OSPF такие требования отсутствуют: сети могут иметь различное число хостов и могут перекрываться. Под перекрытием понимается наличие нескольких маршрутов к одной и той же сети. В этом случае адрес сети в пришедшем пакете может совпасть с адресом сети, присвоенным нескольким портам.
Если адрес принадлежит нескольким подсетям в базе данных маршрутов, то продвигающий пакет маршрутизатор использует наиболее специфический маршрут, то есть адрес подсети, имеющей более длинную маску.
Например, если рабочая группа ответвляется от главной сети, то она имеет адрес главной сети наряду с более специфическим адресом, определяемым маской подсети. При выборе маршрута к хосту в подсети этой рабочей группы маршрутизатор найдет два пути, один для главной сети и один для рабочей группы. Так как последний более специфичен, то он и будет выбран. Этот механизм является обобщением понятия "маршрут по умолчанию", используемого во многих сетях.
Использование подсетей с различным количеством хостов является вполне естественным. Например, если в здании или кампусе на каждом этаже имеются локальные сети, и на некоторых этажах компьютеров больше, чем на других, то администратор может выбрать размеры подсетей, отражающие ожидаемые требования каждого этажа, а не соответствующие размеру наибольшей подсети.
В протоколе OSPF подсети делятся на три категории:
* "хост-сеть", представляющая собой подсеть из одного адреса,
* "тупиковая сеть", которая представляет собой подсеть, подключенную только к одному маршрутизатору,
* "транзитная сеть", которая представляет собой подсеть, подключенную к более чем одному маршрутизатору.
Транзитная сеть является для протокола OSPF особым случаем. В транзитной сети несколько маршрутизаторов являются взаимно и одновременно достижимыми. В широковещательных локальных сетях, таких как Ethernet или Token Ring, маршрутизатор может послать одно сообщение, которое получат все его соседи. Это уменьшает нагрузку на маршрутизатор, когда он посылает сообщения для определения существования связи или обновленные объявления о соседях.
Однако, если каждый маршрутизатор будет перечислять всех своих соседей в своих объявлениях о соседях, то объявления займут много места в памяти маршрутизатора. При определении пути по адресам транзитной подсети может обнаружиться много избыточных маршрутов к различным маршрутизаторам. На вычисление, проверку и отбраковку этих маршрутов уйдет много времени.
Когда маршрутизатор начинает работать в первый раз (то есть инсталлируется), он пытается синхронизировать свою базу данных со всеми маршрутизаторами транзитной локальной сети, которые по определению имеют идентичные базы данных. Для упрощения и оптимизации этого процесса в протоколе OSPF используется понятие "выделенного" маршрутизатора, который выполняет две функции.
Во-первых, выделенный маршрутизатор и его резервный "напарник" являются единственными маршрутизаторами, с которыми новый маршрутизатор будет синхронизировать свою базу. Синхронизировав базу с выделенным маршрутизатором, новый маршрутизатор будет синхронизирован со всеми маршрутизаторами данной локальной сети.
Во-вторых, выделенный маршрутизатор делает объявление о сетевых связях, перечисляя своих соседей по подсети. Другие маршрутизаторы просто объявляют о своей связи с выделенным маршрутизатором. Это делает объявления о связях (которых много) более краткими, размером с объявление о связях отдельной сети.
Для начала работы маршрутизатора OSPF нужен минимум информации - IP-конфигурация (IP-адреса и маски подсетей), некоторая информация по умолчанию (default) и команда на включение. Для многих сетей информация по умолчанию весьма похожа. В то же время протокол OSPF предусматривает высокую степень программируемости.
Интерфейс OSPF (порт маршрутизатора, поддерживающего протокол OSPF) является обобщением подсети IP. Подобно подсети IP, интерфейс OSPF имеет IP-адрес и маску подсети. Если один порт OSPF поддерживает более, чем одну подсеть, протокол OSPF рассматривает эти подсети так, как если бы они были на разных физических интерфейсах, и вычисляет маршруты соответственно.
Интерфейсы, к которым подключены локальные сети, называются широковещательными (broadcast) интерфейсами, так как они могут использовать широковещательные возможности локальных сетей для обмена сигнальной информацией между маршрутизаторами. Интерфейсы, к которым подключены глобальные сети, не поддерживающие широковещание, но обеспечивающие доступ ко многим узлам через одну точку входа, например сети Х.25 или frame relay, называются нешироковещательными интерфейсами с множественным доступом или NBMA (non-broadcast multi-access).
Они рассматриваются аналогично широковещательным интерфейсам за исключением того, что широковещательная рассылка эмулируется путем посылки сообщения каждому соседу. Так как обнаружение соседей не является автоматическим, как в широковещательных сетях, NBMA-соседи должны задаваться при конфигурировании вручную. Как на широковещательных, так и на NBMA-интерфейсах могут быть заданы приоритеты маршрутизаторов для того, чтобы они могли выбрать выделенный маршрутизатор.
Интерфейсы "точка-точка", подобные PPP, несколько отличаются от традиционной IP-модели. Хотя они и могут иметь IP-адреса и подмаски, но необходимости в этом нет.
В простых сетях достаточно определить, что пункт назначения достижим и найти маршрут, который будет удовлетворительным. В сложных сетях обычно имеется несколько возможных маршрутов. Иногда хотелось бы иметь возможности по установлению дополнительных критериев для выбора пути: например, наименьшая задержка, максимальная пропускная способность или наименьшая стоимость (в сетях с оплатой за пакет). По этим причинам протокол OSPF позволяет сетевому администратору назначать каждому интерфейсу определенное число, называемое метрикой, чтобы оказать нужное влияние на выбор маршрута.
Число, используемое в качестве метрики пути, может быть назначено произвольным образом по желанию администратора. Но по умолчанию в качестве метрики используется время передачи бита в 10-ти наносекундных единицах (10 Мб/с Ethernet'у назначается значение 10, а линии 56 Кб/с - число 1785). Вычисляемая протоколом OSPF метрика пути представляет собой сумму метрик всех проходимых в пути связей; это очень грубая оценка задержки пути. Если маршрутизатор обнаруживает более, чем один путь к удаленной подсети, то он использует путь с наименьшей стоимостью пути.
В протоколе OSPF используется несколько временных параметров, и среди них наиболее важными являются интервал сообщения HELLO и интервал отказа маршрутизатора (router dead interval).
HELLO - это сообщение, которым обмениваются соседние, то есть непосредственно связанные маршрутизаторы подсети, с целью установить состояние линии связи и состояние маршрутизатора-соседа. В сообщении HELLO маршрутизатор передает свои рабочие параметры и говорит о том, кого он рассматривает в качестве своих ближайших соседей. Маршрутизаторы с разными рабочими параметрами игнорируют сообщения HELLO друг друга, поэтому неверно сконфигурированные маршрутизаторы не будут влиять на работу сети.
Каждый маршрутизатор шлет сообщение HELLO каждому своему соседу по крайней мере один раз на протяжении интервала HELLO. Если интервал отказа маршрутизатора истекает без получения сообщения HELLO от соседа, то считается, что сосед неработоспособен, и распространяется новое объявление о сетевых связях, чтобы в сети произошел пересчет маршрутов.
Пример маршрутизации по алгоритму OSPF
Представим себе один день из жизни транзитной локальной сети. Пусть у нас имеется сеть Ethernet, в которой есть три маршрутизатора - Джон, Фред и Роб (имена членов рабочей группы Internet, разработавшей протокол OSPF). Эти маршрутизаторы связаны с сетями в других городах с помощью выделенных линий.
Пусть произошло восстановление сетевого питания после сбоя. Маршрутизаторы и компьютеры перезагружаются и начинают работать по сети Ethernet. После того, как маршрутизаторы обнаруживают, что порты Ethernet работают нормально, они начинают генерировать сообщения HELLO, которые говорят о их присутствии в сети и их конфигурации. Однако маршрутизация пакетов начинает осуществляться не сразу - сначала маршрутизаторы должны синхронизировать свои маршрутные базы.
На протяжении интервала отказа маршрутизаторы продолжают посылать сообщения HELLO. Когда какой-либо маршрутизатор посылает такое сообщение, другие его получают и отмечают, что в локальной сети есть другой маршрутизатор. Когда они посылают следующее HELLO, они перечисляют там и своего нового соседа.
Когда период отказа маршрутизатора истекает, то маршрутизатор с наивысшим приоритетом и наибольшим идентификатором объявляет себя выделенным (а следующий за ним по приоритету маршрутизатор объявляет себя резервным выделенным маршрутизатором) и начинает синхронизировать свою базу данных с другими маршрутизаторами.
[pagebreak]
С этого момента времени база данных маршрутных объявлений каждого маршрутизатора может содержать информацию, полученную от маршрутизаторов других локальных сетей или из выделенных линий. Роб, например, вероятно получил информацию от Мило и Робина об их сетях, и он может передавать туда пакеты данных. Они содержат информацию о собственных связях маршрутизатора и объявления о связях сети.
Базы данных теперь синхронизированы с выделенным маршрутизатором, которым является Джон. Джон суммирует свою базу данных с каждой базой данных своих соседей - базами Фреда, Роба и Джеффа - индивидуально. В каждой синхронизирующейся паре объявления, найденные только в какой-либо одной базе, копируются в другую. Выделенный маршрутизатор, Джон, распространяет новые объявления среди других маршрутизаторов своей локальной сети.
Например, объявления Мило и Робина передаются Джону Робом, а Джон в свою очередь передает их Фреду и Джеффри. Обмен информацией между базами продолжается некоторое время, и пока он не завершится, маршрутизаторы не будут считать себя работоспособными. После этого они себя таковыми считают, потому что имеют всю доступную информацию о сети.
Посмотрим теперь, как Робин вычисляет маршрут через сеть. Две из связей, присоединенных к его портам, представляют линии T-1, а одна - линию 56 Кб/c. Робин сначала обнаруживает двух соседей - Роба с метрикой 65 и Мило с метрикой 1785. Из объявления о связях Роба Робин обнаружил наилучший путь к Мило со стоимостью 130, поэтому он отверг непосредственный путь к Мило, поскольку он связан с большей задержкой, так как проходит через линии с меньшей пропускной способностью. Робин также обнаруживает транзитную локальную сеть с выделенным маршрутизатором Джоном. Из объявлений о связях Джона Робин узнает о пути к Фреду и, наконец, узнает о пути к маршрутизаторам Келли и Джеффу и к их тупиковым сетям.
После того, как маршрутизаторы полностью входят в рабочий режим, интенсивность обмена сообщениями резко падает. Обычно они посылают сообщение HELLO по своим подсетям каждые 10 секунд и делают объявления о состоянии связей каждые 30 минут (если обнаруживаются изменения в состоянии связей, то объявление передается, естественно, немедленно). Обновленные объявления о связях служат гарантией того, что маршрутизатор работает в сети. Старые объявления удаляются из базы через определенное время.
Представим, однако, что какая-либо выделенная линия сети отказала. Присоединенные к ней маршрутизаторы распространяют свои объявления, в которых они уже не упоминают друг друга. Эта информация распространяется по сети, включая маршрутизаторы транзитной локальной сети. Каждый маршрутизатор в сети пересчитывает свои маршруты, находя, может быть, новые пути для восстановления утраченного взаимодействия.
Сравнение протоколов RIP и OSPF по затратам на широковещательный трафик
В сетях, где используется протокол RIP, накладные расходы на обмен маршрутной информацией строго фиксированы. Если в сети имеется определенное число маршрутизаторов, то трафик, создаваемый передаваемой маршрутной информацией, описываются формулой (1):
(1) F = (число объявляемых маршрутов/25) x 528 (байтов в сообщении) x
(число копий в единицу времени) x 8 (битов в байте)
В сети с протоколом OSPF загрузка при неизменном состоянии линий связи создается сообщениями HELLO и обновленными объявлениями о состоянии связей, что описывается формулой (2):
(2) F = { [ 20 + 24 + 20 + (4 x число соседей)] x
(число копий HELLO в единицу времени) }x 8 +
[(число объявлений x средний размер объявления) x
(число копий объявлений в единицу времени)] x 8,
где 20 - размер заголовка IP-пакета,
24 - заголовок пакета OSPF,
20 - размер заголовка сообщения HELLO,
4 - данные на каждого соседа.
Интенсивность посылки сообщений HELLO - каждые 10 секунд, объявлений о состоянии связей - каждые полчаса. По связям "точка-точка" или по широковещательным локальным сетям в единицу времени посылается только одна копия сообщения, по NBMA сетям типа frame relay каждому соседу посылается своя копия сообщения. В сети frame relay с 10 соседними маршрутизаторами и 100 маршрутами в сети (подразумевается, что каждый маршрут представляет собой отдельное OSPF-обобщение о сетевых связях и что RIP распространяет информацию о всех этих маршрутах) трафик маршрутной информации определяется соотношениями (3) и (4):
(3) RIP: (100 маршрутов / 25 маршрутов в объявлении) x 528 x
(10 копий / 30 сек) = 5 632 б/с
(4) OSPF: {[20 + 24 + 20 + (4 x 10) x (10 копий / 10 сек)] +
[100 маршрутов x (32 + 24 + 20) + (10 копий / 30 x 60 сек]} x 8 = 1 170 б/с
Как видно из полученных результатов, для нашего гипотетического примера трафик, создаваемый протоколом RIP, почти в пять раз интенсивней трафика, создаваемого протоколом OSPF.
Использование других протоколов маршрутизации
Случай использования в сети только протокола маршрутизации OSPF представляется маловероятным. Если сеть присоединена к Internet'у, то могут использоваться такие протоколы, как EGP (Exterior Gateway protocol), BGP (Border Gateway Protocol, протокол пограничного маршрутизатора), старый протокол маршрутизации RIP или собственные протоколы производителей.
Когда в сети начинает применяться протокол OSPF, то существующие протоколы маршрутизации могут продолжать использоваться до тех пор, пока не будут полностью заменены. В некоторых случаях необходимо будет объявлять о статических маршрутах, сконфигурированных вручную.
В OSPF существует понятие автономных систем маршрутизаторов (autonomous systems), которые представляют собой домены маршрутизации, находящиеся под общим административным управлением и использующие единый протокол маршрутизации. OSPF называет маршрутизатор, который соединяет автономную систему с другой автономной системой, использующей другой протокол маршрутизации, пограничным маршрутизатором автономной системы (autonomous system boundary router, ASBR).
В OSPF маршруты (именно маршруты, то есть номера сетей и расстояния до них во внешней метрике, а не топологическая информация) из одной автономной системы импортируются в другую автономную систему и распространяются с использованием специальных внешних объявлений о связях.
Внешние маршруты обрабатываются за два этапа. Маршрутизатор выбирает среди внешних маршрутов маршрут с наименьшей внешней метрикой. Если таковых оказывается больше, чем 2, то выбирается путь с меньшей стоимостью внутреннего пути до ASBR.
Область OSPF - это набор смежных интерфейсов (территориальных линий или каналов локальных сетей). Введение понятия "область" служит двум целям - управлению информацией и определению доменов маршрутизации.
Для понимания принципа управления информацией рассмотрим сеть, имеющую следующую структуру: центральная локальная сеть связана с помощью 50 маршрутизаторов с большим количеством соседей через сети X.25 или frame relay. Эти соседи представляют собой большое количество небольших удаленных подразделений, например, отделов продаж или филиалов банка.
Из-за большого размера сети каждый маршрутизатор должен хранить огромное количество маршрутной информации, которая должна передаваться по каждой из линий, и каждое из этих обстоятельств удорожает сеть. Так как топология сети проста, то большая часть этой информации и создаваемого ею трафика не имеют смысла.
Для каждого из удаленных филиалов нет необходимости иметь детальную маршрутную информацию о всех других удаленных офисах, в особенности, если они взаимодействуют в основном с центральными компьютерами, связанными с центральными маршрутизаторами. Аналогично, центральным маршрутизаторам нет необходимости иметь детальную информацию о топологии связей с удаленными офисами, соединенными с другими центральными маршрутизаторами.
В то же время центральные маршрутизаторы нуждаются в информации, необходимой для передачи пакетов следующему центральному маршрутизатору. Администратор мог бы без труда разделить эту сеть на более мелкие домены маршрутизации для того, чтобы ограничить объемы хранения и передачи по линиям связи не являющейся необходимой информации. Обобщение маршрутной информации является главной целью введения областей в OSPF.
В протоколе OSPF определяется также пограничный маршрутизатор области (ABR, area border router). ABR - это маршрутизатор с интерфейсами в двух или более областях, одна из которых является специальной областью, называемой магистральной (backbone area). Каждая область работает с отдельной базой маршрутной информации и независимо вычисляет маршруты по алгоритму OSPF.
Пограничные маршрутизаторы передают данные о топологии области в соседние области в обобщенной форме - в виде вычисленных маршрутов с их весами. Поэтому в сети, разбитой на области, уже не действует утверждение о том, что все маршрутизаторы оперируют с идентичными топологическими базами данных.
Маршрутизатор ABR берет информацию о маршрутах OSPF, вычисленную в одной области, и транслирует ее в другую область путем включения этой информации в обобщенное суммарное объявление (summary) для базы данных другой области. Суммарная информация описывает каждую подсеть области и дает для нее метрику. Суммарная информация может быть использована тремя способами: для объявления об отдельном маршруте, для обобщения нескольких маршрутов или же служить маршрутом по умолчанию.
Дальнейшее уменьшение требований к ресурсам маршрутизаторов происходит в том случае, когда область представляет собой тупиковую область (stub area). Этот атрибут администратор сети может применить к любой области, за исключением магистральной. ABR в тупиковой области не распространяет внешние объявления или суммарные объявления из других областей. Вместо этого он делает одно суммарное объявление, которое будет удовлетворять любой IP-адрес, имеющий номер сети, отличный от номеров сетей тупиковой области. Это объявление называется маршрутом по умолчанию.
Маршрутизаторы тупиковой области имеют информацию, необходимую только для вычисления маршрутов между собой плюс указания о том, что все остальные маршруты должны проходить через ABR. Такой подход позволяет уменьшить в нашей гипотетической сети количество маршрутной информации в удаленных офисах без уменьшения способности маршрутизаторов корректно передавать пакеты.
Добрый день уважаемые господа! В данной статье я хотел бы затронуть очень важную тему, а именно шаблоны в PHP. В этой статье я приведу простой, но работающий пример “шаблонов”, также мы рассмотрим все за и против использования шаблонов.
Использование шаблонов
Прежде чем использовать шаблоны, подумайте, действительно ли они вам так нужны? В данный момент существует огромное количество коммерческих вариантов шаблонов. Все они работают по одному принципу (значение, замена), но имеют огромное количество наворотов, таких как автоматическое изменения регистра переменных, поиск по регулярным выражениям и т.д., все это конечно хорошо и легко реализуемо. Когда я решил посмотреть “коммерческий” шаблон, я ужаснулся, один его класс весил 398 КБ. Это нормально? Также в сети можно найти множество бесплатных вариантов шаблонов (классы шаблонов в PHPBB, IPB…), но все они много весят и работают не слишком быстро. Я предлагаю вам простой каркас “шаблонов” на PHP, с его помощью можно сделать свой классный шаблонизатор, со всеми необходимыми вам функциями.
За и против
Приведу вам жизненный пример, не так давно я занимался разработкой программы для одного человека, заранее было обговорено, что я пишу программу, а дизайн это его дело. Через некоторое время, мой заказчик пишет мне, что дизайн для моей программы сделать невозможно. Конечно, человек ничего не знающий в web-программировании будет испытывать огромные затруднения, при построении дизайна в PHP-программе. Главная задача ‘шаблонов’ – это облегчить жизнь дизайнеру. Безусловно, главным плюсом использования шаблонов можно считать то, что дизайнер без помощи программиста сможет изменять свой web-проект. Также мне нравится само разделение – программа и дизайн.
Я не использую шаблоны в своих личных проектах, т.к. они дают дополнительную “нагрузку”. Шаблоны это хорошо, но использовать их надо только если пишешь какой, то публичный проект или выполняешь работу на заказ.
Реализация шаблонов на PHP
И так приступим. Всего у нас будет 2 ключевых файла.
1) file2compile.tpl – файл который мы будем парсить
2) template.php – главный файл содержащий класс шаблонов
Листинг файла file2compile.tpl:
Листинг файла template.php:
Теперь я подробно опишу содержание этих двух файлов.
Файл: file2compile.tpl
Тут приведен обычный HTML код. В данном файле можно найти переменные вида {TITLE}. Это как раз именно те переменные которые мы будем заменять на нужное нам значение.
Файл: template.php
Мы имеем PHP класс, разделенный на 3 функции. В самом начале файла мы объявляем классовые переменные.
$vars – массив со значениями (переменная, замена).
$template – файл который мы будем парсить.
Теперь перейдем к описанию функций.
Функция: get_tpl
В качестве аргумента функция принимает имя файла. В теле функции мы проверяем задан ли аргумент и существует ли файл. Если аргумент не задан и файл не существует мы возвращаем значение FALSE. В противном случае мы заполняем классовую переменную(template) содержанием файла.
Функция set_tpl
Функция принимает 2 значения, это переменная (напр. {TITLE)} и значение на которое мы будем ее заменять.
Функция tpl_parse
Функция не принимает никаких значений. В теле функции мы считывает массив $vars и производим замену установленных переменных на заданные значения.
Использование класса.
Для вывода на экран используйте следующие команды:
Заключение.
Надеюсь, моя статья поможет вам лучше понять, что такое шаблоны.
Рассмотрим пример работы с графикой в среде программирования Delphi
1. Как поместить изображение (картинку) в базу данных.
Приведу сразу пример:
.
.
.
.
. А теперь пояснения:
Класс TBlobField служит для работы с полями базы данных, представленных в виде большого количества бинарных данных (binary large object - BLOB).
Связь с таблицей базы данных осуществляется с помощью объекта Table1, для добавление новой записи служит команда . В поля таблицы my_pic1 и my_pic2, которые имеют тип BLOB (или binary для таблицы Paradox), загружаем изображения двумя способами: из файла (с помощью объекта OpenDialog1) и из объекта Image1.
2. Как считать картинку из базы данных.
Считать картинку из базы данных также не составляет труда. Это можно осуществить с помощью объекта TDBImage или нижеследующей командой:
Вот несколько функций для операций с двухмерными массивами. Самый простой путь для создания собственной библиотеки. Процедуры SetV и GetV позволяют читать и сохранять элементы массива VArray (его Вы можете объявить как угодно).
Например:
Самый простой путь - создать массив динамически
сделайте функцию fetch_num типа
и затем вместо myarray[2,3] напишите
Вот способ создания одно- и двухмерных динамических массивов: