Перед работой через протокол POP3 сервер прослушивает порт 110. Когда клиент хочет использовать этот протокол, он должен создать TCP соединение с сервером. Когда соединение установлено, сервер отправляет приглашение. Затем клиент и POP3 сервер обмениваются информацией пока соединение не будет закрыто или прервано.
Команды POP3 состоят из ключевых слов, за некоторыми следует один или более аргументов. Все команды заканчиваются парой CRLF (в Visual Basic константа vbCrLf). Ключевые слова и аргументы состоят из печатаемых ASCII символов. Ключевое слово и аргументы разделены одиночным пробелом. Ключевое слово состоит от 3-х до 4-х символов, а аргумент может быть длиной до 40-ка символов.
Ответы в POP3 состоят из индикатора состояния и ключевого слова, за которым может следовать дополнительная информация. Ответ заканчивается парой CRLF. Существует только два индикатора состояния: "+OK" - положительный и "-ERR" - отрицательный.
Ответы на некоторые команды могут состоять из нескольких строк. В этих случаях каждая строка разделена парой CRLF, а конец ответа заканчивается ASCII символом 46 (".") и парой CRLF.
POP3 сессия состоит из нескольких режимов. Как только соединение с сервером было установлено и сервер отправил приглашение, то сессия переходит в режим AUTHORIZATION (Авторизация). В этом режиме клиент должен идентифицировать себя на сервере. После успешной идентификации сессия переходит в режим TRANSACTION (Передача). В этом режиме клиент запрашивает сервер выполнить определённые команды. Когда клиент отправляет команду QUIT, сессия переходит в режим UPDATE. В этом режиме POP3 сервер освобождает все занятые ресурсы и завершает работу. После этого TCP соединение закрывается.
У POP3 сервера может быть INACTIVITY AUTOLOGOUT таймер. Этот таймер должен быт, по крайней мере, с интервалом 10 минут. Это значит, что если клиент и сервер не взаимодействуют друг с другом, сервер автоматически прерывает соединение и при этом не переходит в режим UPDATE.
Авторизация в протоколе POP3
Как только будет установлено TCP соединение с POP3 сервером, он отправляет приглашение, заканчивающееся парой CRLF, например:
Теперь POP3 сессия находится в режиме AUTHORIZATION. Клиент должен идентифицировать себя на сервере, используя команды USER и PASS. Сначала надо отправить команду USER, после которой в качестве аргумента следует имя пользователя. Если сервер отвечает положительно, то теперь необходимо отправить команду PASS, за которой следует пароль. Если после отправки команды USER или PASS сервер отвечает негативно, то можно поробовать авторизироваться снова или выйти из сесси с помощью команды QUIT. После успешной авторизации сервер открывает и блокирует maildrop (почтовый ящик). В ответе на команду PASS сервер сообщает сколько сообщений находится в почтовом ящике и передаёт их общий размер. Теперь сессия находится в режиме TRANSACTION. Подведём итоги с командами:
Команда: USER [имя]
Аргументы: [имя] - строка, указывающая имя почтового ящика
Описание: Передаёт серверу имя пользователя.
Возможные ответы:
* +OK name is a valid mailbox
* -ERR never heard of mailbox name
Примеры:
C: USER MonstrVB
S: +OK MonstrVB is a real hoopy frood
...
C: USER MonstrVB
S: -ERR sorry, no mailbox for frated here
* +OK maildrop locked and ready
* -ERR invalid password
* -ERR unable to lock maildrop
Примеры:
C: USER MonstrVB
S: +OK MonstrVB is a real hoopy frood
C: PASS mymail
S: +OK MonstrVB's maildrop has 2 messages (320 octets)
...
C: USER MonstrVB
S: +OK MonstrVB is a real hoopy frood
C: PASS mymail
S: -ERR maildrop already locked
Команда: QUIT
Аргументы: нет
Описание: Сервер завершает POP3 сессию и переходит в режим UPDATE. Возможные ответы:
* +OK
Примеры:
C: QUIT
S: +OK dewey POP3 server signing off
Основные команды (Transaction) протоколе в POP3
После успешной идентификации пользователя на сервере POP3 сессия переходит в режим TRANSACTION, где пользователь может передавать ниже следующие команды. После каждой из таких команд следут ответ сервера. Вот доступные команды в этом режиме:
Команда: STAT
Аргументы: нет
Описание: В ответ на вызов команды сервер выдаёт положительный ответ "+OK", за которым следует количество сообщений в почтовом ящике и их общий размер в символах. Сообщения, которые помечены для удаления не учитываются в ответе сервера.
Возможные ответы:
* +OK n s
Примеры:
C: STAT
S: +OK 2 320
Команда: LIST [сообщение]
Аргументы: [сообщение] - номер сообщения (необязательный аргумент)
Описание: Если был передан аргумент, то сервер выдаёт информацию о указанном сообщении. Если аргумент не был передан, то сервер выдаёт информацию о всех сообщениях, находящихся в почтовом ящике. Сообщения, помеченные для удаления не перечисляются.
Возможные ответы:
* +OK scan listing follows
* -ERR no such message
Примеры:
C: LIST
S: +OK 2 messages (320 octets)
S: 1 120
S: 2 200
S: .
...
C: LIST 2
S: +OK 2 200
...
C: LIST 3
S: -ERR no such message, only 2 messages in maildrop
Команда:RETR [сообщение]
Аргументы: [сообщение] - номер сообщения
Описание: После положительного ответа сервер передаёт содержание сообщения.
Возможные ответы:
* +OK message follows
* -ERR no such message
Примеры:
C: RETR 1
S: +OK 120 octets
S:
S: .
Команда: DELE [ообщение]
Аргументы: [ообщение] - номер сообщения
Описание: POP3 сервер помечает указанное сообщение как удалённое, но не удалет его, пока сессия не перейдёт в редим UPDATE.
Возможные ответы:
* +OK message deleted
* -ERR no such message
Примеры:
C: DELE 1
S: +OK message 1 deleted
...
C: DELE 2
S: -ERR message 2 already deleted
Команда: NOOP
Аргументы: нет
Описание: POP3 сервер ничего не делает и вседа отвечает полжительно.
Возможные ответы:
* +OK
Примеры:
C: NOOP
S: +OK
Команда: RSET
Аргументы: нет
Описание: Если какие - то сообщения были помечены для удаления, то с них снимается эта метка.
Возможные ответы:
* +OK
Примеры:
C: RSET
S: +OK maildrop has 2 messages (320 octets)
Обновление
Когда клиент передаёт команду QUIT в режиме TRANSACTION, то сессия переходит в режим UPDATE. В этом режиме сервер удаляет все сообщения, помеченные для удаления. После этого TCP соединение закрывается.
Дополнительные POP3 команды
Следующие дополнительные команды дают вам большую свободу при работе с сообщениями: Команда: TOP [сообщение] [n] Аргументы: [сообщение] - номер сообщения [n] - положительное число (обязательный аргумент) Описание: Если ответ сервера положительный, то после него он передаёт заголовки сообщения и указанное кол - во строк из тела сообщения. Возможные ответы: +OK top of message follows -ERR no such message Примеры: C: TOP 1 10 S: +OK S: <здесь POP3 сервер передаёт заголовки первого сообщения и первые 10-ть строк из тела сообщения.> S: . ... C: TOP 100 3 S: -ERR no such message Команда: UIDL [сообщение] Аргументы: [сообщение] - номер сообщения (необязательный аргумент). Описание: Если был указан номер сообщения, то сервер выдаёт уникальный идентификатор для этого сообщения. Если аргумент не был передан, то идентификаторы перечисляются для всех сообщений, кроме помеченных для удаления.
Возможные ответы: +OK unique-id listing follows -ERR no such message
Примеры: C: UIDL S: +OK S: 1 whqtswO00WBw418f9t5JxYwZ S: 2 QhdPYR:00WBw1Ph7x7 S: . ... C: UIDL 2 S: +OK 2 QhdPYR:00WBw1Ph7x7 ... C: UIDL 3 S: -ERR no such message, only 2 messages in maildrop
Очевидно, что администрирование работы сетевых служб подразумевает выполнение некоторых дополнительных процедур, направленных на обеспечение корректной работы всей системы. Вовсе не обязательно, чтобы эти функции выполнял один человек. Во многих организациях работа распределяется между несколькими администраторами. В любом случае необходим хотя бы один человек, который понимал бы все поставленные задачи и обеспечивал их выполнение другими людьми.
1. Введение
Идея создания сетей для передачи данных на большие и не очень большие расcтояния витала в воздухе с той самой поры, как человек впервые задумался над созданием телекоммуникационных устройств. В разное время и в различных ситуациях в качестве «устройств передачи информации» использовались почтовые голуби, бутылки с сообщениями «SOS» и наконец, люди — гонцы и нарочные.
Конечно, с тех пор прошло немало лет. В наши дни для того, чтобы передать от одного человека к другому приглашение на субботний футбольный матч, множество компьютеров обмениваются электронными сообщениями, используя для передачи информации массу проводов, оптических кабелей, микроволновых передатчиков и прочего.
Компьютерные сети сегодня представляют собой форму сотрудничества людей и компьютеров, обеспечивающего ускорение доставки и обработки информации.
Сеть обеспечивает обмен информацией и ее совместное использование (разделение). Компьютерные сети делятся на локальные (ЛВС, Local Area Network, LAN), представляющие собой группу близко расположенных, связанных между собой компьютеров, и распределенные (глобальные, Wide Area Networks, WAN)
Соединенные в сеть компьютеры обмениваются информацией и совместно используют периферийное оборудование и устройства хранения информации.
Очевидно, что администрирование работы сетевых служб подразумевает выполнение некоторых дополнительных процедур, направленных на обеспечение корректной работы всей системы. Вовсе не обязательно, чтобы эти функции выполнял один человек. Во многих организациях работа распределяется между несколькими администраторами. В любом случае необходим хотя бы один человек, который понимал бы все поставленные задачи и обеспечивал их выполнение другими людьми.
Основные задачи системного администратора
2.1. Подключение и удаление аппаратных средств
Любая компьютерная сеть состоит из трех основных компонентов:
1. Активное оборудование (концентраторы, коммутаторы, сетевые адаптеры и др.).
2. Коммуникационные каналы (кабели, разъемы).
3. Сетевая операционная система.
Естественно, все эти компоненты должны работать согласованно. Для корректной работы устройств в сети требуется их правильно инсталлировать и установить рабочие параметры.
В случае приобретения новых аппаратных средств или подключения уже имеющихся аппаратных средств к другой машине систему нужно сконфигурировать таким образом, чтобы она распознала и использовала эти средства. Изменение конфигурации может быть как простой задачей (например, подключение принтера), так и более сложной (подключение нового диска).
Для того чтобы принять правильное решение о модернизации системы, как системному администратору необходимо проанализировать производительность системы. Конечными узлами сети являются компьютеры, и от их производительности и надежности во многом зависят характеристики всей сети в целом. Именно компьютеры являются теми устройствами в сети, которые реализуют протоколы всех уровней, начиная от физического и канального (сетевой адаптер и драйвер) и заканчивая прикладным уровнем (приложения и сетевые службы операционной системы). Следовательно, оптимизация компьютера включает две достаточно независимые задачи:
* Во-первых, выбор таких параметров конфигурации программного и аппаратного обеспечения, которые обеспечивали бы оптимальные показатели производительности и надежности этого компьютера как отдельного элемента сети. Такими параметрами являются, например, тип используемого сетевого адаптера, размер файлового кэша, влияющий на скорость доступа к данным на сервере, производительность дисков и дискового контроллера, быстродействие центрального процессора и т.п.
* Во-вторых, выбор таких параметров протоколов, установленных в данном компьютере, которые гарантировали бы эффективную и надежную работу коммуникационных средств сети. Поскольку компьютеры порождают большую часть кадров и пакетов, циркулирующих в сети, то многие важные параметры протоколов формируются программным обеспечением компьютеров, например начальное значение поля TTL (Time-to-Live) протокола IP, размер окна неподтвержденных пакетов, размеры используемых кадров.
Тем не менее выполнение вычислительной задачи может потребовать участия в работе нескольких устройств. Каждое устройство использует определенные ресурсы для выполнения своей части работы. Плохая производительность обычно является следствием того, что одно из устройств требует намного больше ресурсов, чем остальные. Чтобы исправить положение, вы должны выявить устройство, которое расходует максимальную часть времени при выполнении задачи. Такое устройство называется узким местом (bottleneck). Например, если на выполнение задачи требуется 3 секунды и 1 секунда тратится на выполнение программы процессором, а 2 секунды — на чтение данных с диска, то диск является узким местом.
Определение узкого места — критический этап в процессе улучшения производительности. Замена процессора в предыдущем примере на другой, в два раза более быстродействующий процессор, уменьшит общее время выполнения задачи только до 2,5 секунд, но принципиально исправить ситуацию не сможет, поскольку узкое место устранено не будет. Если же мы приобретем диск и контроллер диска, которые будут в два раза быстрее прежних, то общее время уменьшится до 2 секунд.
Если вы всерьез недовольны быстродействием системы, исправить положение можно следующими способами:
* обеспечив систему достаточным ресурсом памяти. Объем памяти — один из основных факторов, влияющих на производительность;
* устранив некоторые проблемы, созданные как пользователями (одновременный запуск слишком большого количества заданий, неэффективные методы программирования, выполнение заданий с избыточным приоритетом, а также объемных заданий в часы пик), так и самой системой (квоты, учет времени центрального процессора);
* организовав жесткие диски и файловые системы так, чтобы сбалансировать нагрузку на них и таким образом максимально повысить пропускную способность средств ввода-вывода;
* осуществляя текущий контроль сети, чтобы избежать ее перегрузки и добиться низкого коэффициента ошибок. Сети UNIX/Linux можно контролировать с помощью программы netstat. Если речь идет об сетевых операционных системах семейства Windows, то вам поможет утилита PerformanceMonitor.
* откорректировав методику компоновки файловых систем в расчете на отдельные диски;
* выявив ситуации, когда система совершенно не соответствует предъявляемым к ней требованиям.
Эти меры перечислены в порядке убывания эффективности.
2.2. Резервное копирование
Процедура резервного копирования довольно утомительна и отнимает много времени, но выполнять ее необходимо. Ее можно автоматизировать, но системный администратор обязан убедиться в том, что резервное копирование выполнено правильно и в соответствии с графиком. Практически любая сетевая операционная система содержит механизмы для создания резервных копий или зеркального ведения дисков. Например, в UNIX-системах самое распространенное средство создания резервных копий и восстановления данных — команды dump и restore. В большинстве случаев информация, хранящаяся в компьютерах, стоит дороже самих компьютеров. Кроме того, ее гораздо труднее восстановить.
Существуют сотни весьма изобретательных способов потерять информацию. Ошибки в программном обеспечении зачастую портят файлы данных. Пользователи случайно удаляют то, над чем работали всю жизнь. Хакеры и раздраженные служащие стирают данные целыми дисками. Проблемы c аппаратными средствами и стихийные бедствия выводят их строя целые машинные залы. Поэтому ни одну систему нельзя эксплуатировать без резервных копий.
При правильном подходе создание резервных копий данных позволяет администратору восстанавливать файловую систему (или любую ее часть) в том состоянии, в котором она находилась на момент последнего снятия резервных копий. Резервное копирование должно производиться тщательно и строго по графику.
[pagebreak]
Поскольку многие виды неисправностей способны одновременно выводить из строя сразу несколько аппаратных средств, резервные копии следует записывать на съемные носители, CD-диски, ZIP-дискеты и т.д. Например, копирование содержимого одного диска на другой, конечно, лучше, чем ничего, но оно обеспечивает весьма незначительный уровень защиты от отказа контроллера.
2.3. Инсталляция новых программных средств
После приобретения нового программного обеспечения его нужно инсталлировать и протестировать. Если программы работают нормально, необходимо сообщить пользователям об их наличии и местонахождении.
Как правило, самой ответственной и самой сложной задачей системного администратора являются инсталляция и конфигурирование операционной системы. От правильности ваших действий зависит, будете ли вы играть в Quake и просматривать любимые сайты или вам придется бегать между пользователями системы и заниматься рутинной работой.
Во многих современных операционных системах разработчики идут по пути исключения многих непродуктивных параметров системы, с помощью которых администраторы способны влиять на производительность ОС. Вместо этого в операционную систему встраиваются адаптивные алгоритмы, которые определяют рациональные параметры системы во время ее работы. С помощью этих алгоритмов ОС может динамически оптимизировать свои параметры в отношении многих известных сетевых проблем, автоматически перераспределяя свои ресурсы и не привлекая к решению администратора.
Существуют различные критерии оптимизации производительности операционной системы. К числу наиболее распространенных критериев относятся:
* Наибольшая скорость выполнения определенного процесса.
* Максимальное число задач, выполняемых процессором за единицу времени. Эта характеристика также называется пропускной способностью компьютера. Она определяет качество разделения ресурсов между несколькими одновременно выполняемыми процессами.
* Освобождение максимального количества оперативной памяти для самых приоритетных процессов, например процесса, выполняющего функции файлового сервера, или же для увеличения размера файлового кэша.
* Освобождение наибольшего количества дисковой памяти.
Обычно при оптимизации производительности ОС администратор начинает этот процесс при заданном наборе ресурсов. В общем случае одновременно улучшить все критерии производительности невозможно. Например, если целью является увеличение доступной оперативной памяти, то администратор может увеличить размер страничного файла, но это приведет к уменьшению доступного дискового пространства.
После инсталляции и оптимальной настройки операционной системы начинается практически бесконечный процесс установки программного обеспечения. И здесь на первый план выходят проблемы совместимости различных программ, а если вы устанавливаете серверное программное обеспечение, — то еще и о безопасности.
Если вы начинающий системный администратор — устанавливайте на свой сервер более простые программы — в них меньше ошибок. В UNIX — избавьтесь от sendmail, поставьте другой SMTP-демон, внимательно анализируйте исходный код всех устанавливаемых на сервер программ, особенно если имя производителя вам ничего не говорит. В Windows NT не стоит использовать монстры типа Microsoft Exchange Server, и желательно избегать установки на сервер всевозможных freeware-программок.
2.4. Мониторинг системы
Существует великое множество обязательных для исполнения ежедневных операций. Например, проверка правильности функционирования электронной почты и телеконференций, просмотр регистрационных файлов на предмет наличия ранних признаков неисправностей, контроль за подключением локальных сетей и за наличием системных ресурсов.
Все многообразие средств, применяемых для мониторинга и анализа вычислительных сетей, можно разделить на несколько крупных классов:
Системы управления сетью (NetworkManagementSystems) — централизованные программные системы, которые собирают данные о состоянии узлов и коммуникационных устройств сети, а также данные о трафике, циркулирующем в сети. Эти системы не только осуществляют мониторинг и анализ сети, но и выполняют в автоматическом или полуавтоматическом режиме действия по управлению сетью — включение и отключение портов устройств, изменение параметров мостов адресных таблиц мостов, коммутаторов и маршрутизаторов и т.п. Примерами систем управления могут служить популярные системы HPOpenView, SunNetManager, IBMNetView.
Средства управления системой (SystemManagement). Средства управления системой часто выполняют функции, аналогичные функциям систем управления, но по отношению к другим объектам. В первом случае объектами управления являются программное и аппаратное обеспечение компьютеров сети, а во втором — коммуникационное оборудование. Вместе с тем некоторые функции этих двух видов систем управления могут дублироваться, например средства управления системой могут выполнять простейший анализ сетевого трафика.
Встроенные системы диагностики и управления (Embeddedsystems). Эти системы выполняются в виде программно-аппаратных модулей, устанавливаемых в коммуникационное оборудование, а также в виде программных модулей, встроенных в операционные системы. Они выполняют функции диагностики и управления единственным устройством, и в этом их основное отличие от централизованных систем управления. Примером средств этого класса может служить модуль управления концентратором Distrebuted 5000, реализующий функции автосегментации портов при обнаружении неисправностей, приписывания портов внутренним сегментам концентратора, и ряд других. Как правило, встроенные модули управления «по совместительству» выполняют роль SNMP-агентов, поставляющих данные о состоянии устройства для систем управления.
Анализаторы протоколов (Protocolanalyzers). Представляют собой программные или аппаратно-программные системы, которые ограничиваются, в отличие от систем управления, лишь функциями мониторинга и анализа трафика в сетях. Хороший анализатор протоколов может захватывать и декодировать пакеты большого количества протоколов, применяемых в сетях, — обычно несколько десятков. Анализаторы протоколов позволяют установить некоторые логические условия для захвата отдельных пакетов и выполняют полное декодирование захваченных пакетов, то есть показывают в удобной для специалиста форме вложенность друг в друга пакетов протоколов разных уровней с расшифровкой содержания отдельных полей каждого пакета.
Оборудование для диагностики и сертификации кабельных систем. Условно это оборудование можно поделить на четыре основные группы: сетевые мониторы, приборы для сертификации кабельных систем, кабельные сканеры и тестеры (мультиметры).
Экспертные системы. Этот вид систем аккумулирует человеческие знания о выявлении причин аномальной работы сетей и возможных способах приведения сети в работоспособное состояние. Экспертные системы часто реализуются в виде отдельных подсистем различных средств мониторинга и анализа сетей: систем управления сетями, анализаторов протоколов, сетевых анализаторов. Простейшим вариантом экспертной системы является контекстно-зависимая help-система. Более сложные экспертные системы представляют собой так называемые базы знаний, обладающие элементами искусственного интеллекта. Примером такой системы является экспертная система, встроенная в систему управления Spectrum компании Cabletron.
Многофункциональные устройства анализа и диагностики. В последние годы в связи с повсеместным распространением локальных сетей возникла необходимость разработки недорогих портативных приборов, совмещающих функции нескольких устройств: анализаторов протоколов, кабельных сканеров и даже ряд возможностей ПО сетевого управления.
Однако в отдельной сети Ethernet формальные процедуры управления сетью внедрять, как правило, не стоит. Достаточно провести тщательное тестирование сети после инсталляции и время от времени проверять уровень нагрузки. Сломается — почините.
Если у вас задействованы глобальная сеть или сложные ЛВС, рассмотрите вопрос приобретения выделенных станций управления сетью со специальным программным обеспечением.
2.5. Поиск неисправностей
Операционные системы и аппаратные средства, на которых они работают, время от времени выходят из строя. Задача администратора — диагностировать сбои в системе и в случае необходимости вызвать специалистов. Как правило, найти неисправность бывает намного сложнее, чем устранить ее.
Если вы обнаружили, что какой-то из узлов сети работает некорректно или вовсе отказывается работать, вам стоит обратить внимание на светодиодные индикаторы при включенном концентраторе и компьютерах, соединенных кабелями. Если они не горят, то очень вероятно, что причина заключается в следующем:
* Адаптеры некорректно сконфигурированы. Чаще всего при инсталляции сети проблем не возникает до тех пор, пока не будут подключены кабели, а иногда и до попытки получить доступ к сетевым ресурсам. Обычно источником проблемы является конфликт IRQ (два устройства используют одно прерывание). Такие ситуации не всегда легко обнаружить программными средствами, поэтому внимательно проверьте установки прерываний для всех устройств компьютера (звуковые платы, параллельные и последовательные порты, приводы CD-ROM, другие сетевые адаптеры и т.п). Иногда в определении доступного прерывания может помочь программа конфигурирования и/или диагностики адаптера. В некоторых случаях проблемы возникают при использовании на современных компьютерах с шиной PCI для сетевого адаптера IRQ 15, даже если это прерывание не используется.
* Адаптер не отвечает на запросы. Если после включения компьютера программа диагностики не может обнаружить адаптер или детектирует сбой при внутреннем тесте, попробуйте заменить адаптер или обратитесь к его производителям.
* Если проверка адаптеров и кабелей доказала их работоспособность, причиной возникновения проблем могут быть некорректные параметры драйвера сетевого адаптера. Проверьте корректность параметров и сам драйвер (он должен быть предназначен для используемого вами адаптера). Дополнительную информацию можно найти в описании адаптера.
* Концентраторы редко являются источником проблем, однако одной из наиболее распространенных проблем такого рода является отсутствие питания. Иногда неисправный сетевой адаптер может нарушить работу порта в концентраторе. Для проверки адаптера пользуйтесь диагностическими программами из комплекта адаптера.
[pagebreak]
2.6. Ведение локальной документации
Настраивая конфигурацию под конкретные требования, вы вскоре обнаружите, что она значительно отличается от той, что описана в документации (базовой конфигурации). Скорее всего, вы не вечно будете занимать место системного администратора и рано или поздно на ваше место придет другой человек. Известно, что бывших супругов и бывших системных администраторов редко вспоминают добрым словом. Но, чтобы уменьшить количество «камней в ваш огород» и, что важнее, оградить себя от звонков и вопросов с места бывшей работы, системный администратор должен документировать все инсталлируемые программные средства, не входящие в стандартный пакет поставки, документировать разводку кабелей, вести записи по обслуживанию всех аппаратных средств, регистрировать состояние резервных копий и документировать правила работы с системой.
Также следует учитывать, что система учета, ядро, различные утилиты — все эти программы выдают данные, которые регистрируются и в конце концов попадают на ваши диски. Эти данные тоже являются локальной документацией, характеризующей работу конкретной системы. Однако срок полезной службы большинства данных ограничен, поэтому их нужно обобщать, упаковывать и наконец, выбрасывать.
Процедура ведения файлов регистрации в любой операционной системе представляет собой набор процедур, которые повторяются через определенное время в одном и том же порядке. Следовательно, ее необходимо автоматизировать.
В UNIX-системах для этой цели используется процесс cron. А программа syslog может удачно применяется в качестве полной системы регистрации. Она отличается высокой гибкостью и позволяет сортировать сообщения системы по источникам и степени важности, а затем направлять их в разные пункты назначения: в файлы регистрации, на терминалы пользователей и даже на другие машины. Одной из самых ценных особенностей этой системы является ее способность централизовать регистрацию для сети.
Администраторы Windows NT могут для тех же целей использовать утилиту PerformanceMonitor, разработанную для фиксации активности компьютера в реальном масштабе времени. С ее помощью можно определить большую часть узких мест, снижающих производительность. Эта утилита включена в Windows NT Server и Windows NT Workstation.
PerformanceMonitor основан на ряде счетчиков, которые фиксируют такие характеристики, как число процессов, ожидающих завершения операции с диском, число сетевых пакетов, передаваемых в единицу времени, процент использования процессора и другие. PerformanceMonitor генерирует полезную информацию посредством следующих действий:
* наблюдения за производительностью в реальном времени и в исторической перспективе;
* определения тенденций во времени;
* определения узких мест;
* отслеживания последствий изменения конфигурации системы;
* наблюдения за локальным или удаленными компьютерами;
* предупреждения администратора о событиях, связанных с превышением некоторыми характеристиками заданных порогов.
2.7 Контроль защиты
Основной особенностью любой сетевой системы является то, что ее компоненты распределены в пространстве, а связь между ними осуществляется физически — при помощи сетевых соединений (коаксиальный кабель, витая пара, оптоволокно и т.д.) и программно — при помощи механизма сообщений. К сетевым системам наряду с обычными (локальными) атаками, осуществляемыми в пределах одной операционной системы, применим специфический вид атак, обусловленный распределенностью ресурсов и информации в пространстве, — так называемые сетевые (или удаленные) атаки. Они характеризуются тем, что, во-первых, злоумышленник может находиться за тысячи километров от атакуемого объекта, а во-вторых, нападению может подвергнуться не конкретный компьютер, а информация, передающаяся по сетевым соединениям.
Системный администратор должен реализовывать стратегию защиты и периодически проверять, не нарушена ли защита системы.
Естественно, абсолютная защита сети невозможна, однако задача каждого администратора — сделать все возможное для максимального ее улучшения. При построении системы защиты разумно придерживаться следующих принципов:
* Актуальность. Защищаться следует от реальных атак, а не от фантастических или же архаичных.
* Разумность затрат. Поскольку 100% защиты вы все равно не обеспечите, необходимо найти тот рубеж, за которым дальнейшие траты на повышение безопасности превысят стоимость той информации, которую может украсть злоумышленник.
Конечно же, действия, которые вы должны предпринять для защиты своего сервера очень зависят от того, какую операционную систему вы используете. Однако есть ряд простых правил, которые пригодятся любому системному администратору.
* Внимательно прочитайте руководство по администрированию системы, вы наверняка найдете там полезные советы, которыми захотите воспользоваться.
* Запустите программу автоматизированного контроля вашего хоста — типа Internet Scanner. Система Internet Scanner может быть запущена на одной из платформ (Windows NT, Windows 2000, HP/UX, AIX, Linux, Sun OS, Solaris). Используется она для анализа защищенности систем.
* Загляните на серверы CERT (http://www.cert.org/) или CIAC (http://ciac.llnl.gov/) и внимательно прочитайте относящиеся к вашей ОС бюллетени за последнее время. Установите все рекомендуемые заплатки и сконфигурируйте систему, как полагается.
* Правильно настройте (или установите) межсетевой экран. Поставьте монитор всех входящих соединений (например, tcp_wrapper).
* Запустите последний взломщик паролей. Здесь у вас большое преимущество перед хакерами — у вас уже есть файл с хэшированными паролями.
* Проверьте настройки основных Интернет-служб (http, ftp). Максимально используйте анонимный доступ, чтобы предотвратить передачу паролей по сети в открытом виде. При необходимости разграничения доступа используйте стойкие протоколы типа SSL.
* У всех остальных сетевых служб также по возможности используйте аутентификацию, не включающую передачу пароля открытым текстом.
* Выбросьте некоторые малоиспользуемые службы. Особенно это касается администраторов UNIX-серверов: давно не используемый, но существующий на вашем сервере сервис типа finger, talk, rpc может стать той самой «дырой» в системе безопасности, через которую сможет проникнуть (или уже проник) хакер.
* Поставьте proxy-сервер для дополнительной аутентификации извне, а также для скрытия адресов и топологии внутренней подсети.
* Поставьте защищенную версию UNIX или другой операционной системы.
2.8. Подключение и удаление пользователей. Оказание им помощи
Создание бюджетов для новых пользователей и удаление бюджетов тех пользователей, которые уже не работают, — обязанность системного администратора. Процесс включения и удаления пользователей можно автоматизировать, но некоторые решения, от которых зависит включение нового пользователя, должен принимать администратор.
Очень часто сотрудники предприятия оказываются самым слабым звеном в системе его безопасности, поэтому системному администратору следует уделять больше внимания работе с пользователями системы. Иначе простой листочек бумаги с паролем, лежащий на рабочем месте забывчивой сотрудницы, сделает бесполезной выверенную настройку вашего межсетевого экрана.
Для усиления безопасности компьютерных систем компании разумными могут считаться следующие шаги:
* Привлечение внимания людей к вопросам безопасности.
* Осознание сотрудниками всей серьезности проблемы и принятие в организации политики безопасности.
* Изучение и внедрение необходимых методов и действий для повышения защиты информационного обеспечения.
Если вы работаете в крупной (более 100 человек) организации, то для определения уровня ее защищенности можно провести тест на проникновение. Этот метод позволяет выявить недостатки безопасности с точки зрения постороннего человека. Он позволяет протестировать схему действий, которая раскрывает и предотвращает внутренние и внешние попытки проникновения и сообщает о них.
Тест должен разрешить два основных вопроса:
* Все ли пункты политики безопасности достигают своих целей и используются так, как было задумано.
* Существует ли что-либо, не отраженное в политике безопасности, что может быть использовано для достижения злоумышленником своих целей.
Все попытки должны контролироваться обеими сторонами — как взломщиком, так и «клиентом». Это поможет протестировать систему гораздо более эффективно. Необходимо также свести к минимуму количество людей, знающих о проведении эксперимента.
Требуется создать и разработать различные варианты политики безопасности, определить правила корректного использования телефонов компьютеров и другой техники. Необходимо учитывать и неосведомленность в области безопасности, поскольку любые средства технического контроля могут быть использованы ненадлежащим образом. В итоге тестирование системы безопасности должно обеспечить вам защиту от проникновения.
3. Почему давят на системного администратора
Сети имеют тенденцию разрастаться, следовательно, вы будете вынуждены тратить все больше и больше времени на выполнение функций администратора. Вскоре окажется, что вы — единственный человек в своей организации, который знает, как решить целый ряд важнейших проблем.
Поскольку круг обязанностей системного администратора четко ограничить нельзя, от вас, скорее всего, потребуют, чтобы вы были не только штатным администратором, но и штатным инженером, писателем, а также секретарем.
Вместо этого мы предлагаем вам следующее: ведите работу на должном уровне, параллельно регистрируя время, затрачиваемое на системное администрирование. Собирайте доказательства, которые могут вам пригодиться, когда вы попросите руководство взять в штат еще одного администратора или освободить вас от «лишних» обязанностей.
С другой стороны, вы можете обнаружить, что системное администрирование вам нравится. В этом случае проблем с поиском работы у вас не будет.
Я уже рассказывал о брандмауэре Windows Firewall, компоненте пакета обновлений Windows XP Service Pack 2 (SP2), прежние версии которого были известны как Internet Connection Firewall (ICF). В данной статье я более подробно остановлюсь на этой программе и покажу, как подготовить ее для работы в конкретной сети. В моем распоряжении была только предварительная версия SP2, в окончательную редакцию могут быть внесены изменения.
Итак, рассмотрим девять новых параметров Group Policy для Windows Firewall и соответствующие команды. Параметры Windows Firewall хранятся в папке Computer Configuration\Administrative Templates\Network\Network Connections\Internet Connection Firewall. В этой папке существует две подпапки: Domain Profile и Mobile Profile. Параметры политики Domain Profile активизируются на компьютере с установленным Windows Firewall, когда данный компьютер регистрируется в домене; в противном случае выбираются параметры Mobile Profile. Обе подпапки содержат одинаковый набор из девяти параметров политики.
В предыдущей статье речь шла о первом параметре, Operational Mode. Данный параметр обеспечивает три режима: Disabled отключает брандмауэр, Protected активизирует брандмауэр, а Shielded активизирует брандмауэр, но компьютер оказывается более изолированным от сети, чем в режиме Protected, который позволяет открыть определенные порты. Чтобы перевести компьютер в режим Disabled, Protected или Shielded, следует воспользоваться командой
netsh firewall ipv4 set opmode
с ключом disabled, enabled или shield. Обозначения в командной строке иногда отличаются от названий соответствующих параметров Group Policy. Таким образом, чтобы надежно защитить сетевой адаптер, следует ввести команду
netsh firewall ipv4 set opmode shield
Эту команду удобно использовать в командном файле. Можно создать для командного файла ярлык на рабочем столе, назвав его Shield this System, чтобы можно было дважды щелкнуть на нем при любых признаках опасности для сети. С помощью команды
netsh firewall ipv4 show opmode
можно узнать режим брандмауэра.
Изменение параметров брандмауэра
Свойства следующего параметра политики Windows Firewall - Allow User Preference/Group Policy Settings Merge не совсем ясны. В документации Windows Firewall указывается, что с помощью данного параметра локальные администраторы могут изменить режим брандмауэра. Но что означает слово "изменить" - включить или выключить брандмауэр либо настроить его, открывая и закрывая порты? В данном случае "изменить" имеет второе значение: с помощью данной политики локальный администратор может открыть или закрыть порт, но не отменить режим Disabled, Protected или Shielded, установленный доменной политикой (предполагается, что доменная политика для Windows Firewall существует). Если в политике задан режим Disabled, то локальный администратор не может управлять работой брандмауэра.
Путаница начинается, если локальный администратор пытается отменить параметры Windows Firewall, заданные объектом Group Policy Object (GPO). В ответ на команду
netsh firewall ipv4 set opmode disable
будет получен результат OK, и следующая команда Netsh Firewall сообщит, что брандмауэр отключен. Однако, заглянув в свойства сетевого адаптера в папке Network Connections, можно увидеть, что брандмауэр активен. Несколько тестов показывают, что информация графического интерфейса соответствует действительности: преобладают доменные параметры. Будем надеяться, что в окончательной версии эти недостатки будут исправлены.
Однако нельзя всегда полагаться на диалоговые окна. Если присвоить параметру Allow User Preference/Group Policy Settings Merge значение Disabled, то цвет окна становится серым, а переключатели для активизации и отключения Windows Firewall перестают действовать. Такой подход разумен. Но попробуйте активизировать параметр, а затем вернуться к экрану настройки Windows Firewall. Кнопки для включения и выключения брандмауэра доступны. Если щелкнуть на одной из них, а затем на OK, то на экране не появится сообщения об ошибке, но и изменений также не произойдет. Однако локальный администратор может открывать и закрывать порты с помощью командной строки или gpedit.msc. Для параметра политики Allow User Preference/Group Policy Settings Merge эквивалента командной строки не существует.
Открываем порты для программ
Следующий параметр политики - первый из семи параметров, с помощью которых можно открыть или (в некоторых случаях) закрыть конкретный порт. Открывая брандмауэр для прохождения определенного типа трафика (например, Web-трафика, данных аутентификации Active Directory или загрузки электронной почты), трудно определить, какой порт необходим для этого типа трафика. Задача упрощается благодаря параметру политики Define Allowable Programs. По умолчанию Windows Firewall блокирует непрошеный входящий трафик, но не исходящий. Такой подход приемлем, если рабочая станция функционирует как клиент, инициирующий обмен данными (например, запрашивая почтовый сервер о наличии сообщений или Web-сервер - об информации). Но он не срабатывает, если рабочая станция предоставляет службы другим компьютерам сети, например, если на рабочей станции размещен почтовый сервер, потому что брандмауэр блокирует попытки клиентов инициировать диалог с серверной программой. Он также непригоден для одноранговых (peer-to-peer, P2P) соединений, таких как Instant Messaging (IM), в которых две или несколько машин обмениваются данными, выполняя обязанности и клиентов, и серверов одновременно. Таким образом, для запуска сервера или организации соединений P2P необходимо открыть некоторые порты.
Но какие именно порты следует открыть? Для ответа на этот вопрос достаточно указать конкретную программу в параметре Define Allowable Programs, и Windows Firewall открывает порты, необходимые данной программе. Пользователь указывает в параметре политики местонахождение программы, определяет ее состояние (активное или блокированное; например, можно составить политику блокирования портов для конкретной программы, если эта программа была "троянским конем", проникшим в сеть) и открывает соответствующие порты для всего Internet или только для локальной подсети.
Предположим, что на компьютере работает серверная программа C:\myprogs\serverprog.exe. Неизвестно, какие порты она открывает, но необходимо, чтобы эти порты были открыты только для компьютеров той подсети, в которой расположен сервер. Нужно активизировать параметр Define Allowable Programs, затем щелкнуть на кнопке Show, чтобы на экране появилось диалоговое окно для ввода информации о почтовом сервере. В этом диалоговом окне я ввел строку
C:\myprogs\serverprog.exe:LocalSubnet: enabled:E-mail server
которая определяет четыре компонента, каждый из которых отделен от остальных двоеточием. Первый компонент - полный путь к программе. Можно использовать переменные среды, такие как %ProgramFiles%. Следующий компонент, LocalSubnet, указывает на необходимость принять трафик, входящий в порты этого сервера только из систем той же подсети. Третий компонент, enabled, разрешает прохождение трафика. И четвертый компонент, E-mail server, представляет собой просто метку, которую Windows Firewall может использовать при составлении отчетов. Число программ не ограничено.ъ
Открытие конкретных портов
С помощью остальных параметров открываются различные порты. Не совсем ясно, следует ли активизировать первый из них, Allow Dynamically Assigned Ports for RPC and DCOM. Вообще я предпочитаю инструменты на основе Windows Management Instrumentation (WMI), такие как WMI VBScripts и оснастка Manage Computer консоли Microsoft Management Console (MMC), но для WMI необходимы вызовы удаленных процедур (Remote Procedure Calls, RPC). Оснастку Manage Computer нельзя использовать для дистанционного управления системой без WMI, поэтому, чтобы управлять удаленными системами с помощью Manage Computer при активном Windows Firewall, необходимо активизировать этот параметр. Опасность открывания портов для RPC заключается в том, что за последние два года в RPC было обнаружено несколько серьезных ошибок, одна из которых привела к памятной атаке MSBlaster. Поэтому активизация брандмауэра при открытых портах для RPC - противоречивое решение; с таким же успехом можно запереть на замок все двери в доме, ради удобства (своего и грабителей) оставив открытым парадный вход. Как и предыдущий, данный параметр позволяет открыть порты для всех IP-адресов или только для локальной подсети, но такой вариант тоже не очень удачен. Во многих случаях вирус MSBlaster распространялся от зараженного компьютера, который кто-то приносил на предприятие. Поэтому перед активизацией данного параметра необходимо тщательно все обдумать.
Как и RPC, параметры File and Print Sharing, Remote Assistance Support и Universal Plug and Play можно отменить или активизировать, а действие активных параметров ограничить локальной подсетью. Все эти параметры, кроме Remote Assistance Support, можно активизировать из командной строки с помощью команды
netsh firewall ipv4 set service
за которой следует type= и имя службы (например, FILEANDPRINT, RPCANDDCOM или UPNP) или scope= с последующими ключами all (для всех IP-адресов) и subnet (для локальной подсети). Например, чтобы разрешить совместную работу с файлами и принтерами только в локальной подсети, следует ввести команду
netsh firewall ipv4 set service type=fileandprint scope=subnet
Любую команду можно дополнить ключами profile= и interface=, поэтому, если файл- или принт-службу требуется открыть для проводного Ethernet-соединениия только в случаях, когда система подключена к домену, нужно ввести команду
netsh firewall ipv4 set service type=fileandprint scope=subnet interface="local area connection" profile=corporate
Group Policy работает с профилями Domain и Mobile, а инструменты командной строки - с корпоративными и другими профилями.
Остается два параметра политики. Allow ICMP Settings воздействует на подсистему ICMP (Internet Control Message Protocol - протокол управления сообщения Internet). В сущности, для администратора важен лишь один компонент ICMP: Ping. По умолчанию в системах с брандмауэром блокируются все запросы ICMP, и потому сигналы эхо-тестирования игнорируются. В Allow ICMP Settings Properties перечислено девять типов запросов ICMP, разрешенных брандмауэром Windows Firewall. Для тестирования нужно активизировать только запрос Allow Inbound Echo Request. Данный параметр не позволяет ограничить ICMP-трафик локальной подсетью.
ICMP открывается из командной строки:
netsh firewall ipv4 set icmpsetting
с последующим ключом type= и числом (3, 4, 5, 8, 10, 11, 12, 13 или 17) или словом all. Номер указывает один из девяти параметров ICMP, и нам нужен номер 8 - входящий запрос (incoming echo request). Чтобы машина отвечала на сигналы тестирования, необходимо ввести команду
netsh firewall ipv4 set icmpsetting type=8
Команду можно уточнить с помощью ключей profile= и interface=.
Как открыть порт для службы, которая в данной статье не рассматривалась? Для этого можно воспользоваться девятым параметром политики, Define Custom Open Ports. Затем следует указать номер порта Windows Firewall, тип порта (TCP или UDP), область действия (все IP-адреса или только локальная подсеть) и действие (активизировать или блокировать). При желании порту можно присвоить описательное имя. Например, для почтового сервера можно открыть всему миру порт TCP 25:
25:TCP:*:enabled:SMTP
где 25 - номер порта, TCP - протокол, звездочка (*) открывает порт всему миру (не только подсети), ключ enabled открывает, а не закрывает порт, и SMTP - описательная фраза. В командной строке нужно ввести
netsh firewall ipv4 add portopening
с последующими ключами protocol= (варианты - tcp, udp или all), port= (с номером), name= (с именем), mode= (enable или disable) и scope= (all или subnet). Для активизации почтового сервера следует ввести команду
В процессе экспериментов могут возникнуть недоразумения - порт был закрыт, но почему-то остается открытым. Чтобы избежать недоразумений, следует уяснить разницу между поведением брандмауэров, управляемых параметром Group Policy и с помощью командной строки. Команды, подаваемые из командной строки, обычно вступают в силу немедленно. Изменения в Group Policy начинают действовать спустя некоторое время. Чтобы изменения Group Policy для Windows Firewall вступали в действие сразу же, следует применить команду gpupdate.
Необходимо дождаться, пока обработка команды завершится, затем перейти к функции Services в оснастке Manage Computer и перезапустить службу Internet Connection Firewall (в окончательной версии имя службы может быть изменено).
Дополнительные возможности командной строки
Мы рассмотрели возможности параметров Group Policy для Windows Firewall, но функции командной строки шире. Следует помнить, что Windows Firewall имеет два профиля: Domain и Mobile. Предположим, нам нужно выяснить, какой профиль используется в данный момент. Следующая команда показывает активный профиль - Domain Profile (corporate) или Mobile Profile (other):
netsh firewall ipv4 show currentprofile
Команда Set Logging позволяет больше узнать о работе брандмауэра. Она имеет четыре факультативных параметра: Filelocation= показывает брандмауэру, куда записать ASCII-файл журнала, а maxfilesize= задает максимальный размер файла. Размер файла указывается в килобайтах, и максимальное допустимое значение - 32767. Параметры droppedpackets= и connections= принимают значения enable или disable и указывают брандмауэру, следует ли регистрировать блокированные и успешные соединения. Например, чтобы записывать как успешные, так и блокированные соединения в файле C:\firelog.txt размером максимум 8 Мбайт, нужно ввести команду
netsh firewall ipv4 set logging filelocation="C:\firelog.txt" maxfilesize=8192 droppedpackets= enable connections=enable
Журнал может быть большим, но если нужно обнаружить взломщика, регулярно предпринимающего попытки атак, полезно иметь полный журнал, в котором отражены все соединения и отказы TCP и UDP. Задать текущий режим регистрации можно с помощью команды
netsh firewall ipv4 show logging
Следующая команда выдает исчерпывающий список параметров брандмауэра:
netsh firewall ipv4 show config
Заменив в данной команде ключ config ключом state, можно получить подробные сведения о действиях, выполняемых брандмауэром. Чтобы получить более компактный отчет, содержащий только информацию об открытых портах, следует заменить config на icmpsetting или portopening.
Для работы с Windows Firewall требуется освоить много новых понятий. Однако если в системе персонального брандмауэра нет, то Windows Firewall поможет защитить машину, придется лишь потратить незначительное время на создание GPO, чтобы открывать нужные порты. Вознаграждением для администратора будет сознание того, что система за брандмауэром станет куда менее уязвимой.
За годы существования интернета такие понятия "вес" или "популярность" ссылки, технология Google PageRank, прочно укрепились среди пользователей интернета. В особенности среди вебмастеров и владельцев сайтов. Но часто возникает путаница между этими двумя терминами, а ведь для поисковой машины это не одно и тоже. Попытаюсь внести ясность в данный вопрос.
Что такое "вес" ссылки?
Теоретически это выглядит так: поисковый робот решает, что если другие сайты ссылаются на ваш сайт, то значит его (ваш сайт) нужно повысить в рейтинге. Т.е. при прочих равных условиях рейтинг будет выше у того сайта, на который ссылается большее число сайтов (желательно еще и с собственным "большим весом"). Ведь, исходя из элементарной логики, вебмастера ставят ссылки на дружественные сайты, которые заслуживают на внимание посетителей.
PageRank и "вес" ссылки - не одно и тоже
Да, эти два термина кое в чем между собой отличаются. PR - это скорее одна из составляющих "веса" ссылки. Поскольку PR больше сфокусирована на количестве ссылок (как прямых, так и обратных на сайт), то под термином "вес ссылки" скрывается качественная составляющая этих ссылок. Тем не менее, множество пользователей интернета неправильно понимают эти два термина, а зачастую и просто воспринимают их как синонимы.
На сегодняшний день все главные поисковые машины уделяют популярности ссылок большое внимание. В первую очередь это затрагивает алгоритмы, по которым составляются рейтинги проиндексированных сайтов. А что же полезного можно извлечь из этого для раскрутки собственного сайта? Оказывается, что существует 2 основных типа ссылок, которые наиболее важны в поисковой оптимизации:
1. Ссылки с других сайтов, которые содержат тот же набор ключевых слов, что и ваш ресурс
2. Ссылки с релевантных (с похожей тематикой) рубрик в популярных каталогах
А вот ссылки с каталогов типа "Free-for-all" (FFA) не дают весомых ссылок, поэтому нет необходимости тратить деньги и время на размещение в них. Уж лучше разместить сайт в десятке наиболее известных каталогов (таких, как например Яндекс. Каталог), чем в сотне малоизвестных. А еще, как показывает практика, размещение сайта в каталоге вместе с сайтами неродственных категорий (как и в непопулярных каталогах) дает только временный рост PR.
Алгоритмы поисковых машин постоянно меняются, как и эффективность методик раскрутки. Хочу заметить, что в последнее время наметилась общемировая тенденция в seo - повышать рейтинг только тех ресурсов, на которые ссылаются сайты с большим собственным рейтингом. Может это связано с ростом количества сайтов, а может проблема в чем-то другом. Возможно, что места под солнцем становиться все меньше, а желающих - все больше.
Как работает механизм "рейтинг ссылки"
Хочу привести вам пример того, каким образом работают ссылки на популяризацию сайта.
Предположим, что у дяди Васи есть пиццерия. Естественно, она у него имеет и свой сайт в интернете (люди заходят и заказывают пиццу). Далее представим, что на этом сайте дядя Вася решил разместить ссылочку на сайт свого соседа по дому дяди Вани. А вот он занимается продажей мужской одежды, у него сайт с низкой посещаемостью, вот и решил он помочь ему в раскрутке.
Итак, на сайте дяди Васи появилась ссылка на сайт продаже мужской одежды дяди Вани. Пусть она будет выглядеть как "лучший магазин мужской одежды". Если посмотреть на название ссылки, то все ок - ключевые слова тут как тут. Только вот эффект для дяди Вани от этого будет минимальным: ведь пицца и мужская одежда - это совсем не одно и то же.
Лучшим вариантом для дяди Вани было бы разместить ссылочку на сайте с похожей тематикой. Пусть лучше это был бы сайт тети Клавы о продаже женской одежды, сайт дяди Миши о продаже мужской обуви или любой другой, но уже тематически связанный с одеждой / обувью.
А вот просто идеальным было бы иметь для дяди Вани ссылочку в "Каталоге магазинов одежды Сан Саныча", в котором содержаться ссылки на наиболее популярные магазины одежды. Вот именно это и есть тот случай, когда поисковый робот непременно повысит рейтинг вашего сайта.
Нужно ли ставить обратные ссылки?
Вокруг этой тематики уже не один год ведутся споры, в которых было сломано немало копий. Но ситуация яснее не стала: достаточно как приверженцев, так и противников наличия обратных ссылок. А все началось с тех пор, когда вебмастера решили, что взаимный обмен ссылками - это самый простой способ привлечения посетителей (хотя это и не всегда верно). Сейчас же большинство вебмастеров обмениваются ссылками по принципу "ты-ставишь-ссылку-на-мой-сайт-я-ставлю-ссылку-на-твой". Но есть и противники такой методики, которые ее считают неэффективной для повышения рейтинга сайта.
Так кто же прав? Да неправы обе стороны одновременно. Я считаю, что нет необходимости ставить обратную ссылку, но если все же хочется, то можно и поставить. Необходимо помнить, что являются полезными лишь ссылки, которые указывают НА ваш сайт. А те ссылки, которые ведут ОТ вашего сайта, полезны лишь в том случае, если тот сайт является родственный по тематике. Ведь посетитель вашего сайт заинтересован, как правило, в посещении и других сайтов с похожей тематикой.
Необходимо ли заботиться о "популярности" ссылки?
Не только необходимо, а и жизненно важно для вашего сайта. Тем не менее, необходимо помнить, что (вопреки распространенному мнению) вес ссылки является только частью работы алгоритма поисковой машины. Но тут особенно выделяется Google, которая больше остальных поисковиков уделяет внимание качеству и количеству ссылающихся сайтов. А вот насколько реально это повышает рейтинг сайта и каким образом - это спорный вопрос, точного ответа на который не знает никто (кроме разработчиков поискового алгоритма).
Хочу также заметить, что не последнюю роль в рейтинге сайта играет и то, какие слова содержатся в ссылке на него. Как показывает практика, несколько ссылок с высокой релевантностью и удачным описанием - это едва ли не единственный быстрый и простой путь к повышению рейтинга сайта.
Но тут главное не переусердствовать. Не нужно сразу же бросаться рассылать сотни писем владельцам сайтов с предложением разместить на вас ссылочку. Думаю, что большинство вебмастеров не будут в восторге от излишней настойчивости, если вообще не примут ваши письма за спам. Необходимо понять, что каждая ссылка на "вес золота" - только благодаря ей можно получить посетителей больше, чем со всех поисковиков, вместе взятых.
Способ получить ссылки ничего не делая
Хочу с вами поделиться одним способом получения ссылок на свой сайт. Пусть он и более затратный по времени, но зато очень эффективный. Необходимо просто создать лучший (ну или один из лучших) сайтов в своей тематической нише. Для этого будет вполне достаточно, чтобы он был грамотно и красиво сделан, содержал множество статей (желательно еще и уникальных) и постоянно бы обновлялся (в идеале - каждый день). Пройдет некоторое время и сайты с похожей тематикой начнут сами ставить ссылки на ваш ресурс.
Пусть кто-то добавит ваш сайт в "рекомендованные сайты", кто-то в "друзья" или "каталог ссылок", но ведь главное, что ссылка будет. Могут также взять статью с вашего сайта, главное, чтобы ссылочку на источник поставили :)
Да, может быть этот метод в чем-то и утопичен. Но уж лучше сразу потратить месяц-другой на создание хорошего ресурса, чем потом просить поставить ссылку на ваш сайт. Хотя, не буду спорить, может этот метод и не самый лучший.
Поэтому советую вам не пожалеть времени и подумать над тем, как создать супер-сайт. Вот тогда вам уже не придется беспокоиться о каких-то "рейтингах" ссылки, обратных ссылках и непонятной аббревиатуре PR!
Все протоколы обмена маршрутной информацией стека TCP/IP относятся к классу адаптивных протоколов, которые в свою очередь делятся на две группы, каждая из которых связана с одним из следующих типов алгоритмов:
* дистанционно-векторный алгоритм (Distance Vector Algorithms, DVA),
* алгоритм состояния связей (Link State Algorithms, LSA).
В алгоритмах дистанционно-векторного типа каждый маршрутизатор периодически и широковещательно рассылает по сети вектор расстояний от себя до всех известных ему сетей. Под расстоянием обычно понимается число промежуточных маршрутизаторов через которые пакет должен пройти прежде, чем попадет в соответствующую сеть. Может использоваться и другая метрика, учитывающая не только число перевалочных пунктов, но и время прохождения пакетов по связи между соседними маршрутизаторами.
Получив вектор от соседнего маршрутизатора, каждый маршрутизатор добавляет к нему информацию об известных ему других сетях, о которых он узнал непосредственно (если они подключены к его портам) или из аналогичных объявлений других маршрутизаторов, а затем снова рассылает новое значение вектора по сети. В конце-концов, каждый маршрутизатор узнает информацию об имеющихся в интерсети сетях и о расстоянии до них через соседние маршрутизаторы.
Дистанционно-векторные алгоритмы хорошо работают только в небольших сетях. В больших сетях они засоряют линии связи интенсивным широковещательным трафиком, к тому же изменения конфигурации могут отрабатываться по этому алгоритму не всегда корректно, так как маршрутизаторы не имеют точного представления о топологии связей в сети, а располагают только обобщенной информацией - вектором дистанций, к тому же полученной через посредников. Работа маршрутизатора в соответствии с дистанционно-векторным протоколом напоминает работу моста, так как точной топологической картины сети такой маршрутизатор не имеет.
Наиболее распространенным протоколом, основанным на дистанционно-векторном алгоритме, является протокол RIP.
Алгоритмы состояния связей обеспечивают каждый маршрутизатор информацией, достаточной для построения точного графа связей сети. Все маршрутизаторы работают на основании одинаковых графов, что делает процесс маршрутизации более устойчивым к изменениям конфигурации. Широковещательная рассылка используется здесь только при изменениях состояния связей, что происходит в надежных сетях не так часто.
Для того, чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами со своими ближайшими соседями. Этот трафик также широковещательный, но он циркулирует только между соседями и поэтому не так засоряет сеть.
Протоколом, основанным на алгоритме состояния связей, в стеке TCP/IP является протокол OSPF.
Дистанционно-векторный протокол RIP
Протокол RIP (Routing Information Protocol) представляет собой один из старейших протоколов обмена маршрутной информацией, однако он до сих пор чрезвычайно распространен в вычислительных сетях. Помимо версии RIP для сетей TCP/IP, существует также версия RIP для сетей IPX/SPX компании Novell.
В этом протоколе все сети имеют номера (способ образования номера зависит от используемого в сети протокола сетевого уровня), а все маршрутизаторы - идентификаторы. Протокол RIP широко использует понятие "вектор расстояний". Вектор расстояний представляет собой набор пар чисел, являющихся номерами сетей и расстояниями до них в хопах.
Вектора расстояний итерационно распространяются маршрутизаторами по сети, и через несколько шагов каждый маршрутизатор имеет данные о достижимых для него сетях и о расстояниях до них. Если связь с какой-либо сетью обрывается, то маршрутизатор отмечает этот факт тем, что присваивает элементу вектора, соответствующему расстоянию до этой сети, максимально возможное значение, которое имеет специальный смысл - "связи нет". Таким значением в протоколе RIP является число 16.
При необходимости отправить пакет в сеть D маршрутизатор просматривает свою базу данных маршрутов и выбирает порт, имеющий наименьшее расстояния до сети назначения (в данном случае порт, связывающий его с маршрутизатором 3).
Для адаптации к изменению состояния связей и оборудования с каждой записью таблицы маршрутизации связан таймер. Если за время тайм-аута не придет новое сообщение, подтверждающее этот маршрут, то он удаляется из маршрутной таблицы.
При использовании протокола RIP работает эвристический алгоритм динамического программирования Беллмана-Форда, и решение, найденное с его помощью является не оптимальным, а близким к оптимальному. Преимуществом протокола RIP является его вычислительная простота, а недостатками - увеличение трафика при периодической рассылке широковещательных пакетов и неоптимальность найденного маршрута.
При обрыве связи с сетью 1 маршрутизатор М1 отмечает, что расстояние до этой сети приняло значение 16. Однако получив через некоторое время от маршрутизатора М2 маршрутное сообщение о том, что от него до сети 1 расстояние составляет 2 хопа, маршрутизатор М1 наращивает это расстояние на 1 и отмечает, что сеть 1 достижима через маршрутизатор 2. В результате пакет, предназначенный для сети 1, будет циркулировать между маршрутизаторами М1 и М2 до тех пор, пока не истечет время хранения записи о сети 1 в маршрутизаторе 2, и он не передаст эту информацию маршрутизатору М1.
Для исключения подобных ситуаций маршрутная информация об известной маршрутизатору сети не передается тому маршрутизатору, от которого она пришла.
Существуют и другие, более сложные случаи нестабильного поведения сетей, использующих протокол RIP, при изменениях в состоянии связей или маршрутизаторов сети.
Комбинирование различных протоколов обмена. Протоколы EGP и BGP сети Internet
Большинство протоколов маршрутизации, применяемых в современных сетях с коммутацией пакетов, ведут свое происхождение от сети Internet и ее предшественницы - сети ARPANET. Для того, чтобы понять их назначение и особенности, полезно сначала познакомится со структурой сети Internet, которая наложила отпечаток на терминологию и типы протоколов.
Internet изначально строилась как сеть, объединяющая большое количество существующих систем. С самого начала в ее структуре выделяли магистральную сеть (core backbone network), а сети, присоединенные к магистрали, рассматривались как автономные системы (autonomous systems). Магистральная сеть и каждая из автономных систем имели свое собственное административное управление и собственные протоколы маршрутизации. Далее маршрутизаторы будут называться шлюзами для следования традиционной терминологии Internet.
Шлюзы, которые используются для образования подсетей внутри автономной системы, называются внутренними шлюзами (interior gateways), а шлюзы, с помощью которых автономные системы присоединяются к магистрали сети, называются внешними шлюзами (exterior gateways). Непосредственно друг с другом автономные системы не соединяются. Соответственно, протоколы маршрутизации, используемые внутри автономных систем, называются протоколами внутренних шлюзов (interior gateway protocol, IGP), а протоколы, определяющие обмен маршрутной информацией между внешними шлюзами и шлюзами магистральной сети - протоколами внешних шлюзов (exterior gateway protocol, EGP). Внутри магистральной сети также может использоваться любой собственный внутренний протокол IGP.
Смысл разделения всей сети Internet на автономные системы в ее многоуровневом представлении, что необходимо для любой крупной системы, способной к расширению в больших масштабах. Внутренние шлюзы могут использовать для внутренней маршрутизации достаточно подробные графы связей между собой, чтобы выбрать наиболее рациональный маршрут. Однако, если информация такой степени детализации будет храниться во всех маршрутизаторах сети, то топологические базы данных так разрастутся, что потребуют наличия памяти гигантских размеров, а время принятия решений о маршрутизации непременно возрастет.
Поэтому детальная топологическая информация остается внутри автономной системы, а автономную систему как единое целое для остальной части Internet представляют внешние шлюзы, которые сообщают о внутреннем составе автономной системы минимально необходимые сведения - количество IP-сетей, их адреса и внутреннее расстояние до этих сетей от данного внешнего шлюза.
При инициализации внешний шлюз узнает уникальный идентификатор обслуживаемой им автономной системы, а также таблицу достижимости (reachability table), которая позволяет ему взаимодействовать с другими внешними шлюзами через магистральную сеть.
Затем внешний шлюз начинает взаимодействовать по протоколу EGP с другими внешними шлюзами и обмениваться с ними маршрутной информацией, состав которой описан выше. В результате, при отправке пакета из одной автономной системы в другую, внешний шлюз данной системы на основании маршрутной информации, полученной от всех внешних шлюзов, с которыми он общается по протоколу EGP, выбирает наиболее подходящий внешний шлюз и отправляет ему пакет.
Каждая функция работает на основе обмена сообщениями запрос-ответ.
Так как каждая автономная система работает под контролем своего административного штата, то перед началом обмена маршрутной информацией внешние шлюзы должны согласиться на такой обмен. Сначала один из шлюзов посылает запрос на установление соседских отношений (acquisition request) другому шлюзу. Если тот согласен на это, то он отвечает сообщением подтверждение установления соседских отношений (acquisition confirm), а если нет - то сообщением отказ от установления соседских отношений (acquisition refuse), которое содержит также причину отказа.
После установления соседских отношений шлюзы начинают периодически проверять состояние достижимости друг друга. Это делается либо с помощью специальных сообщений (привет (hello) и Я-услышал-тебя (I-heard-you)), либо встраиванием подтверждающей информации непосредственно в заголовок обычного маршрутного сообщения.
Обмен маршрутной информацией начинается с посылки одним из шлюзов другому сообщения запрос данных (poll request) о номерах сетей, обслуживаемых другим шлюзом и расстояниях до них от него. Ответом на это сообщение служит сообщение обновленная маршрутная информация (routing ). Если же запрос оказался некорректным, то в ответ на него отсылается сообщение об ошибке.
Все сообщения протокола EGP передаются в поле данных IP-пакетов. Сообщения EGP имеют заголовок фиксированного формата.
Поля Тип и Код совместно определяют тип сообщения, а поле Статус - информацию, зависящую от типа сообщения. Поле Номер автономной системы - это номер, назначенный той автономной системе, к которой присоединен данный внешний шлюз. Поле Номер последовательности служит для синхронизации процесса запросов и ответов.
[pagebreak]
Поле IP-адрес исходной сети в сообщениях запроса и обновления маршрутной информации обозначает сеть, соединяющую два внешних шлюза.
Сообщение об обновленной маршрутной информации содержит список адресов сетей, которые достижимы в данной автономной системе. Этот список упорядочен по внутренним шлюзам, которые подключены к исходной сети и через которые достижимы данные сети, а для каждого шлюза он упорядочен по расстоянию до каждой достижимой сети от исходной сети, а не от данного внутреннего шлюза. Для примера внешний шлюз R2 в своем сообщении указывает, что сеть 4 достижима с помощью шлюза R3 и расстояние ее равно 2, а сеть 2 достижима через шлюз R2 и ее расстояние равно 1 (а не 0, как если бы шлюз измерял ее расстояние от себя, как в протоколе RIP).
Протокол EGP имеет достаточно много ограничений, связанных с тем, что он рассматривает магистральную сеть как одну неделимую магистраль.
Развитием протокола EGP является протокол BGP (Border Gateway Protocol), имеющий много общего с EGP и используемый наряду с ним в магистрали сети Internet.
Протокол состояния связей OSPF
Протокол OSPF (Open Shortest Path Firs) является достаточно современной реализацией алгоритма состояния связей (он принят в 1991 году) и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях.
Протокол OSPF вычисляет маршруты в IP-сетях, сохраняя при этом другие протоколы обмена маршрутной информацией.
Непосредственно связанные (то есть достижимые без использования промежуточных маршрутизаторов) маршрутизаторы называются "соседями". Каждый маршрутизатор хранит информацию о том, в каком состоянии по его мнению находится сосед. Маршрутизатор полагается на соседние маршрутизаторы и передает им пакеты данных только в том случае, если он уверен, что они полностью работоспособны. Для выяснения состояния связей маршрутизаторы-соседи достаточно часто обмениваются короткими сообщениями HELLO.
Для распространения по сети данных о состоянии связей маршрутизаторы обмениваются сообщениями другого типа. Эти сообщения называются router links advertisement - объявление о связях маршрутизатора (точнее, о состоянии связей). OSPF-маршрутизаторы обмениваются не только своими, но и чужими объявлениями о связях, получая в конце-концов информацию о состоянии всех связей сети. Эта информация и образует граф связей сети, который, естественно, один и тот же для всех маршрутизаторов сети.
Кроме информации о соседях, маршрутизатор в своем объявлении перечисляет IP-подсети, с которыми он связан непосредственно, поэтому после получения информации о графе связей сети, вычисление маршрута до каждой сети производится непосредственно по этому графу по алгоритму Дэйкстры. Более точно, маршрутизатор вычисляет путь не до конкретной сети, а до маршрутизатора, к которому эта сеть подключена. Каждый маршрутизатор имеет уникальный идентификатор, который передается в объявлении о состояниях связей. Такой подход дает возможность не тратить IP-адреса на связи типа "точка-точка" между маршрутизаторами, к которым не подключены рабочие станции.
Маршрутизатор вычисляет оптимальный маршрут до каждой адресуемой сети, но запоминает только первый промежуточный маршрутизатор из каждого маршрута. Таким образом, результатом вычислений оптимальных маршрутов является список строк, в которых указывается номер сети и идентификатор маршрутизатора, которому нужно переслать пакет для этой сети. Указанный список маршрутов и является маршрутной таблицей, но вычислен он на основании полной информации о графе связей сети, а не частичной информации, как в протоколе RIP.
Описанный подход приводит к результату, который не может быть достигнут при использовании протокола RIP или других дистанционно-векторных алгоритмов. RIP предполагает, что все подсети определенной IP-сети имеют один и тот же размер, то есть, что все они могут потенциально иметь одинаковое число IP-узлов, адреса которых не перекрываются. Более того, классическая реализация RIP требует, чтобы выделенные линии "точка-точка" имели IP-адрес, что приводит к дополнительным затратам IP-адресов.
В OSPF такие требования отсутствуют: сети могут иметь различное число хостов и могут перекрываться. Под перекрытием понимается наличие нескольких маршрутов к одной и той же сети. В этом случае адрес сети в пришедшем пакете может совпасть с адресом сети, присвоенным нескольким портам.
Если адрес принадлежит нескольким подсетям в базе данных маршрутов, то продвигающий пакет маршрутизатор использует наиболее специфический маршрут, то есть адрес подсети, имеющей более длинную маску.
Например, если рабочая группа ответвляется от главной сети, то она имеет адрес главной сети наряду с более специфическим адресом, определяемым маской подсети. При выборе маршрута к хосту в подсети этой рабочей группы маршрутизатор найдет два пути, один для главной сети и один для рабочей группы. Так как последний более специфичен, то он и будет выбран. Этот механизм является обобщением понятия "маршрут по умолчанию", используемого во многих сетях.
Использование подсетей с различным количеством хостов является вполне естественным. Например, если в здании или кампусе на каждом этаже имеются локальные сети, и на некоторых этажах компьютеров больше, чем на других, то администратор может выбрать размеры подсетей, отражающие ожидаемые требования каждого этажа, а не соответствующие размеру наибольшей подсети.
В протоколе OSPF подсети делятся на три категории:
* "хост-сеть", представляющая собой подсеть из одного адреса,
* "тупиковая сеть", которая представляет собой подсеть, подключенную только к одному маршрутизатору,
* "транзитная сеть", которая представляет собой подсеть, подключенную к более чем одному маршрутизатору.
Транзитная сеть является для протокола OSPF особым случаем. В транзитной сети несколько маршрутизаторов являются взаимно и одновременно достижимыми. В широковещательных локальных сетях, таких как Ethernet или Token Ring, маршрутизатор может послать одно сообщение, которое получат все его соседи. Это уменьшает нагрузку на маршрутизатор, когда он посылает сообщения для определения существования связи или обновленные объявления о соседях.
Однако, если каждый маршрутизатор будет перечислять всех своих соседей в своих объявлениях о соседях, то объявления займут много места в памяти маршрутизатора. При определении пути по адресам транзитной подсети может обнаружиться много избыточных маршрутов к различным маршрутизаторам. На вычисление, проверку и отбраковку этих маршрутов уйдет много времени.
Когда маршрутизатор начинает работать в первый раз (то есть инсталлируется), он пытается синхронизировать свою базу данных со всеми маршрутизаторами транзитной локальной сети, которые по определению имеют идентичные базы данных. Для упрощения и оптимизации этого процесса в протоколе OSPF используется понятие "выделенного" маршрутизатора, который выполняет две функции.
Во-первых, выделенный маршрутизатор и его резервный "напарник" являются единственными маршрутизаторами, с которыми новый маршрутизатор будет синхронизировать свою базу. Синхронизировав базу с выделенным маршрутизатором, новый маршрутизатор будет синхронизирован со всеми маршрутизаторами данной локальной сети.
Во-вторых, выделенный маршрутизатор делает объявление о сетевых связях, перечисляя своих соседей по подсети. Другие маршрутизаторы просто объявляют о своей связи с выделенным маршрутизатором. Это делает объявления о связях (которых много) более краткими, размером с объявление о связях отдельной сети.
Для начала работы маршрутизатора OSPF нужен минимум информации - IP-конфигурация (IP-адреса и маски подсетей), некоторая информация по умолчанию (default) и команда на включение. Для многих сетей информация по умолчанию весьма похожа. В то же время протокол OSPF предусматривает высокую степень программируемости.
Интерфейс OSPF (порт маршрутизатора, поддерживающего протокол OSPF) является обобщением подсети IP. Подобно подсети IP, интерфейс OSPF имеет IP-адрес и маску подсети. Если один порт OSPF поддерживает более, чем одну подсеть, протокол OSPF рассматривает эти подсети так, как если бы они были на разных физических интерфейсах, и вычисляет маршруты соответственно.
Интерфейсы, к которым подключены локальные сети, называются широковещательными (broadcast) интерфейсами, так как они могут использовать широковещательные возможности локальных сетей для обмена сигнальной информацией между маршрутизаторами. Интерфейсы, к которым подключены глобальные сети, не поддерживающие широковещание, но обеспечивающие доступ ко многим узлам через одну точку входа, например сети Х.25 или frame relay, называются нешироковещательными интерфейсами с множественным доступом или NBMA (non-broadcast multi-access).
Они рассматриваются аналогично широковещательным интерфейсам за исключением того, что широковещательная рассылка эмулируется путем посылки сообщения каждому соседу. Так как обнаружение соседей не является автоматическим, как в широковещательных сетях, NBMA-соседи должны задаваться при конфигурировании вручную. Как на широковещательных, так и на NBMA-интерфейсах могут быть заданы приоритеты маршрутизаторов для того, чтобы они могли выбрать выделенный маршрутизатор.
Интерфейсы "точка-точка", подобные PPP, несколько отличаются от традиционной IP-модели. Хотя они и могут иметь IP-адреса и подмаски, но необходимости в этом нет.
В простых сетях достаточно определить, что пункт назначения достижим и найти маршрут, который будет удовлетворительным. В сложных сетях обычно имеется несколько возможных маршрутов. Иногда хотелось бы иметь возможности по установлению дополнительных критериев для выбора пути: например, наименьшая задержка, максимальная пропускная способность или наименьшая стоимость (в сетях с оплатой за пакет). По этим причинам протокол OSPF позволяет сетевому администратору назначать каждому интерфейсу определенное число, называемое метрикой, чтобы оказать нужное влияние на выбор маршрута.
Число, используемое в качестве метрики пути, может быть назначено произвольным образом по желанию администратора. Но по умолчанию в качестве метрики используется время передачи бита в 10-ти наносекундных единицах (10 Мб/с Ethernet'у назначается значение 10, а линии 56 Кб/с - число 1785). Вычисляемая протоколом OSPF метрика пути представляет собой сумму метрик всех проходимых в пути связей; это очень грубая оценка задержки пути. Если маршрутизатор обнаруживает более, чем один путь к удаленной подсети, то он использует путь с наименьшей стоимостью пути.
В протоколе OSPF используется несколько временных параметров, и среди них наиболее важными являются интервал сообщения HELLO и интервал отказа маршрутизатора (router dead interval).
HELLO - это сообщение, которым обмениваются соседние, то есть непосредственно связанные маршрутизаторы подсети, с целью установить состояние линии связи и состояние маршрутизатора-соседа. В сообщении HELLO маршрутизатор передает свои рабочие параметры и говорит о том, кого он рассматривает в качестве своих ближайших соседей. Маршрутизаторы с разными рабочими параметрами игнорируют сообщения HELLO друг друга, поэтому неверно сконфигурированные маршрутизаторы не будут влиять на работу сети.
Каждый маршрутизатор шлет сообщение HELLO каждому своему соседу по крайней мере один раз на протяжении интервала HELLO. Если интервал отказа маршрутизатора истекает без получения сообщения HELLO от соседа, то считается, что сосед неработоспособен, и распространяется новое объявление о сетевых связях, чтобы в сети произошел пересчет маршрутов.
Пример маршрутизации по алгоритму OSPF
Представим себе один день из жизни транзитной локальной сети. Пусть у нас имеется сеть Ethernet, в которой есть три маршрутизатора - Джон, Фред и Роб (имена членов рабочей группы Internet, разработавшей протокол OSPF). Эти маршрутизаторы связаны с сетями в других городах с помощью выделенных линий.
Пусть произошло восстановление сетевого питания после сбоя. Маршрутизаторы и компьютеры перезагружаются и начинают работать по сети Ethernet. После того, как маршрутизаторы обнаруживают, что порты Ethernet работают нормально, они начинают генерировать сообщения HELLO, которые говорят о их присутствии в сети и их конфигурации. Однако маршрутизация пакетов начинает осуществляться не сразу - сначала маршрутизаторы должны синхронизировать свои маршрутные базы.
На протяжении интервала отказа маршрутизаторы продолжают посылать сообщения HELLO. Когда какой-либо маршрутизатор посылает такое сообщение, другие его получают и отмечают, что в локальной сети есть другой маршрутизатор. Когда они посылают следующее HELLO, они перечисляют там и своего нового соседа.
Когда период отказа маршрутизатора истекает, то маршрутизатор с наивысшим приоритетом и наибольшим идентификатором объявляет себя выделенным (а следующий за ним по приоритету маршрутизатор объявляет себя резервным выделенным маршрутизатором) и начинает синхронизировать свою базу данных с другими маршрутизаторами.
[pagebreak]
С этого момента времени база данных маршрутных объявлений каждого маршрутизатора может содержать информацию, полученную от маршрутизаторов других локальных сетей или из выделенных линий. Роб, например, вероятно получил информацию от Мило и Робина об их сетях, и он может передавать туда пакеты данных. Они содержат информацию о собственных связях маршрутизатора и объявления о связях сети.
Базы данных теперь синхронизированы с выделенным маршрутизатором, которым является Джон. Джон суммирует свою базу данных с каждой базой данных своих соседей - базами Фреда, Роба и Джеффа - индивидуально. В каждой синхронизирующейся паре объявления, найденные только в какой-либо одной базе, копируются в другую. Выделенный маршрутизатор, Джон, распространяет новые объявления среди других маршрутизаторов своей локальной сети.
Например, объявления Мило и Робина передаются Джону Робом, а Джон в свою очередь передает их Фреду и Джеффри. Обмен информацией между базами продолжается некоторое время, и пока он не завершится, маршрутизаторы не будут считать себя работоспособными. После этого они себя таковыми считают, потому что имеют всю доступную информацию о сети.
Посмотрим теперь, как Робин вычисляет маршрут через сеть. Две из связей, присоединенных к его портам, представляют линии T-1, а одна - линию 56 Кб/c. Робин сначала обнаруживает двух соседей - Роба с метрикой 65 и Мило с метрикой 1785. Из объявления о связях Роба Робин обнаружил наилучший путь к Мило со стоимостью 130, поэтому он отверг непосредственный путь к Мило, поскольку он связан с большей задержкой, так как проходит через линии с меньшей пропускной способностью. Робин также обнаруживает транзитную локальную сеть с выделенным маршрутизатором Джоном. Из объявлений о связях Джона Робин узнает о пути к Фреду и, наконец, узнает о пути к маршрутизаторам Келли и Джеффу и к их тупиковым сетям.
После того, как маршрутизаторы полностью входят в рабочий режим, интенсивность обмена сообщениями резко падает. Обычно они посылают сообщение HELLO по своим подсетям каждые 10 секунд и делают объявления о состоянии связей каждые 30 минут (если обнаруживаются изменения в состоянии связей, то объявление передается, естественно, немедленно). Обновленные объявления о связях служат гарантией того, что маршрутизатор работает в сети. Старые объявления удаляются из базы через определенное время.
Представим, однако, что какая-либо выделенная линия сети отказала. Присоединенные к ней маршрутизаторы распространяют свои объявления, в которых они уже не упоминают друг друга. Эта информация распространяется по сети, включая маршрутизаторы транзитной локальной сети. Каждый маршрутизатор в сети пересчитывает свои маршруты, находя, может быть, новые пути для восстановления утраченного взаимодействия.
Сравнение протоколов RIP и OSPF по затратам на широковещательный трафик
В сетях, где используется протокол RIP, накладные расходы на обмен маршрутной информацией строго фиксированы. Если в сети имеется определенное число маршрутизаторов, то трафик, создаваемый передаваемой маршрутной информацией, описываются формулой (1):
(1) F = (число объявляемых маршрутов/25) x 528 (байтов в сообщении) x
(число копий в единицу времени) x 8 (битов в байте)
В сети с протоколом OSPF загрузка при неизменном состоянии линий связи создается сообщениями HELLO и обновленными объявлениями о состоянии связей, что описывается формулой (2):
(2) F = { [ 20 + 24 + 20 + (4 x число соседей)] x
(число копий HELLO в единицу времени) }x 8 +
[(число объявлений x средний размер объявления) x
(число копий объявлений в единицу времени)] x 8,
где 20 - размер заголовка IP-пакета,
24 - заголовок пакета OSPF,
20 - размер заголовка сообщения HELLO,
4 - данные на каждого соседа.
Интенсивность посылки сообщений HELLO - каждые 10 секунд, объявлений о состоянии связей - каждые полчаса. По связям "точка-точка" или по широковещательным локальным сетям в единицу времени посылается только одна копия сообщения, по NBMA сетям типа frame relay каждому соседу посылается своя копия сообщения. В сети frame relay с 10 соседними маршрутизаторами и 100 маршрутами в сети (подразумевается, что каждый маршрут представляет собой отдельное OSPF-обобщение о сетевых связях и что RIP распространяет информацию о всех этих маршрутах) трафик маршрутной информации определяется соотношениями (3) и (4):
(3) RIP: (100 маршрутов / 25 маршрутов в объявлении) x 528 x
(10 копий / 30 сек) = 5 632 б/с
(4) OSPF: {[20 + 24 + 20 + (4 x 10) x (10 копий / 10 сек)] +
[100 маршрутов x (32 + 24 + 20) + (10 копий / 30 x 60 сек]} x 8 = 1 170 б/с
Как видно из полученных результатов, для нашего гипотетического примера трафик, создаваемый протоколом RIP, почти в пять раз интенсивней трафика, создаваемого протоколом OSPF.
Использование других протоколов маршрутизации
Случай использования в сети только протокола маршрутизации OSPF представляется маловероятным. Если сеть присоединена к Internet'у, то могут использоваться такие протоколы, как EGP (Exterior Gateway protocol), BGP (Border Gateway Protocol, протокол пограничного маршрутизатора), старый протокол маршрутизации RIP или собственные протоколы производителей.
Когда в сети начинает применяться протокол OSPF, то существующие протоколы маршрутизации могут продолжать использоваться до тех пор, пока не будут полностью заменены. В некоторых случаях необходимо будет объявлять о статических маршрутах, сконфигурированных вручную.
В OSPF существует понятие автономных систем маршрутизаторов (autonomous systems), которые представляют собой домены маршрутизации, находящиеся под общим административным управлением и использующие единый протокол маршрутизации. OSPF называет маршрутизатор, который соединяет автономную систему с другой автономной системой, использующей другой протокол маршрутизации, пограничным маршрутизатором автономной системы (autonomous system boundary router, ASBR).
В OSPF маршруты (именно маршруты, то есть номера сетей и расстояния до них во внешней метрике, а не топологическая информация) из одной автономной системы импортируются в другую автономную систему и распространяются с использованием специальных внешних объявлений о связях.
Внешние маршруты обрабатываются за два этапа. Маршрутизатор выбирает среди внешних маршрутов маршрут с наименьшей внешней метрикой. Если таковых оказывается больше, чем 2, то выбирается путь с меньшей стоимостью внутреннего пути до ASBR.
Область OSPF - это набор смежных интерфейсов (территориальных линий или каналов локальных сетей). Введение понятия "область" служит двум целям - управлению информацией и определению доменов маршрутизации.
Для понимания принципа управления информацией рассмотрим сеть, имеющую следующую структуру: центральная локальная сеть связана с помощью 50 маршрутизаторов с большим количеством соседей через сети X.25 или frame relay. Эти соседи представляют собой большое количество небольших удаленных подразделений, например, отделов продаж или филиалов банка.
Из-за большого размера сети каждый маршрутизатор должен хранить огромное количество маршрутной информации, которая должна передаваться по каждой из линий, и каждое из этих обстоятельств удорожает сеть. Так как топология сети проста, то большая часть этой информации и создаваемого ею трафика не имеют смысла.
Для каждого из удаленных филиалов нет необходимости иметь детальную маршрутную информацию о всех других удаленных офисах, в особенности, если они взаимодействуют в основном с центральными компьютерами, связанными с центральными маршрутизаторами. Аналогично, центральным маршрутизаторам нет необходимости иметь детальную информацию о топологии связей с удаленными офисами, соединенными с другими центральными маршрутизаторами.
В то же время центральные маршрутизаторы нуждаются в информации, необходимой для передачи пакетов следующему центральному маршрутизатору. Администратор мог бы без труда разделить эту сеть на более мелкие домены маршрутизации для того, чтобы ограничить объемы хранения и передачи по линиям связи не являющейся необходимой информации. Обобщение маршрутной информации является главной целью введения областей в OSPF.
В протоколе OSPF определяется также пограничный маршрутизатор области (ABR, area border router). ABR - это маршрутизатор с интерфейсами в двух или более областях, одна из которых является специальной областью, называемой магистральной (backbone area). Каждая область работает с отдельной базой маршрутной информации и независимо вычисляет маршруты по алгоритму OSPF.
Пограничные маршрутизаторы передают данные о топологии области в соседние области в обобщенной форме - в виде вычисленных маршрутов с их весами. Поэтому в сети, разбитой на области, уже не действует утверждение о том, что все маршрутизаторы оперируют с идентичными топологическими базами данных.
Маршрутизатор ABR берет информацию о маршрутах OSPF, вычисленную в одной области, и транслирует ее в другую область путем включения этой информации в обобщенное суммарное объявление (summary) для базы данных другой области. Суммарная информация описывает каждую подсеть области и дает для нее метрику. Суммарная информация может быть использована тремя способами: для объявления об отдельном маршруте, для обобщения нескольких маршрутов или же служить маршрутом по умолчанию.
Дальнейшее уменьшение требований к ресурсам маршрутизаторов происходит в том случае, когда область представляет собой тупиковую область (stub area). Этот атрибут администратор сети может применить к любой области, за исключением магистральной. ABR в тупиковой области не распространяет внешние объявления или суммарные объявления из других областей. Вместо этого он делает одно суммарное объявление, которое будет удовлетворять любой IP-адрес, имеющий номер сети, отличный от номеров сетей тупиковой области. Это объявление называется маршрутом по умолчанию.
Маршрутизаторы тупиковой области имеют информацию, необходимую только для вычисления маршрутов между собой плюс указания о том, что все остальные маршруты должны проходить через ABR. Такой подход позволяет уменьшить в нашей гипотетической сети количество маршрутной информации в удаленных офисах без уменьшения способности маршрутизаторов корректно передавать пакеты.
Сетевой уровень в первую очередь должен предоставлять средства для решения следующих задач:
* доставки пакетов в сети с произвольной топологией,
* структуризации сети путем надежной локализации трафика,
* согласования различных протоколов канального уровня.
Локализация трафика и изоляция сетей
Трафик в сети складывается случайным образом, однако в нем отражены и некоторые закономерности. Как правило, некоторые пользователи, работающие над общей задачей, (например, сотрудники одного отдела) чаще всего обращаются с запросами либо друг к другу, либо к общему серверу, и только иногда они испытывают необходимость доступа к ресурсам компьютеров другого отдела.
Желательно, чтобы структура сети соответствовала структуре информационных потоков. В зависимости от сетевого трафика компьютеры в сети могут быть разделены на группы (сегменты сети). Компьютеры объединяются в группу, если большая часть порождаемых ими сообщений, адресована компьютерам этой же группы.
Для разделения сети на сегменты используются мосты и коммутаторы. Они экранируют локальный трафик внутри сегмента, не передавая за его пределы никаких кадров, кроме тех, которые адресованы компьютерам, находящимся в других сегментах. Тем самым, сеть распадается на отдельные подсети. Это позволяет более рационально выбирать пропускную способность имеющихся линий связи, учитывая интенсивность трафика внутри каждой группы, а также активность обмена данными между группами.
Однако локализация трафика средствами мостов и коммутаторов имеет существенные ограничения.
С одной стороны, логические сегменты сети, расположенные между мостами, недостаточно изолированы друг от друга, а именно, они не защищены от, так называемых, широковещательных штормов. Если какая-либо станция посылает широковещательное сообщение, то это сообщение передается всем станциям всех логических сегментов сети. Защита от широковещательных штормов в сетях, построенных на основе мостов, имеет количественный, а не качественный характер: администратор просто ограничивает количество широковещательных пакетов, которое разрешается генерировать некоторому узлу.
С другой стороны, использование механизма виртуальных сегментов, реализованного в коммутаторах локальных сетей, приводит к полной локализации трафика - такие сегменты полностью изолированы друг от друга, даже в отношении широковещательных кадров. Поэтому в сетях, построенных только на мостах и коммутаторах, компьютеры, принадлежащие разным виртуальным сегментам, не образуют единой сети.
Приведенные недостатки мостов и коммутаторов связаны с тем, что они работают по протоколам канального уровня, в которых в явном виде не определяется понятие части сети (или подсети, или сегмента), которое можно было бы использовать при структуризации большой сети. Вместо того, чтобы усовершенствовать канальный уровень, разработчики сетевых технологий решили поручить задачу построения составной сети новому уровню - сетевому.
Согласование протоколов канального уровня
Современные вычислительные сети часто строятся с использованием нескольких различных базовых технологий - Ethernet, Token Ring или FDDI. Такая неоднородность возникает либо при объединении уже существовавших ранее сетей, использующих в своих транспортных подсистемах различные протоколы канального уровня, либо при переходе к новым технологиям, таким, как Fast Ethernet или 100VG-AnyLAN.
Именно для образования единой транспортной системы, объединяющей несколько сетей с различными принципами передачи информации между конечными узлами, и служит сетевой уровень. Когда две или более сетей организуют совместную транспортную службу, то такой режим взаимодействия обычно называют межсетевым взаимодействием (internetworking). Для обозначения составной сети в англоязычной литературе часто также используется термин интерсеть (internetwork или internet).
Создание сложной структурированной сети, интегрирующей различные базовые технологии, может осуществляться и средствами канального уровня: для этого могут быть использованы некоторые типы мостов и коммутаторов. Однако возможностью трансляции протоколов канального уровня обладают далеко не все типы мостов и коммутаторов, к тому же возможности эти ограничены. В частности, в объединяемых сетях должны совпадать максимальные размеры полей данных в кадрах, так как канальные протоколы, как правило, не поддерживают функции фрагментации пакетов.
Маршрутизация в сетях с произвольной топологией
Среди протоколов канального уровня некоторые обеспечивают доставку данных в сетях с произвольной топологией, но только между парой соседних узлов (например, протокол PPP), а некоторые - между любыми узлами (например, Ethernet), но при этом сеть должна иметь топологию определенного и весьма простого типа, например, древовидную.
При объединении в сеть нескольких сегментов с помощью мотов или коммутаторов продолжают действовать ограничения на ее топологию: в получившейся сети должны отсутствовать петли. Действительно, мост или его функциональный аналог - коммутатор - могут решать задачу доставки пакета адресату только тогда, когда между отправителем и получателем существует единственный путь. В то же время наличие избыточных связей, которые и образуют петли, часто необходимо для лучшей балансировки нагрузки, а также для повышения надежности сети за счет существования альтернативного маршрута в дополнение к основному.
Сетевой уровень позволяет передавать данные между любыми, произвольно связанными узлами сети.
Реализация протокола сетевого уровня подразумевает наличие в сети специального устройства - маршрутизатора. Маршрутизаторы объединяют отдельные сети в общую составную сеть. Внутренняя структура каждой сети не показана, так как она не имеет значения при рассмотрении сетевого протокола. К каждому маршрутизатору могут быть присоединены несколько сетей (по крайней мере две).
В сложных составных сетях почти всегда существует несколько альтернативных маршрутов для передачи пакетов между двумя конечными узлами. Задачу выбора маршрутов из нескольких возможных решают маршрутизаторы, а также конечные узлы.
Маршрут - это последовательность маршрутизаторов, которые должен пройти пакет от отправителя до пункта назначения.
Маршрутизатор выбирает маршрут на основании своего представления о текущей конфигурации сети и соответствующего критерия выбора маршрута. Обычно в качестве критерия выступает время прохождения маршрута, которое в локальных сетях совпадает с длиной маршрута, измеряемой в количестве пройденных узлов маршрутизации (в глобальных сетях принимается в расчет и время передачи пакета по каждой линии связи).
[pagebreak]
Сетевой уровень и модель OSI
В модели OSI, называемой также моделью взаимодействия открытых систем (Open Systems Interconnection - OSI) и разработанной Международной Организацией по Стандартам (International Organization for Standardization - ISO), средства сетевого взаимодействия делятся на семь уровней, для которых определены стандартные названия и функции.
Сетевой уровень занимает в модели OSI промежуточное положение: к его услугам обращаются протоколы прикладного уровня, сеансового уровня и уровня представления. Для выполнения своих функций сетевой уровень вызывает функции канального уровня, который в свою очередь обращается к средствам физического уровня.
Рассмотрим коротко основные функции уровней модели OSI.
Физический уровень выполняет передачу битов по физическим каналам, таким, как коаксиальный кабель, витая пара или оптоволоконный кабель. На этом уровне определяются характеристики физических сред передачи данных и параметров электрических сигналов.
Канальный уровень обеспечивает передачу кадра данных между любыми узлами в сетях с типовой топологией либо между двумя соседними узлами в сетях с произвольной топологией. В протоколах канального уровня заложена определенная структура связей между компьютерами и способы их адресации. Адреса, используемые на канальном уровне в локальных сетях, часто называют МАС-адресами.
Сетевой уровень обеспечивает доставку данных между любыми двумя узлами в сети с произвольной топологией, при этом он не берет на себя никаких обязательств по надежности передачи данных.
Транспортный уровень обеспечивает передачу данных между любыми узлами сети с требуемым уровнем надежности. Для этого на транспортном уровне имеются средства установления соединения, нумерации, буферизации и упорядочивания пакетов.
Сеансовый уровень предоставляет средства управления диалогом, позволяющие фиксировать, какая из взаимодействующих сторон является активной в настоящий момент, а также предоставляет средства синхронизации в рамках процедуры обмена сообщениями.
Уровень представления. В отличии от нижележащих уровней, которые имеют дело с надежной и эффективной передачей битов от отправителя к получателю, уровень представления имеет дело с внешним представлением данных. На этом уровне могут выполняться различные виды преобразования данных, такие как компрессия и декомпрессия, шифровка и дешифровка данных.
Прикладной уровень - это в сущности набор разнообразных сетевых сервисов, предоставляемых конечным пользователям и приложениям. Примерами таких сервисов являются, например, электронная почта, передача файлов, подключение удаленных терминалов к компьютеру по сети.
При построении транспортной подсистемы наибольший интерес представляют функции физического, канального и сетевого уровней, тесно связанные с используемым в данной сети оборудованием: сетевыми адаптерами, концентраторами, мостами, коммутаторами, маршрутизаторами. Функции прикладного и сеансового уровней, а также уровня представления реализуются операционными системами и системными приложениями конечных узлов. Транспортный уровень выступает посредником между этими двумя группами протоколов.
Функции сетевого уровня
Протоколы канального уровня не позволяют строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Для того, чтобы, с одной стороны, сохранить простоту процедур передачи пакетов для типовых топологий, а с другой стороны, допустить использование произвольных топологий, вводится дополнительный сетевой уровень.
Прежде, чем приступить к рассмотрению функций сетевого уровня , уточним, что понимается под термином "сеть". В протоколах сетевого уровня термин "сеть" означает совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи пакетов общую базовую сетевую технологию. Внутри сети сегменты не разделяются маршрутизаторами, иначе это была бы не одна сеть, а несколько сетей. Маршрутизатор соединят несколько сетей в интерсеть.
Основная идея введения сетевого уровня состоит в том, чтобы оставить технологии, используемые в объединяемых сетях в неизменном в виде, но добавить в кадры канального уровня дополнительную информацию - заголовок сетевого уровня, на основании которой можно было бы находить адресата в сети с любой базовой технологией. Заголовок пакета сетевого уровня имеет унифицированный формат, не зависящий от форматов кадров канального уровня тех сетей, которые могут входить в объединенную сеть.
Заголовок сетевого уровня должен содержать адрес назначения и другую информацию, необходимую для успешного перехода пакета из сети одного типа в сеть другого типа. К такой информации может относиться, например:
* номер фрагмента пакета, нужный для успешного проведения операций сборки-разборки фрагментов при соединении сетей с разными максимальными размерами кадров канального уровня,
* время жизни пакета, указывающее, как долго он путешествует по интерсети, это время может использоваться для уничтожения "заблудившихся" пакетов,
* информация о наличии и о состоянии связей между сетями, помогающая узлам сети и маршрутизаторам рационально выбирать межсетевые маршруты,
* информация о загруженности сетей, также помогающая согласовать темп посылки пакетов в сеть конечными узлами с реальными возможностями линий связи на пути следования пакетов,
* качество сервиса - критерий выбора маршрута при межсетевых передачах - например, узел-отправитель может потребовать передать пакет с максимальной надежностью, возможно в ущерб времени доставки.
В качестве адресов отправителя и получателя в составной сети используется не МАС-адрес, а пара чисел - номер сети и номер компьютера в данной сети. В канальных протоколах поле "номер сети" обычно отсутствует - предполагается, что все узлы принадлежат одной сети. Явная нумерация сетей позволяет протоколам сетевого уровня составлять точную карту межсетевых связей и выбирать рациональные маршруты при любой их топологии, используя альтернативные маршруты, если они имеются, что не умеют делать мосты.
Таким образом, внутри сети доставка сообщений регулируется канальным уровнем. А вот доставкой пакетов между сетями занимается сетевой уровень.
Существует два подхода к назначению номера узла в заголовке сетевого пакета. Первый основан на использовании для каждого узла нового адреса, отличного от того, который использовался на канальном уровне. Преимуществом такого подхода является его универсальность и гибкость - каков бы ни был формат адреса на канальном уровне, формат адреса узла на сетевом уровне выбирается единым. Однако, здесь имеются и некоторые неудобства, связанные с необходимостью заново нумеровать узлы, причем чаще всего вручную.
Второй подход состоит в использовании на сетевом уровне того же адреса узла, что был дан ему на канальном уровне. Это избавляет администратора от дополнительной работы по присвоению новых адресов, снимает необходимость в установлении соответствия между сетевым и канальным адресом одного и того же узла, но может породить сложную задачу интерпретации адреса узла при соединении сетей с разными форматами адресов.
Протоколы передачи данных и протоколы обмена маршрутной информацией
Для того, чтобы иметь информацию о текущей конфигурации сети, маршрутизаторы обмениваются маршрутной информацией между собой по специальному протоколу. Протоколы этого типа называются протоколами обмена маршрутной информацией (или протоколами маршрутизации). Протоколы обмена маршрутной информацией следует отличать от, собственно, протоколов сетевого уровня. В то время как первые несут чисто служебную информацию, вторые предназначены для передачи пользовательских данных, также, как это делают протоколы канального уровня.
Для того, чтобы доставить удаленному маршрутизатору пакет протокола обмена маршрутной информацией, используется протокол сетевого уровня, так как только он может передать информацию между маршрутизаторами, находящимися в разных сетях. Пакет протокола обмена маршрутной информацией помещается в поле данных пакета сетевого уровня, поэтому с точки зрения вложенности пакетов протоколы маршрутизации следует отнести к более высокому уровню, чем сетевой. Но функционально они решают общую задачу с пакетами сетевого уровня - доставляют кадры адресату через разнородную составную сеть.
С помощью протоколов обмена маршрутной информацией маршрутизаторы составляют карту межсетевых связей той или иной степени подробности и принимают решение о том, какому следующему маршрутизатору нужно передать пакет для образования рационального пути.
На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов - Address Resolution Protocol, ARP. Иногда их относят не к сетевому уровню, а к канальному, хотя тонкости классификации не изменяют их сути.
Transmission Control Protocol/Internet Protocol (TCP/IP) - это промышленный стандарт стека протоколов, разработанный для глобальных сетей.
Стандарты TCP/IP опубликованы в серии документов, названных Request for Comment (RFC). Документы RFC описывают внутреннюю работу сети Internet. Некоторые RFC описывают сетевые сервисы или протоколы и их реализацию, в то время как другие обобщают условия применения. Стандарты TCP/IP всегда публикуются в виде документов RFC, но не все RFC определяют стандарты.
Стек был разработан по инициативе Министерства обороны США (Department of Defence, DoD) более 20 лет назад для связи экспериментальной сети ARPAnet с другими сателлитными сетями как набор общих протоколов для разнородной вычислительной среды. Сеть ARPA поддерживала разработчиков и исследователей в военных областях. В сети ARPA связь между двумя компьютерами осуществлялась с использованием протокола Internet Protocol (IP), который и по сей день является одним из основных в стеке TCP/IP и фигурирует в названии стека.
Большой вклад в развитие стека TCP/IP внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Широкое распространение ОС UNIX привело и к широкому распространению протокола IP и других протоколов стека. На этом же стеке работает всемирная информационная сеть Internet, чье подразделение Internet Engineering Task Force (IETF) вносит основной вклад в совершенствование стандартов стека, публикуемых в форме спецификаций RFC.
Если в настоящее время стек TCP/IP распространен в основном в сетях с ОС UNIX, то реализация его в последних версиях сетевых операционных систем для персональных компьютеров (Windows NT 3.5, NetWare 4.1, Windows 95) является хорошей предпосылкой для быстрого роста числа установок стека TCP/IP.
Итак, лидирующая роль стека TCP/IP объясняется следующими его свойствами:
* Это наиболее завершенный стандартный и в то же время популярный стек сетевых протоколов, имеющий многолетнюю историю.
* Почти все большие сети передают основную часть своего трафика с помощью протокола TCP/IP.
* Это метод получения доступа к сети Internet.
* Этот стек служит основой для создания intranet- корпоративной сети, использующей транспортные услуги Internet и гипертекстовую технологию WWW, разработанную в Internet.
* Все современные операционные системы поддерживают стек TCP/IP.
* Это гибкая технология для соединения разнородных систем как на уровне транспортных подсистем, так и на уровне прикладных сервисов.
* Это устойчивая масштабируемая межплатформенная среда для приложений клиент-сервер.
Структура стека TCP/IP. Краткая характеристика протоколов
Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.
Протоколы TCP/IP делятся на 4 уровня.
Самый нижний (уровень IV) соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, 100VG-AnyLAN, для глобальных сетей - протоколы соединений "точка-точка" SLIP и PPP, протоколы территориальных сетей с коммутацией пакетов X.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня. Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP за счет разработки соответствующего RFC, определяющего метод инкапсуляции пакетов IP в ее кадры.
Следующий уровень (уровень III) - это уровень межсетевого взаимодействия, который занимается передачей пакетов с использованием различных транспортных технологий локальных сетей, территориальных сетей, линий специальной связи и т. п.
В качестве основного протокола сетевого уровня (в терминах модели OSI) в стеке используется протокол IP, который изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Протокол IP является дейтаграммным протоколом, то есть он не гарантирует доставку пакетов до узла назначения, но старается это сделать.
К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом - источником пакета. С помощью специальных пакетов ICMP сообщается о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.
Следующий уровень (уровень II) называется основным. На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования виртуальных соединений. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и IP, и выполняет только функции связующего звена между сетевым протоколом и многочисленными прикладными процессами.
Верхний уровень (уровень I) называется прикладным. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и сервисов прикладного уровня. К ним относятся такие широко используемые протоколы, как протокол копирования файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы доступа к удаленной информации, такие как WWW и многие другие. Остановимся несколько подробнее на некоторых из них.
Протокол пересылки файлов FTP (File Transfer Protocol) реализует удаленный доступ к файлу. Для того, чтобы обеспечить надежную передачу, FTP использует в качестве транспорта протокол с установлением соединений - TCP. Кроме пересылки файлов протокол FTP предлагает и другие услуги. Так, пользователю предоставляется возможность интерактивной работы с удаленной машиной, например, он может распечатать содержимое ее каталогов. Наконец, FTP выполняет аутентификацию пользователей. Прежде, чем получить доступ к файлу, в соответствии с протоколом пользователи должны сообщить свое имя и пароль. Для доступа к публичным каталогам FTP-архивов Internet парольная аутентификация не требуется, и ее обходят за счет использования для такого доступа предопределенного имени пользователя Anonymous.
Протокол telnet обеспечивает передачу потока байтов между процессами, а также между процессом и терминалом. Наиболее часто этот протокол используется для эмуляции терминала удаленного компьютера. При использовании сервиса telnet пользователь фактически управляет удаленным компьютером так же, как и локальный пользователь, поэтому такой вид доступа требует хорошей защиты. Поэтому серверы telnet всегда используют как минимум аутентификацию по паролю, а иногда и более мощные средства защиты, например, систему Kerberos.
Протокол SNMP (Simple Network Management Protocol) используется для организации сетевого управления. Изначально протокол SNMP был разработан для удаленного контроля и управления маршрутизаторами Internet, которые традиционно часто называют также шлюзами. С ростом популярности протокол SNMP стали применять и для управления любым коммуникационным оборудованием - концентраторами, мостами, сетевыми адаптерами и т.д. и т.п. Проблема управления в протоколе SNMP разделяется на две задачи.
Первая задача связана с передачей информации. Протоколы передачи управляющей информации определяют процедуру взаимодействия SNMP-агента, работающего в управляемом оборудовании, и SNMP-монитора, работающего на компьютере администратора, который часто называют также консолью управления. Протоколы передачи определяют форматы сообщений, которыми обмениваются агенты и монитор.
Вторая задача связана с контролируемыми переменными, характеризующими состояние управляемого устройства. Стандарты регламентируют, какие данные должны сохраняться и накапливаться в устройствах, имена этих данных и синтаксис этих имен. В стандарте SNMP определена спецификация информационной базы данных управления сетью. Эта спецификация, известная как база данных MIB (Management Information Base), определяет те элементы данных, которые управляемое устройство должно сохранять, и допустимые операции над ними.