Представляю на Ваш суд утилиту быстрого поиска по базе данных. Данная технология производит поиск по полям, преобразуя их значения в строки (все значения преобразуются в верхний регистр, включая действительные числа).
Данное решение может быть не самым быстрым, однако на поверку оно оказывается быстрее остальных, обнаруженных мною в Интернете (может вам повезет больше). Более того, представьте, что действительное значение какого-либо поля равно 4.509375354, а значение поиска равно 7, в этом случае утилита засчитает "попадание". Утилита удобна также тем, что она за один проход производит поиск более, чем в одном поле.
Это удобно, если у Вас имеются, к примеру, два поля с адресами. Это моя первая "серьезная" разработка, так как первое, с чем я столкнулся, изучая Delphi, стала необходимость включения процедуры поиска в любое приложение, работающее с базой данных. А так как поиск - вещь тоже сугубо специфическая, как и любое приложение, то мне пришлось побороть свой страх перед "крутым программированием" и попробовать написать свой поисковый механизм, удовлетворивший меня (и, надеюсь, других) своей скоростью и возможностью "мульти"-поиска по нескольким полям.
Я надеюсь, что он поможет тем программистам, кто часто сталкивается с подобными задачами. Технология довольно легка для понимания, но если у Вас возникли какие-либо вопросы, пошлите мне письмо электронной почтой, я буду рад Вам помочь. Посмотрев код, можно легко узнать поддерживаемые типы полей (добавить новые не составит проблем).
В этой статье мы рассмотрим технику создания инифайлов их назначение и применение. Начнем с ответа на вопрос зачем же нужны эти инифайлы?! Предположим, что вы создали приложение, в котором пользователь может настраивать цвет фона, шрифт надписей и так далее. Когда он повторно включит вашу программу он очень сильно разочаруется, так как всего его старания по настройке интерфейса вашей программы пропали даром - программа будет иметь такой вид, который сделали вы при проектировании программы. Так вот чтобы эти настройки сохранять, лучше всего пользоваться инифайлами.
Одно из главных преимуществ инифайлов заключается в том, что эти файлы подерживают переменные разных типов (String, Integer, Boolean). В этих файлах очень удобно хранить различные настройки, например параметры шрифта, цвет фона, какие checkbox'ы выбрал пользователь и многое другое.
Теперь начнем разбираться с этими инифайлами. Для начала создайте новое приложение. Добавьте в секцию uses слово inifiles. Сохраните и откомпилируйте ваше приложение. Теперь сделаем, чтобы при каждом открытии программы форма имела такие размеры, какие установил пользователь последний раз. Для начала нам надо создать объект типа Inifile. Создается он методом Create(Filename:string); причем если в переменной Filename не указан путь к фалу, то он создаться в директории Windows, что не очень-то удобно. Поэтому мы создадим этот файл в директории нашей программы. Напишем это в обработчик события OnDestroy для формы:
Если файл с таким именем существует, то он откроется для чтения, а если нет - то он будет создан. Это очень удобно, так как не надо обрабатывать возможные исключительные ситуации, которые могут возникнуть при обращении к файлу.
Вот файл MyIni.ini после завершения работы программы (у вас естественно значения будут другими):
Теперь подробно разберемся как записывать информацию в инифайлы:
После того, как вы создали инифайл, в него можно записывать три вида переменных: Integer, String, Boolean, это осуществляется соответствующими процедурами: WriteInteger, WriteString, WriteBool. У всех этих процедур одинаковые параметры. В общем объявление этих процедур выглядит так:
Здесь Section -это имя секции, куда будут помещены параметры и значения. В файле имена секций заключены в квадратные скобки. Обычно в секции объединяют схожие параметры.
Ident - это название параметра, которому будет присваиваться какое-нибудь значение.
Value - это собственно значение, которое будет присвоено параметру. В файле оно стоит после знака равно.
Теперь напишем обработчик события OnCreate для формы, в котором будем считывать значения из файла и изменять размеры формы в соответствии с полученными значениями. Код должен иметь такой вид:
В этом коде все просто: открыли файл, прочитали из соответствующих секций необходимые параметры и присвоили их форме. Чтение значений из инифайла по сути ничем не отличается от записи в них. Указываете секцию, где хранится необходимый параметр, указываете параметр и читаете его значение. Как вы видите все просто!
Теперь я отвечу еще на один вопрос, который может появиться - почему не обычные текстовые файлы и не реестр? Отвечаю: из текстового файла очень сложно получить и обработать необходимую информацию. Многие рекомендуют для Win95/98/2000/Me, короче для всех 32-разрядных ОС использовать именно реестр, но лично я считаю, что инифайлы удобнее, так как при при переносе программы на другой компьютер, нужно перенести только один инифайл, а во-вторых, если вы что-нибудь в реестре случайно удалите, то может случиться каюк.
В данной статье рассмотрены принципы, помогающие компилятору Delphi генерировать более оптимальный с точки зрения скорости код. Если Вы не хотите вникать в подробности, в конце статьи есть «свод правил», которые рекомендуется соблюдать при написании программ.
Компилятор Delphi относится к разряду оптимизирующих. Но насколько качественно проводится оптимизация? Как «помочь» компилятору создать более быстрый код? Давайте разберемся с этим на экспериментах.
Оптимизация константных выражений
Пример 1:
С точки зрения оптимизации код можно упростить еще на этапе компиляции до
Но написанный выше листинг преобразуется в
С одной стороны компилятор не «сообразил», что значение переменной «a» можно преобразовать в константу и сложить с другой константой (которая, заметим, подставлена именно как константа) на этапе компиляции, с другой стороны был применен весьма хитрый трюк с LEA (об этом ниже). Тем не менее, код
в любом случае быстрее и короче.
Пример 2:
Скомпилированный код будет выглядеть
А ведь значение, присвоенной переменной «а» являлось константой и наш пример можно было бы переписать как:
Пример 3:
После компиляции получаем:
Т.е. компилятор преобразовал код так, как он был написан, а ведь можно было бы просто записать:
Оптимизация алгебраических выражений
Пример 4:
После компиляции эти переменные будут удалены, причем с предупреждением
Пример 5:
Код скомпилируется как есть! Таким образом мы обманули компилятор псевдо использованием переменных. Delphi не исправляет нашей «кривости», поэтому эта задача ложится исключительно на плечи программиста.
Пример 6:
Данный код можно оптимизировать до
И этого Delphi за нас не сделает.
Пример 7:
В данном примере первую строчку можно безболезненно удалить, что Delphi делать умеет.
Пример 8:
В данном случае можно избавится от одной операции умножения, присвоив значение выражения a*b временной переменной. Анализ ассемблерного листинга показывает, что компилятор именно так и поступает. Тем не менее, поменяв второе подвыражение на ((b*a)>0), компилятор принимает выражения за разные и генерирует умножение для обоих случаев, не смотря на то, что результат одинаков.
Оптимизация арифметических операций
Сложение и вычитание
Применение инструкции LEA вместо ADD позволяет производить сумму 3х операндов (двух переменных и одной константы) за один такт. Трюк заключается в том представление ближних указателей эквивалентно их фактическому значению, поэтому результат, возвращенный LEA равен сумме ее операндов. При возможности Delphi производит такую замену.
Деление
Операция деления требует гораздо больше тактов процессора, нежели умножение, поэтому замена деления на умножение может значительно ускорить работу. Существуют формулы, позволяющие выполнять такое преобразование. Тем не менее, Delphi не использует такую оптимизацию. Деление на степень двойки можно заменять сдвигом вправо на n бит, но даже в этом случае получаем следующий код:
Здесь учитывается особенность самой операции div – округление в большую сторону. Поэтому, если можно пренебрегать округлением, используйте c:=a shr 1 вместо с:=a div 2.
Умножение
Умножение на степень двойки можно заменять сдвигами битов. Delphi заменяет умножение сдвигами при умножении на 4,8,16 итд. При умножении на 2 производится суммированием переменной с собой.
Умножать на 3,5,6,7,8,10 и т. д. можно и без операции умножения – расписав выражение по формуле (a shl n)+a, где n – показатель степени двойки. Например, при умножении на 3 n=1. Delphi при возможности прибегает к этому трюку. Заметим, операнд LEA умеет умножать регистр на 2,4,8, что также при возможности используется компилятором. Например, умножение на 3 преобразуется в инструкцию
Оптимизация case of
Анализ скомпилированного кода показывает, что Delphi проводит утрамбовку дерева. Т.е. значения case сортируются и выбор нужного элемента производится при помощи двоичного поиска.
В случае, если элементы case of выстраиваются в арифметической прогрессии, компилятор формирует таблицу переходов. Т.е. создается массив указателей с индексами элементов, поэтому выбор нужно элемента выполняется за одну итерацию независимо от количества элементов.
Оптимизация циклов
Разворачивание циклов – не производится. Разворачивание циклов весьма спорный момент в оптимизации, поэтому принять грамотное решение может только человек. Delphi не производит разворачивания ни больших, ни маленьких циклов.
Слияние циклов – не производится. Если два цикла, следующие друг за другом имеют одинаковые границы итерационной переменной, разумно оба цикла объединить в один.
Вынесение инвариантного кода за пределы цикла – не выносится. Наиболее распространенный недочет – условие цикла записывается как:
Delphi будет при каждой итерации вызывать метод count, вычитать из результата 1 и потом уже сверять. Настоятельно рекомендуется переписывать подобный код как
Весь код VCL написан с нарушением этого правила. Очевидно, что проще подобного рода оптимизацию встроить в компилятор, нежели переписывать VCL :)
Замена циклов с предусловием на циклы с постусловием – производится. Циклы с постусловием имеют главное преимущество над другими видами циклов (с предусловием и с условием в середине) – они содержат всего одно ветвление. Delphi производит такую замену.
Замена инкремента на декремент – не производится. Более того, даже декрементный цикл компилируется в неоптимальный код, т.к. не используется флаг ZF. Вместо этого происходит сравнивание значения регистра с 0.
Удаление ветвлений – не производится.
Вывод:
1. Не используйте переменные для временного хранения констант или обязательно объявляйте «магические» числа как const, либо подставляйте в код непосредственные значения
2. Неиспользуемыми объявлениями и присвоениями можно безболезненно пренебрегать – Delphi умеет их вычищать.
3. Внимательно следите за использованием переменных, в частности лишним присвоениям их значений друг другу. Такого рода оптимизации Delphi делать не умеет.
4. Используйте свернутые математические выражения. (например, (3*a - a) /2 упрощается до a). Delphi не умеет упрощать математические выражения. (Да и что говорить, даже MathCAD не всегда грамотно умеет делать такие преобразования).
5. Не используйте конструкции типа a:=10*sin(45*pi/180); Delphi не вычислит эту константу на этапе компиляции, напротив, будет послушно вызывать sin и pi по ходу выполнения программы! В случае, если угол является переменной, по крайней мере pi можно заменить константой 3,1415...
6. Delphi прекрасно справляется с выражениями, полностью составленных из констант – они вычисляются на этапе компиляции.
7. Внимательно следите за условиями и их границами. Компилятор Delphi не умеет обнаруживать заведомо ложных условий. Также он не умеет удалять заведомо лишние условия. Например, (a>0) and (a<15616) and (a<>0)
8. Если в условии несколько раз проверяется одно и тоже выражение, следите, чтобы оно было выражено во всех конструкциях одинаково. В противном случае скомпилированный код будет не оптимален. Например, if ((a*b)>0) and ((a*b)<1024) then... При перестановке во втором случае b*a смысл выражения не изменится, но код будет иметь уже на одну операцию умножения, а две. Можно временно присвоить проверяемое выражение временной переменной, а затем уже проверять полученное значение.
9. Сообщение «Combining signed and unsigned types – widened both operands» сообщает не только о потенциальной ошибке – также вследствие преобразования мы теряем производительность. Например, z – объявлена как ineteger. условие if z>$abcd6123 then z:= $abcd6123; несмотря на его правильность вызовет данное предупреждение. Сгенерированный код будет, выполнять преобразования величин до 64-х бит, и дальнейшее уже сравнение 64-х битных операндов. Если изменить тип z на cardinal, мы избавимся от предупреждения и получим 3 строки кода, вместо 8 !
10. Delphi умеет оптимизировать сложение, умножение и частично деление. При делении на степень двойки, если не важно округление до большего, рекомендуется пользоваться shr 1 вместо div 2.
11. В case of при возможности используйте элементы, расположенные в арифметической прогрессии. Тем не менее, даже при невыполнении данного условия мы получим качественный код после утрамбовки дерева.
12. Выносите инвариантный код за тело цикла. Наиболее частая ошибка – for i:=1 to length(str) do... Дело в том, что при каждой итерации будет вызываться функция length, что пагубно скажется на производительности. Рекомендуется длину строки заранее присвоить переменной. Также не включайте в тело цикла код, заведомо не зависящий от изменения итерационной переменной.
Сравнивая Delphi с компиляторами Visual C++, WATCOM, Borland C++ (тестирование данных компиляторов приведено в [1]) приходим к выводу, что Delphi по своим оптимизирующим свойствам аналогичен Borland C++ (а кто сомневался? ;) ). Учитывая, что Borland C++ по итогам сравнения оказался последним, делаем несложный вывод. Весьма печален и тот факт, что большинство кода VCL написано с точки зрения «красоты» кода, а не его оптимальности с точки зрения скорости. Например, не соблюдается правило 12.
Создать гиперссылку в Delphi довольно просто. На простом примере разберемся с созданием ссылки в Delphi, а затем оформим все в виде компонента.
Алгоритм создания такой: ставим на форму метку (TLabel), приводим ее внешний вид к привычному нам виду гиперссылки в нашем браузере и пишем обработчик события OnClick.
А чтобы можно было постоянно использовать гиперссылку в программах, мы создадим компонент. Начнем с того, что поставим на форму нашего проекта метку (TLabel), пусть ее имя останется Label1. Теперь мы напишем обработчик события OnClick, для нее:
Теперь поясню что мы здесь написали. Функция ShellExecute предназначена для открытия или печати файла, как исполняемого, так и документа. Первый параметр - это handle родительского окна, второй параметр - строка, указывает, что надо сделать с файлом, третий параметр содержит имя открываемого файла, четвертый параметр указывает дополнительные параметры запуска исполняемого файла, пятый параметр определяет директорию по умолчанию, последний параметр определяет где будет отображен файл после октрытия.
Если Вы уже попробовали запустить приведенный код, то скорее всего у Вас ничего не вышло, потому что функция ShellExecute, находится в модуле ShellAPI, который конечно же надо добавить в секцию uses, кода нашего приложения.
Теперь разберем параметры относительно нашего случая:
handle - это дескриптор главной формы (аналогично Form1.handle)
open - тип действия с файлом. Нам надо его открыть.
http://delphiworld.narod.ru/ - имя файла, который надо открыть. У нас это может быть гиперссылка, содержащая абсолютный URI.
nil - здесь никаких дополнительных параметров открытия файла не должно быть, поэтому nil.
nil - директория по умолчанию нас так же не интересует.
SW_SHOW - активирует окно и отображает его с текущими размерами и положением. Об остальных режимах можно узнать в хелпе (о функции ShellExecute).
Второй и третий параметры функции являются нуль терминированными строками, т.е. строками типа PChar, поэтому для использования в функции имени файла, полученного из OpenDialog1, нужно использовать PChar(OpenDialog1.Filename).
В браузере (при настройках по умолчанию) ссылка меняет цвет в зависимости от своего состояния и действий пользователя, мы тоже сделаем так. Для этого создадим три константы (в них будут определяться цвета), которые надо поместить в раздел Implementation:
Теперь в обработчике события формы OnCreate нужно написать:
В обработчике события метки OnMouseDown мы напишем:
А в обработчике события OnMouseUp нашей метки напишем:
Для придания полной реалистичности нашей ссылке, нужно установить свойство метки Cursor в crHandPoint. При наведении на ссылку указатель будет иметь вид привычной нам кисти руки с вытянутым указательным пальцем и ссылка будет подчеркнутой.
Ну вот и разобрались, а теперь напишем компонент. Там все предельно просто и понятно, поэтому объяснения напишу только в виде комментариев в коде.
В качестве родительского класса (Ancestor Type) мы конечно же должны выбрать TLabel. Привожу полный код модуля компонента Link класса Tlink (текст модуля надо сохранить в файле Link.pas):
Вот мы и разобрались с созданием гиперссылок в Delphi, как оказалось все очень просто.
Главное о чем стоит упомянуть это, что ваш хранитель экрана будет работать в фоновом режиме и он не должен мешать работе других запущенных программ. Поэтому сам хранитель должен быть как можно меньшего объема. Для уменьшения объема файла в описанной ниже программе не используется визуальные компоненты Delphi, включение хотя бы одного из них приведет к увеличению размера файла свыше 200кб, а так, описанная ниже программа, имеет размер всего 20кб!!!
Технически, хранитель экрана является нормальным EXE файлом (с расширением .SCR), который управляется через командные параметры строки. Например, если пользователь хочет изменить параметры вашего хранителя, Windows выполняет его с параметром "-c" в командной строке. Поэтому начать создание вашего хранителя экрана следует с создания примерно следующей функции:
Поскольку нам нужно создавать небольшое окно предварительного просмотра и полноэкранное окно, их лучше объединить используя единственный класс окна. Следуя правилам хорошего тона, нам также нужно использовать многочисленные нити. Дело в том, что, во-первых, хранитель не должен переставать работать даже если что-то "тяжелое" случилось, и во-вторых, нам не нужно использовать таймер.
Процедура для запуска хранителя на полном экране - приблизительно такова:
Во-первых, мы проинициализировали некоторые глобальные переменные (описанные далее), затем прячем курсор мыши и создаем окно хранителя экрана. Имейте в виду, что важно уведомлять Windows, что это - хранителя экрана через SystemParametersInfo (это выводит из строя Ctrl-Alt-Del чтобы нельзя было вернуться в Windows не введя пароль). Создание окна хранителя:
Теперь окна созданы используя вызовы API. Я удалил проверку ошибки, но обычно все проходит хорошо, особенно в этом типе приложения.
Теперь Вы можете погадать, как мы получим handle родительского окна предварительного просмотра ? В действительности, это совсем просто: Windows просто передает handle в командной строке, когда это нужно. Таким образом:
Как Вы видите, window handle является вторым параметром (после "-p").
Чтобы "выполнять" хранителя экрана - нам нужна нить. Это создается с вышеуказанным CreateThread. Процедура нити выглядит примерно так:
Нить просто заставляет обновляться изображения в нашем окне, спит на некоторое время, и обновляет изображения снова. А Windows будет посылать сообщение WM_PAINT на наше окно (не в нить !). Для того, чтобы оперировать этим сообщением, нам нужна процедура:
Если мышь перемещается, кнопка нажала, мы спрашиваем у пользователя пароль:
Это также демонстрирует использование registry на уровне API. Также имейте в виду как мы динамически загружаем функции пароля, используюя LoadLibrary. Запомните тип функции?
TVSSFunc ОПРЕДЕЛЕН как:
Теперь почти все готово, кроме диалога конфигурации. Это запросто:
Трудная часть -это создать диалоговый сценарий (запомните: мы не используем здесь Delphi формы!). Я сделал это, используя 16-битовую Resource Workshop (остался еще от Turbo Pascal для Windows). Я сохранил файл как сценарий (текст), и скомпилированный это с BRCC32:
Почти также легко сделать диалоговое меню:
После того, как пользователь выбрал некоторые установочные параметры, нам нужно сохранить их.
Загружаем параметры так:
Легко? Нам также нужно позволить пользователю, установить пароль. Я честно не знаю почему это оставлено разработчику приложений ! Тем не менее:
Мы динамически загружаем (недокументированную) библиотеку MPR.DLL, которая имеет функцию, чтобы установить пароль хранителя экрана, так что нам не нужно беспокоиться об этом.
TPCPAFund ОПРЕДЕЛЕН как:
(Не спрашивайте меня что за параметры B и C ! :-)
Теперь единственная вещь, которую нам нужно рассмотреть, - самая странная часть: создание графики. Я не великий ГУРУ графики, так что Вы не увидите затеняющие многоугольники, вращающиеся в реальном времени. Я только сделал некоторые ящики.
И последнее - глобальные переменные:
Затем исходная программа проекта (.dpr). Красива, а!?
Ох, чуть не забыл! Если, Вы используете SysUtils в вашем проекте (например фуекцию StrToInt) вы получите EXE-файл больше чем обещанный в 20k. :) Если Вы хотите все же иметь20k, надо как-то обойтись без SysUtils, например самому написать собственную StrToInt процедуру.
Если все же очень трудно обойтись без использования Delphi-форм, то можно поступить как в случае с вводом пароля: форму изменения параметров хранителя сохранить в виде DLL и динамически ее загружать при необходимости. Т.о. будет маленький и шустрый файл самого хранителя экрана и довеска DLL для конфигурирования и прочего (там объем и скорость уже не критичны).
При разработке больших приложений, оперирующих большими объемами информации на первое место при отладке встает проблема обнаружения неправильного распределения памяти. Суть проблемы состоит в том, что если мы выделили участок памяти, а затем освободили не весь выделенный объем, то образуются блоки памяти, которые помечены как занятые, но на самом деле они не используются. При длительной работе программы такие блоки могут накапливаться, приводя к значительному расходу памяти.
Для обнаружения подобных ошибок создано специализированное программное обеспечение (типа BoundsChecker от Numega), однако чаще бывает удобнее встроить механизм обнаружения утечки в свои проекты. Поэтому метод должен быть простым, и в то же время как можно более универсальным. Кроме того, не хотелось бы переписывать годами накопленные мегабайты кода, написанного и отлаженного задолго до того, как вам пришло в голову оградить себя от ошибок. Так что к списку требований добавляется стандартизация, т.е. нужно каким-то образом встроить защиту от ошибок в стандартный код.
Предлагаемое решение основывается на перегрузке стандартных операторов распределения памяти new и delete. Причем перегружать мы будем глобальные операторы new|delete, т.к. переписать эти операторы для каждого разработанного ранее класса было бы очень трудоемким процессом. Т.о. после перегрузки нам нужно будет только отследить распределение памяти и, соответственно, освобождение ее в момент завершения программы. Все несоответствия - ошибка.
Реализация
Проект написан на Visual C++, но переписать его на любой другой диалект С++ не будет слишком сложной задачей. Во-первых, нужно переопределить стандартные операторы new и delete так, чтобы это работало во всех проектах. Поэтому в stdafx.h добавляем следующий фрагмент:
Как видите, переопределение операторов происходит в блоке #ifdef/#endif. Это ограждает наш код от влияния на релиз компилируемой программы. Вы, наверное, заметили, что теперь оператор new имеет три параметра вместо одного. Два дополнительных параметра содержат имя файла и номер строки, в которой выделяется память. Это удобно для обнаружения конкретного места, где происходит ошибка. Однако код наших проектов по-прежнему ссылается на оператор new, принимающий один параметр. Для исправления этого несоответствия нужно добавиить следующий фрагмент
Теперь все наши операторы new будут вызываться с тремя параметрами, причем недостающие параметры подставит препроцессор. Конечно, пустые переопределенные функции ни в чем нам не помогут, так что давайте добавим в них какой-нибудь код:
Для полноты картины нужно переопределить операторы new[] и delete[], однако никаких существенных отличий здесь нет - творите!
Последний штрих - пишем функции AddTrack() и RemoveTrack(). Для создания списка используемых блоков памяти будем использовать стандартные средства STL:
Перед самым завершением программы наш список allocList содержит ссылки на блоки памяти, котороые не были освобождены. Все, что нужно сделать - вывести эту информацию куда-нибудь. В нашем проекте мы выведем список неосвобожденных участков памяти в окно вывода отладочных сообщений Visual C++:
Надеюсь, этот проект сделает ваши баг-листы короче, а программы устойчивее. Удачи!
Потоки всегда создаются в контексте какого-либо процесса, и вся их жизнь проходит только в его границах. На практике это означает, что потоки исполняют код и манипулируют данными в адресном пространстве процесса. Если два или более потока выполняются внутри одного процесса, они делят одно адресное пространство.
Любой поток (thread) состоит из двух компонентов:
объекта ядра, через который ОС управляет потоком. Там же хранится статистическая информация о потоке.
Стека потока, который содержит параметры всех функций и локальные переменные, необходимые потоку для выполнения кода.
Потоки могут выполнять один и тот же код, манипулировать одними и теми же данными, а также совместно использовать описатели объектов ядра, поскольку таблица описателей создается не в отдельных потоках, а в процессах.
Потоки используют намного меньше ресурсов системы, чем процессы, поэтому все задачи, требующие параллельного выполнения нескольких подзадач, стоит решать по возможности с помощью потоков, не прибегая к созданию нескольких процессов.
Обычная структура многопоточного приложения рассчитана на одновременное исполнение нескольких подзадач. Однако стоит помнить, что, создавая многопоточное приложение, нам придется заботиться о сохранности и ликвидности, общих для всех потоков, данных.
Создание потока.
Первичный поток, который присутствует в программе, начинает свое выполнение с главной функции потока типа WinMain.
Для создания вторичного потока необходимо создать и для него входную функцию, которая выглядит примерно так:
Имя у функции вторичного потока, в отличии от первичного, может быть любым однако, при наличии нескольких разных потоков, назвать функции необходимо по-разному, иначе система создаст разные реализации одной и той же функции.
Когда поток закончит свое исполнение, он вернет управление системе, память, отведенная под его стек, будет освобождена, а счетчик пользователей его объекта ядра "поток" уменьшится на 1. Когда счетчик обнулится, этот объект ядра будет разрушен.
Для создания своего потока необходимо использовать функцию CreateThread:
При каждом вызове этой функции система создает объект ядра (поток). Это не сам поток, а компактная структура данных, которая используется операционной системой для управления потоком и хранит статистическую информацию о потоке.
Система выделяет память под стек потока из адресного пространства процесса. Новый поток выполняется в контексте того же процесса, что и родительский поток. Поэтому он получает доступ ко всем описателям объектов ядра, всей памяти и стекам всех потоков в процессе. За счет этого потоки в рамках одного процесса могут легко взаимодействовать друг с другом.
CreateThread - это Windows-функция, создающая поток. Если вы пишете код на С/С++ не вызывайте ее. Вместо нее Вы должны использовать _beginthreadex из библиотеки Visual C++. Почему это так важно в наших следующих выпусках.
Параметры функции CreateThread.
LpThreadAttributes - является указателем на структуру LPSECURITY_ATTRIBUTES. Для присвоения атрибутов защиты по умолчанию, передавайте в этом параметре NULL.
DwStackSize - параметр определяет размер стека, выделяемый для потока из общего адресного пространства процесса. При передаче 0 - размер устанавливается в значение по умолчанию.
LpStartAddress - указатель на адрес входной функции потока.
LpParameter - параметр, который будет передан внутрь функции потока.
DwCreationFlags - принимает одно из двух значений: 0 - исполнение начинается немедленно, или CREATE_SUSPENDED - исполнение приостанавливается до последующих указаний.
LpThreadId - Адрес переменной типа DWORD в который функция возвращает идентификатор, приписанный системой новому потоку.
Завершение потока
Поток можно завершит четырьмя способами:
функция потока возвращает управление (рекомендуемо);
поток самоуничтожается вызовом функции ExitThread;
другой поток процесса вызывает функцию TerminateThread;
завершается процесс, содержащий данный поток.
Все способы , за исключением рекомендуемого, являются нежелательными и должны использоваться только в форс-мажорных обстоятельствах.
Функция потока, возвращая управление, гарантирует корректную очистку всех ресурсов, принадлежащих данному потоку. При этом:
любые С++ объекты, созданные данным потоком, уничтожаются соответствующими деструкторами;
система корректно освобождает память, которую занимал стек потока;
система устанавливает код завершения данного потока. Его функция и возвращает;
счетчик пользователей данного объекта ядра (поток) уменьшается на 1.
При желании немедленно завершить поток изнутри используют функцию ExitThread(DWORD dwExitCode).
При этом освобождаются все ресурсы ОС, выделенные данному потоку, но С С++ ресурсы (например, объекты классов С++) не очищаются. Именно поэтому не рекомендовано завершать поток, используя эту функцию.
Если же вы ее использовали, то кодом возврата потока будет тот параметр, который вы передадите в данную функцию.
Как и для CreateThread для библиотеки Visual C++ существует ее аналог _endthreadex, который и стоит использовать. Об причинах в следующем выпуске.
Если появилась необходимость уничтожить поток снаружи, то это моет сделать функция TeminateThread.
Эта функция уменьшит счетчик пользователей объекта ядра (поток) на 1, однако при этом не разрушит и не очистит стек потока. Стек будет существовать, пока не завершится процесс, которому принадлежит поток. При задачах, постоянно создающих и уничтожающих потоки, это приводит к потере памяти внутри процесса.
При завершении процесса происходит следующее.
Завершение потока происходит принудительно. Деструкторы объектов не вызываются, и т.д. и т.д.
При завершении потока по такой причине, связанный с ним объект ядра (поток) не освобождается до тех пор, пока не будут закрыты все внешние ссылки на этот объект.
В этом разделе вы создадите два новых приложения OLE. Первое - простая программа-сервер OLE, второе - пример простого контейнера OLE. Эти программы предназначены для демонстрации минимальных затрат программирования, необходимых для создания приложений OLE 2.
В любом случае, для создания оболочки программы следует воспользоваться приложением AppExpert. Сначала необходимо сгенерировать основу приложения в AppExpert, затем модифицировать созданные файлы для создания законченного рабочего примера.
При написании своих версий этих программ необходимо иметь в виду несколько моментов. Во-первых, в этой главе приводятся листинги только исходных, немодифицированных файлов.
Во-вторых, CLSID этих программ будет отличаться от CLSID программ, которые вы сгенерируете с помощью AppExpert. Это нормально и даже необходимо, поскольку с помощью CLSID одни серверные приложения в Windows отличаются от других.
В-третьих, эти примеры содержат минимум необходимых средств для того, чтобы начать программировать с OLE. Вы можете использовать эти примеры в качестве начального кода для создания своего действительно полезного сервера или контейнера. В этой главе просто не хватает места для описания реализации функциональных сервера и контейнера - в этом случае вам понадобился бы грузоподъемник, чтобы положить эту книгу на стол.
Создание сервера OLE
Первое приложение OLE в этой главе - сервер. В этом примере вы построите полный сервер - сервер, который может использоваться и как автономное приложение, и как сервер. Создавая автономный сервер (т.е. в виде исполняемой программы .ЕХЕ, а не в виде динамически подключаемой библиотеки DLL), вы упрощаете процесс регистрации сервера в Windows.
Начальный процесс разработки сервера прост. Сначала из интегрированной среды Borland C++ версии 4.5 запустите AppExpert. Задайте каталог и имя вашего проекта. Я поместил свой проект в каталог \BC45\SOURCE\OLESVR. Проект я назвал OLESVR (я всегда называю проекты и каталоги проектов одним и тем же именем, это облегчает запоминание). Ниже приводится последовательность действий, в результате которых был создан проект OLESVR.
Запустите AppExpert. В первом диалоговом окне следует задать имя и каталог проекта. Как уже отмечалось, я использовал OLESVR для задания обоих.
После выбора ОК в диалоговом окне имени и каталога проекта следующий раздел АррЕхреrt - диалоговое окно Application General Options (основные опции приложения). Это диалоговое окно позволяет задать конфигурацию приложения, генерируемого AppExpert. Вам придется модифицировать несколько опций для проекта OLESVR.
Первая опция, которую необходимо изменить, находится в блоке Application: Summary. Замените параметр по умолчанию Multiple document interface на Single document interface. Это изменение согласуется с призывом Microsoft делать ставку на однодокументные приложения для Windows. На рис. 21.1 демонстрируется модифицированный блок Application: Summary.
Второе изменение, которое необходимо внести, - указать AppExpert, что ваша программа будет сервером OLE. Это изменение вносится в пункт Application: OLE 2 Options, имеющий ряд опций OLE 2, которые можно задавать. Поскольку вы создаете сервер OLE, вы будете оперировать только элементами блока группы OLE 2 Server: (поищите его в правой верхней части диалога). Выберите кнопку ячейки пометки Server EXE. На рис. 21.2 демонстрируются изменения, проведенные в пункте Application:OLE 2 Options.
При желании вы можете заполнить элементы пункта Application: Admin Options блока диалога AppExpert. С его помощью вы можете задать в приложении заметку об авторском праве, имя и информацию о версии. Все элементы в Application: Admin Options необязательны, и вы можете их не задавать.
Подпункты пункта Main Window не нуждаются в модификациях, их следует оставить заданными значениями по умолчанию. Для данного приложения нет необходимости менять что-либо в этих подпунктах. Пункт MDI Child/View неприменим для этого проекта, поэтому нет нужды в нем что-нибудь менять.
После задания всех необходимых модификаций следует выбрать кнопку Generate в нижней части блока диалога AppExpert Application General Options. AppExpert запросит у вас подтверждение, действительно ли вы собираетесь создать проект; после принятия подтверждения AppExpert сгенерирует приложение. На рис. 21.3 приводится конечный проект, загруженный в интегрированную среду Borland C++ версии 4.5.
Теперь, когда программа сгенерирована, в нее следует добавить код, задающий функциональность сервера OLE. Необходимо включить код, рисующий изображение, а также провести другие незначительные изменения.
К счастью, помимо Borland C++ версии 4.5 можно воспользоваться программой ClassExpert, что облегчит внесение большей части изменений. Предположим, вы хотите сперва заняться вопросами отображения. Как и в любой созданной с помощью AppExpert программе, основная часть рисования выполняется классом отображения, производным от класса OWL TOleView. Файл, в котором содержится реализация отображения, имеет имя LSVROLVW.CPP. В листинге 21.1 приводится первоначальный файл OSROLVW.CPP.
Листинг (файл реализации класса отображения OLESVR, OSVROLVW.CPP)
Вопрос создания непрямоугольных окон часто интересует начинающих программистов и время от времени обсуждается на форумах разработчиков в среде Delphi. А вообще, нужно ли это кому-нибудь? Ответ - да! Это уже было нужно таким известным фирмам, как Symantec (Norton Utilities, Norton CrashGuard), Microsoft (Приложение "
Часы" в Windows NT4 может принимать круглую форму, Deluxe CD Player из MS Plus! 98 имеет вид прямоугольника со скругленными краями). У Borland Jbuilder 2 в окне начальной загрузки стрела крана "выскочила" за пределы прямоугольника. Программы для видеокарт TV Capture фирмы AverMedia имитируют пульт управления. Окно переводчика Magic Goody принимает вид гуся, разгуливающего по экрану.
Список можно продолжить, а вывод такой: окно "хитрой" формы – это "изюминка" оформления Вашей программы, нечто запоминающееся, дополнительный плюс в борьбе за потенциального покупателя. Главное в этом – не переборщить. Вряд ли будет удобно работать с текстовым редактором в треугольном окне. Окна произвольной формы неплохо смотрятся при начальной загрузке (Splash) и, возможно, в качестве окна "О программе … ".
Как это делается? Средствами Delphi – достаточно просто. Приведенные ниже примеры можно также перевести в C++ Builder или Visual C++.
При создании окна непрямоугольной формы используются API функции
Переопределение функции WMNCHitTest позволит перетаскивать окно, захватив его мышкой.
До сих пор в примерах мы рассматривали регионы с абсолютными значениями линейных величин. Пример непрямоугольного окна, которое масштабирует свою форму в зависимости от его размера. Искодный код, приведенный ниже, создает окно в виде бабочки, причем бабочка исполльзует максимально высоту и ширину исходной формы.
Если грамотно разложить фигуру на элементарные составляющие, то Вам вполне по силам создать окно абсолютно любой формы. Это похоже на детскую игру "конструктор", только Ваши "кубики" намного разнообразнее.
Для завершения проекта необходимо создать фоновую картинку, которая подчеркнет границы нового окна. И обязательно установить свойство формы Scaled = False, иначе фоновая картинка и форма могут "разъехаться" при использовании нестандартных видеорежимов или стилей оформления Windows.
В заключение следует сказать, что существуют готовые компоненты и библиотеки компонент для решения подобных задач, например, CoolForm, TPlasmaForm. Однако при использовании компонент от сторонних производителей могут возникнуть проблемы лицензионности их использования и проблемы перехода на новую версию компилятора. А приведенные в данной статье примеры компилируются без изменений в исходном коде на Borland Delphi 3.0 - 7.0 и, вероятно, будут совместимы с последующими версиями.
Очень часто при работе с запросами приходится менять SQL этого запроса. Например, при изменении порядка сортировки или при необходимости изменения фильтра, прописанного в where. Сделать это стандартными средствами можно, но довольно муторно, т.к. весь запрос хранится в одном месте (для TQuery и её потомков это свойство Sql). При желании изменить, например, количество или порядок следования полей в order by, нужно программно найти этот order by, написать свой, вставить его вместо старого и т.д. Для меня, честно говоря, загадка, зачем борланд пошла по такому ущербному пути: стандарт ANSI SQL-92, с которым (и только с которым!) работает Bde, подразумевает достаточно жёсткий синтаксис запроса, вполне допускающий обработку на уровне отдельных секций. Сегодня я хотел бы поделиться одним из вариантов реализации потомка TQuery, в котором задачи такого класса будут решаться на лету одной строчкой кода.
Смысл очень простой. Для того, чтобы уйти от ручной обработки текста sql-запроса, надо просто разбить его на стандартные секции. И менять их по отдельности. Ведь любой select-запрос имеет достаточно строгий синтаксис, состоя из определённого количества заранее известных секций (clauses), задаваемых в строго определённой последовательности. Рассмотрим этот синтаксис поподробнее на примере СУБД Interbase:
Как видим, обязательными являются две секции: SELECT и FROM.
Ещё восемь секций опциональны. Наша задача сводится к тому, чтобы значение каждой секции устанавливать отдельно, при необходимости переоткрывая запрос. Можно было бы плясать от стандартного свойства Sql, выделять нужную секцию, менять и вставлять обратно. Но зачем это, если можно сам Sql формировать на основе заданных секций? Конечно, этот подход имеет тот минус, что накрывается прямая установка Sql одной строкой, что может быть неудобно при хранении запроса в реестре, базе и т.д., но и это, при желании, можно побороть.
В общем-то, ничего заумного, реализация до смешного проста, но при использовании в проектах позволяет сэкономить массу времени и значительно увеличить читабельность кода.
Чтобы не писать отдельное свойство на каждую секцию, задавать их будем в виде массива строк. Для работы с этим массивом нам понадобятся индексы, которые тоже лучше определить заранее:
Определим тип нашего индексированного свойства и определим сам класс:
Свойство fClauses будет содержать все секции запроса, на основе которых и будет формироваться сам запрос. Занимается этим процедура UpdateSql. Ну а методы GetClause/SetClause стандартны, и служат для установки/чтения значений отдельных секций. Поглядим на сам код:
Всё достаточно прозрачно, отмечу лишь, что метод UpdateSql добавляет в текст Sql-запроса только те секции, для которых установлено начение, и переоткрывает квери, если она была открыта на момент изменения секции. Здесь есть мелкие недоработки, например, не проверяется выход индекса за пределы допустимых значений, я просто не хотел мусорить исходный код вещами, которые очевидны и принципиально не важны. Можно было бы привести код регистрации компонента в палире дельфи, но это также тривиально. Приведу лучше исходник тестового проекта, в котором используется этот квери. В этом проекте на форме находятся компоненты DbGrid1, подключенные к источнику данных DataSource1, динамически создаётся экземпляр TDynQuery, открывающий таблицу "biolife" из DbDemos, входящую в стандартную поставку Delphi. После этого изменяется по кликанью на заголовке (Title) грида меняется сортировка таблицы:
Все данные о регионе храняться в структуре RGNDATA. Упоминалась также и функция, позволяющая эту структуру получить: GetRegionData. У этой функции есть приятная особенность: если в третий параметр передать nil, то она вернёт размер памяти, необходимый для сохранения региона.
Аналогичным образом можно и прочитать записанный на диск регион:
Вот на этом, пожалуй, можно закончить этот обзор, отнюдь не претендующий на исчерпываемость.
Хочется надеятся, что кого-то сей опус подвигнет на создание чего-нить хорошего, или просто сэкономит несколько часов ползанья по Win32 SDK.
Регионы нужны не только для того, чтобы резать дырки в формах. Иногда они могут оказаться довольно полезным инструментом именно в своём "родном" качестве, т.е. для отрисовки на экране достаточно сложных геометрических фигур. Например, для вывода карт, представляющих собой совокупность ломанных линий, построенных по массивам точек. Создать такую линию нам уже не составит труда, пора разобраться, как её показать юзеру.
Из функций отрисовки две первые нам уже смутно знакомы: они делают тоже, что делает параметр FillMode (ALTERNATE/WINDING) для функций CreatePolygonRgn и CreatePolyPolygonRgn. GetPolyFillMode получает заданный для указанного контекста режим заливки, а SetPolyFillMode устанавливает его. Просто на этот раз речь идёт не о создании региона, а всего лишь о его отрисовке. Установленное значение будет иметь смысл для всех функций, заливающих регион, т.е. PaintRgn и FillRgn, при этом сам регион останется таким, каким он и был создан, а вот раскрашен будет по разному, в том случае, если он состоит из нескольких пересекающихся регионов. Для простых регионов типа прямоугольника или элипса установка данного значения ничего не меняет.
Итак. Давайте срочно что-нить создадим и нарисуем. Можно, конечно, сделать это в одной функции, например в OnCreate, но тогда изображение будет весьма недолговечным - до первой перерисовки формы. Поэтому поступим иначе: объявим private property fRgn, в OnCreate его инициализируем, в OnPaint будем его отображать, а в OnDestroy - уничтожим. Код методов представлен ниже:
Следует помнить, что Функции отрисовки регионов всегда работают с цветом,
указанным в Canvas.Brush.Color. Даже рисуя бордюр (frame) использоваться будет не цвет Canvas.Pen, что, в общем-то, представляется более логичным, а цвет Canvas.Brush.
Ничего такой получился кружочек. Погребального вида. Давайте сделаем его более жизнерадостным, и заодно разберёмся, как работает FrameRgn:
У меня получилась такая вот картинка:
Насколько я могу судить, функции FillRgn и PaintRgn отличаются друг от друга только тем, что первая позволяет указать дескриптор кисти, не связанной с текущим canvas'ом. Сомнительная фича с точки зрения дельфей, т.к. манипулировать с текущим цветом кисти канваса всяко легче, чем создавать отдельный экземпляр класса TBrush. Вот, собственно, и всё об отрисовке. Примечательно то, что для того, чтобы нарисовать регион нам не нужно знать, что он из себя представляет. Мы просто передаём дескриптор одной и той же процедуре, а она отобразит на экране круг, овал, треугольник, звезду Давида - всё, что угодно.
Функции, представленные в разделе прочее ничего особенно интересного из себя не представляют, и, в общем-то, интуитивно понятны. поэтому рассотрим лишь некоторые из них.
Представляю краткую справочную информацию по использованию языка SQL в среде программирования Delphi. Для использования в программе команд языка SQL необходимо поместить на форму объект TQuery. Назовем его MyQuery. А поместив на форму объекты TDBGrid и TDataSource и связав все три объекта между собой, получим возможность видеть в объекте TDBGrid результаты SQL запросов.
Создание таблицы с помощью SQL запроса
Перед выполнением запроса должны быть определены следующие переменные строкового типа:
Приведенный ниже запрос создает таблицу состоящую из двух полей указанного типа:
.
.
.
.
.
.
.
.
.
.
Типы поля могут быть: int, float, char(10).
Добавление записи в таблицу
Добавление записи в таблицу посредством SQL запроса выполняется следующим способом:
Здесь val1, val2 - добавляемое значение целого или вещественного типа; val3 - добавляемое значение строкового типа.
Последовательность расположения добавляемых значений в тексте запроса важна и должна соответствовать порядку следования полей таблицы.
SQL запрос на выборку
Для выполнения простого SQL запроса на выборку всех записей из указанной таблицы достаточно следующего кода:
переменная tbl содержит название таблицы, а лучше - полный путь к таблице, например: 'c:programsdelphisqlfirst.dbf'. Свойство MyQuery.RecordCount содержит число записей, выбранных из таблицы SQL запросом.
[pagebreak]
Запрос SQL на выборку с условием
Переменная fld содержит название поля таблицы, а переменная val - значение этого поля. Результатом выполнения нижеследующего запроса являются все записи таблицы со значением val в поле fld.
.
.
.
.
.
.
.
.
.
.
А если воспользоваться приведенным ниже кодом, то в результате получим все строки таблицы, содержимое поля fld которых содержит значение val.
Запрос SQL для нахождения максимума или минимума
Программный код запроса:
Используя команду MyQuery.FieldByName('M').asInteger; можно получить значение максимума целого типа. Для нахождения минимума необходимо в запросе воспользоваться строкой SQL.Add('SELECT Min('+Fld+') as M');
Запрос SQL для удаления записей из таблицы
Для удаления записей из таблицы tbl значения поля fld которых равны val используется следующий код:
Запрос SQL для изменения записей в таблице
Принцип работы запроса аналогичен запросу на удаление, необходимо лишь указать updFld - обновляемое поле и updVal - новое значение для этого поля.
Пример запроса: