Относительно свежая книга, посвященная методикам написания кода и отладки. Весьма ценный материал, поскольку книг на такую тематику очень немного, хотя уж что-что, а задача отладки близка буквально каждому программисту.
Первая часть книга посвящена элементарным вещам, а также рассматривается оптимизирующий компилятор. Далее вводится встроенный ассемблер как средство решение задач, которые трудновыполнимы на C++ и рассматриваются проблемы процедурно-ориентированного программирования под Windows. Разумеется, ООП тоже не обошли стороной, как и код под Windows с MFC.
На десерт рассматриваются экзотические вопросы вроде отладки элементов ActiveX, отладка кода с шаблонами STL или работа с OLE-ориентированными объектами. Короче говоря, книжка умная, рекомендуется к прочтению, однако хорошее знание C++ очень желательно
СУБД unity_storage предназначена для хранения относительно крупных объектов (1 кБ ... 1 МБ) со сложной древовидной структурой, состоящих преимущественно из текстовых и числовых данных.
В книге рассматриваются элементы встроенного языка программирования 1С:Предприятие и методы написания программ на этом языке. Также на примере компонента Расчеты демонстрируется технология построения заказных, использующих модели 1С оптимальных систем. В качестве критериев оптимизации выступают быстродействие, надежность программ, уровень защищенно сти данных и др. Дополнительно приводятся справочные сведения об использованных в пособии объектах 1С и их методах. Предназначено для всех лиц, желающих освоить или усовершенствовать технику разработки программ на основе моделей 1С:Предприятие, а также для руководящих работников, имеющих потребность расширить свои знания относительно характера и способов построения систем ав томатизации деятельности административно-хозяйственных подразделений организаций различ ного профиля.
Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса. Некоторые из результатов испытаний тестовых примеров будут большим сюрпризом даже для самых бывалых программистов. Тем не менее излагаемые техники вполне доступны и начинающим программистам: для изучения материала требуется базовое знание языка программирования С/О++ и некоторое понимание "устройства" современных многозадачных ОС UNIX.
В качестве "испытательной площадки" для тестовых фрагментов выбрана ОСРВ QNX, что позволило с единой точки зрения взглянуть как на специфические механизмы микроядерной архитектуры QNX, так и на универсальные механизмы POSIX. В этом качестве книга может быть интересна и тем, кто не использует (и не планирует никогда использовать) ОС QNX: программистам в Linux, FreeBSD, NetBSD, Solaris и других традиционных ОС UNIX.
Данная книга посвящена анализу интересных задач, встречающихся в повседневной практике программирования и требующих нетривиальных подходов в их решении. На основе относительно небольшого количества характерных реалистичных примеров иллюстрируется применение важных алгоритмов и методик программирования. Обозначены задачи, в которых могут использоваться те или иные подходы и решения.
Книга написана в доступной форме блестящим программистом и великолепным популяризатором, автором таких книг, как "Классика программирования: алгоритмы, языки, автоматы, компиляторы. Практический подход" и "Занимательное программирование". Будет, несомненно, полезна всем, кто, обладая базовыми знаниями C++, хочет повысить свой уровень и культуру программирования.
Внедряя приложение для настольных систем, нельзя ожидать, что оно сразу станет играть важную роль в какой-то отрасли. Об этом свидетельствует и опыт разработки QuarkXPress двумя группами специалистов, начиная с версии 1.0 еще в 1987 году.Это приложение создавалось в надежде на то, что оно понравится пользователям, ибо разработчикам не хотелось их разочаровать.В настоящее время почти каждое печатное издание готовят к выпуску при помощи QuarkXPress: от газеты, которую читатель достает каждое утро из своего почтового ящика, до меню ужина в его любимом ресторане. В большинстве издательских компаний благодаря QuarkXPress работа ведется гораздо эффективнее и быстрее, ведь по своим возможностям она намного превосходит устаревшие, дорогостоящие специализированные системы, применявшиеся когда-то для набора текста и оформления печатных изданий. С QuarkXPress возможность выпускать роскошные издания при относительно небольших затратах получают не только крупные и самые лучшие, но и небольшие издательства и даже отдельные пользователи. В этом и состоит элитарность и в то же время демократизм QuarkXPress.
PostgreSQL заслуженно считается одной из лучших СУБД, распространяемых с открытыми текстами, а по своим возможностям PostgreSQL успешно конкурирует со многими коммерческими пакетами.
Настоящая книга была задумана как практическое руководство по PostgreSQL версии 7.1.x, хотя большая часть материала в равной степени относится как к предыдущим, так и к будущим версиям PostgreSQL. При подборе материала авторы стремились к тому, чтобы читатель как можно быстрее освоил практические навыки работы с PostgreSQL. Хотя в книге затрагиваются некоторые теоретические аспекты функционирования СУБД, подобные теоретические отступления будут относительно короткими. Прежде всего, мы стремились к тому, чтобы полученные знания позволили читателю самостоятельно создать работоспособную базу данных PostgreSQL и обеспечить ее дальнейшее сопровождение. Надеемся, книга поможет всем, кто хочет ближе познакомиться с СУБД PostgreSQL и ее возможностями.
Книга ориентирована на широкий круг читателей, интересующихся объектно-реляционной системой управления базами данных (ОРСУБД) PostgreSQL. Предполагается, что читатель знаком с системами Linux и Unix, хотя и не является экспертом в области баз данных. Хотя все примеры тестировались в системе Red Hat Linux, практически весь материал относится к большинству систем семейства Unix.
Данная книга посвящена анализу интересных задач, встречающихся в повседневной практике программирования и требующих нетривиальных подходов в их решении. На основе относительно небольшого количества характерных алгоритмов и методик программирования. Обозначены задачи, в которых могут использоваться те или иные подходы и решения. Книга написана в доступной форме блестящим программистом и великолепным популяризатором, автором таких книг как "Классика программирования: алгоритмы, языки, автоматы, компиляторы. Практический подход" и "Занимательное программирование". Будет несомненно полезна всем, кто, обладая базовыми знаниями C++, хочет повысить свой уровень и культуру программирования.
Автором языка C++ является Бьерн Страуструп,сотрудник известной фирмы AT&T. C++(а точнее, его предшественник, С with classes) был создан под влиянием языка Simula (надо сказать, что этот язык программирования появился еще в 1967 году). Собственно, к тому моменту, когда появился C++, С уже заработал себе популярность; профессиональные программисты уважают его за возможность использовать преимущества конкретной архитектуры, создавая при этом программы на языке относительно высокого уровня.
В настоящее время C++ — один из самых популярных (если не самый популярный) языков программирования. Именно С++ позволяет написать программу с использованием объектно ориентированных подходов (а программы, которые этого требуют, обычно очень большие) и при этом достаточно «быструю». Эта книга познакомит читателя с «философией » и основами программирования на языке С++. В книге приводится множество примеров, скомпилированных и проверенных автором.
Прежде всего, микроконтроллер это процессор со всеми его "атрибутами", плюс встроенная, энергонезависимая память (программ и данных), что позволяет отказаться от внешней памяти программ и поместить программу в его энергонезависимую память.
Это позволяет создавать очень простые (в схемотехническом отношении) и компактные устройства, выполняющие, тем не менее, достаточно сложные функции. Иногда даже диву даешься: эта маленькая "штучка" заменяет целую "груду старого железа"
Любой микроконтроллер, по своим возможностям, конечно же, уступает процессору компьютера, но тем не менее, существует весьма обширный класс устройств, которые преимущественно реализуются именно на микроконтроллерах. И в самом деле, компьютер в карман не положишь и от батареек его не запитаешь. Поэтому, во многих случаях, микроконтроллерам просто нет альтернативы. "Сердцем" микроконтроллера является арифметико - логическое устройство (АЛУ).
Проще всего его представить в виде банального калькулятора, кнопками которого управляет программа, написанная на языке ассемблер (то есть, программист). Если вдуматься, то ничего особо сложного, в механизме управления такого рода калькулятором, нет. И в самом деле, если нужно, например, сложить числа А и В, то в тексте программы сначала задаются константы А и В, а затем дается команда "сложить". Программисту вовсе не обязательно знать, что происходит с нулями и единицами (разве только только для общего развития), ведь калькулятор он на то и калькулятор, чтобы избавить пользователя от "возни" с машинными кодами и прочими "неудобоваримостями".
Когда Вы работаете с компьютером, Вам и не нужно детально знать, что происходит в дебрях операционной системы.
Если Вы туда "полезете", то "с ума сойдете", а микроконтроллер, по своей сути, есть тот же самый компьютер, но только простой. Программисту только нужно детально знать, каким именно образом "приказать железяке" сделать то, что необходимо для достижения задуманного. Микроконтроллер можно представить себе как некий универсальный "набор" многофункциональных модулей (блоков), "рычаги управления" которыми находятся в руках программиста. Этих "рычагов" достаточно большое количество, и естественно, их нужно освоить и точно знать, что именно произойдет, если "дернуть" (дать команду на языке ассемблер) за тот или иной "рычаг". Вот здесь-то уже нужно знать, как "отче наше", каждую деталь и не жалеть на это "узнавание" времени. Только таким образом пустую "болванку" (незапрограммированый ПИК) можно "заставить"
выполнять какие-то "осмысленные" действия, результат большей части которых можно проверить в симуляторе MPLAB (об этом - позднее), даже не записывая программу в ПИК.
Итак, необходим переход к "модульному" мышлению. Любой микроконтроллер можно уподобить детскому конструктору, в состав которого входит множество всяких предметов, манипулируя с которыми, можно получить тот или иной конечный "продукт". Давайте с ними разберемся и "разложим все по полочкам". В качестве примера я буду использовать один из самых распространенных PIC контроллеров PIC16F84A. Он является как бы "проматерью" более сложных ПИКов, содержит минимальный "набор" модулей и как нельзя лучше подходит для первичного "въезда в м/контроллеры".
Энергонезависимая память.
Начнем с энергонезависимой памяти (память программ и память данных).
Информация, заложенная в энергонезависимую память, сохраняется при выключении питания, и поэтому именно в нее записывается программа.
То "место" энергонезависимой памяти, куда записывается программа, называется памятью программ. Объем памяти программ может быть различен. Для PIC16F84A, он составляет 1024 слова. Это означает, что он предназначен для работы с программами, объем которых не превышает 111024 слов.
Слово памяти программ не равно одному байту (8 бит), а больше его (14 бит). Отдельная команда, которую ПИК будет в дальнейшем выполнять, занимает одно слово в памяти программ. В зависимости от названия этой команды в ассемблере, слово принимает то или иное числовое значение в машинном коде. После записи в ПИК "прошивки" программы, слова памяти программ (машинные коды) как бы "превращаются" в команды, которые располагаются, в памяти программ, в том же порядке, в котором они следуют в исходном тексте программы, написанном на языке ассемблер, и в том же порядке им присваиваются адреса, при обращении к которым, та или иная команда "извлекается" из памяти программ для ее выполнения. Последовательность же их выполнения определяется логикой программы. Это означает то, что выполнение команд может происходить не в порядке последовательного возрастания их адресов, с шагом в одну позицию (так называемый инкремент), а "скачком". Дело в том, что только уж самые простейшие программы, в пределах одного их полного цикла, обходятся без этих "скачков", называемых переходами, и выполняются строго последовательно. В остальных же случаях, так называемая (мной) "рабочая точка программы" "мечется по тексту программы как угорелая" (как раз благодаря этим самым переходам).
Термин "рабочая точка программы" - моя "самодеятельность". В свое время, я был очень сильно удивлен отсутствием чего-то подобного в информации, связанной с объяснением работы программ. Казалось бы, чего проще, по аналогии, например, с рабочей точкой транзистора, сделать более комфортным "въезд в механику" работы программ? Так нет же, как будто специально, придумываются такие "головокружительные заменители", причем, в различных случаях, разные, что запутаться в этом очень просто. Итак, рабочую точку программы можно представить себе в виде некоего "шарика от пинг-понга", который "скачет" по командам текста программы в соответствии с алгоритмом (логикой) исполнения программы. На какую команду "шарик скакнул", та команда и исполняется. После этого он "перескакивает" на другую команду, она исполняется, и т.д. Эти "скачки" происходят непрерывно и в течение всего времени включения питания устройства (исполнения программы).
Любая более-менее сложная программа разбивается на части, которые выполняют отдельные функции (своего рода программки в программе) и которые называются подпрограммами. Атрибут любой подпрограммы - функциональная законченность производимых в ней действий.
По сути своей, эта "выдумка" введена в программирование для удобства реализации принципа "разделяй и властвуй": "врага" ведь гораздо легче "разгромить по частям, чем в общей массе". Да и порядка больше.
Безусловные переходы (переходы без условия) между подпрограммами (если они последовательно не переходят одна в другую), осуществляются при помощи команд безусловных переходов, в которых обязательно указывается адрес команды в памяти программ (косвенно - в виде названия подпрограммы или метки), на которую нужно перейти. Существуют также переходы с условием (условные переходы), то есть, с задействованием так называемого стека. Более подробно о переходах я расскажу позднее. Адреса команд определяются счетчиком команд (он называется PC). То есть, каждому состоянию счетчика команд соответствует одна из команд программы. Если команда простая, то счетчик просто инкрементируется (последовательно выполняется следующая команда), а если команда сложная (например, команда перехода или возврата), то счетчик команд изменяет свое состояние "скачком", активируя соответствующую команду.
Примечание: инкремент - увеличение на единицу величины числа, с которым производится эта операция, а декремент - уменьшение на единицу (так называемые комплиментарные операции). В простейшем случае, то есть в случае отсутствия в программе переходов, счетчик команд PC, начиная с команды "старта" (нулевой адрес), многократно инкрементируется, 12 последовательно активизируя все команды в памяти программ. Это означает, что в большинстве случаев, за каждый так называемый машинный цикл (такт работы программы: для ПИКов он равен четырем периодам тактового генератора) работы ПИКа, происходит исполнение одной команды. Есть и команды исполнение которых происходит за 2 машинных цикла (м.ц.), но их меньше. Команд, которые исполняются за 3 м.ц. и более нет. Таким вот образом, на большинстве участков программы (я их называю "линейными участками"), последовательно и перебираются адреса в памяти программ (команды последовательно исполняются).
В более сложных программах, с большим количеством условных и безусловных переходов, работу счетчика команд PC можно охарактеризовать фразой "Фигаро здесь, Фигаро там". 1 машинный цикл (м.ц.) равен 4-м периодам тактового генератора ПИКа. Следовательно, при использовании кварца на 4 Мгц., 1 м.ц.=1 мкс. Выполнение программы, в рабочем режиме (кроме работы в режиме пониженного энергопотребления SLEEP), никогда не останавливается, то есть, за каждый машинный цикл (или за 2, если команда исполняется за 2 м.ц.) должно выполняться какое-либо действие (команда). Тактовый генератор, формирующий машинные циклы, работает постоянно. Если его работу прервать, то исполнение программы прекратится.
Может сложиться ложное представление о том, что работу программы можно на какое-то время остановить, используя одну или несколько команд – "пустышек", не производящих полезных действий (есть такая команда NOP). Это представление не верно, так как в этом случае, речь идет только о задержке выполнения следующих команд, а не об остановке исполнения программы. Программа исполняется и в этом случае, так как "пустышка" есть та же самая команда программы, только не производящая никаких действий (короткая задержка). Если же нужно задержать выполнение каких-либо последующих команд на относительно длительное время, то применяются специальные, циклические подпрограммы задержек, о которых я расскажу позднее. Даже тогда, когда программа "зависает" ("глюк"), она исполняется, просто только не так, как нужно. Остановить (в буквальном смысле этого слова) исполнение программы можно только прекратив работу тактового генератора. Это происходит при переходе в режим пониженного энергопотребления (SLEEP), который используется в работе достаточно специфических устройств. Например, пультов дистанционного управления (и т.д.).
Отсюда следует вывод: программы, не использующие режим SLEEP (а таких - большинство), для обеспечения непрерывного выполнения команд программы, обязательно должны быть циклическими, то есть, иметь так называемый полный цикл программы, причем, многократно повторяющийся в течение всего времени включения питания. Проще говоря, рабочая точка программы должна непрерывно (не останавливаясь) "мотать кольца" полного цикла программы (непрерывно переходить с одного "кольца" на другое).
Общие выводы:
1. Команды программы "лежат" в памяти программ в порядке расположения команд в тексте программы.
2. Адреса этих команд находятся в счетчике команд PC и каждому адресу соответствует одна из команд программы.
3. Команда активируется (исполняется), если в счетчике команд находится ее адрес.
4. Активация команд происходит либо последовательно (на "линейном" участке программы), либо с переходом ("скачком") на другую команду (при выполнении команд переходов), с которой может начинаться как подпрограмма (переход на исполнение подпрограммы), так и группа команд, выделенная меткой (переход на исполнение группы команд, которой не присвоен "статус" подпрограммы).
5. Выполнение команд программы никогда не останавливается (за исключением режима SLEEP), и поэтому программа должна быть циклической.
Кроме памяти программ, PIC16F84A имеет энергонезависимую память данных (EEPROM память данных). Она предназначена для сохранения данных, имеющих место быть на момент выключения питания устройства, в целях их использования в дальнейшем (после следующего включения питания). Так же, как и память программ, память данных состоит из ячеек, в которых "лежат" слова. Слово памяти данных равно одному байту (8 бит). В PIC16F84A, объем памяти данных составляет 64 байта. Байты, хранящиеся в памяти данных, предназначены для их считывания в стандартные 8-битные регистры, речь о которых пойдет далее. Данные из этих регистров могут быть записаны в EEPROM память данных, то есть, может быть организован обмен данными между памятью данных и регистрами. Например, именно EEPROM память данных я использовал в своем частотомере для сохранения последних, перед выключением питания, настроек. Она же используется и для установки значений промежуточной частоты. Во многих программах, память данных вообще не используется, но это "вещь" исключительно полезная, и далее я расскажу о ней подробнее.
Environmental Audio (дословно окружающий звук)- это новый стандарт звука, разработанный фирмой Creative Labs, создающий эффекты окружающей среды реального мира на компьютере. Environmental Audio сегодня ужк много больше простого surround -звука и 3D моделирования. Это и настоящее моделирование окружающей среды с помощью мощных эффектов с учётом размеров комнаты, её звуковых особенностей, реверберации, эхо и многих других эффектов, создающих ощущение реального аудио мира.
Как работает Environmental Audio
Эффекты окружающей среды моделируются при помощи технологии E-mu Environmental Modeling, поддерживаемой аудиопроцессором EMU10K1, установленного на серии звуковых карт SBLive! Технология Environmental Audio разработана с учётом работы на наушниках, двух или четырёх колонках. Чип EMU10K1 раскладывает любой звуковой поток на множество каналов, где накладывает эффекты в реальном времени. За счёт этого создаются уже новые звуки, такие, как они должны быть в природе. На стадии обработки звука кроме его пололжения в пространстве должны быть учтены, как минимум, два фактора: размер помещения и реверберация, так как человеческое ухо слышит не просто оригинальный звук, а звук с учётом дистанции, местоположения и громкости. Стандарт Environmental Audio обрабатывает все эти условия для получения высококачественного реального звука.
Environmental Audio использует координаты X, Y, Z, а также реверберацию и отражения звука. Эти координаты используются при базовой подготовки каналов аудио источника и эффектов "окраски" звуковой сцены. Основная мощность аудиопроцессора расходуется на обработку каждого звукового источника по всем каналам и на добаление эффектов в реальном времени. Как уже говорилось, для создания ощущения реального звука нужно учитывать как минимум 3 фактора: расстояние до источника звука, размер звукового помещения и реверберацию.
Environmental Audio Extensions (EAX)
Это API, разработанный фирмой Creative Labs для достижения реальных звуковых эффектов в компьютерных играх. EAX- это расширение API DirectSound3D от фирмы Microsoft На 18 Октября 1999 года единственной звуковой картой, поддерживающей этот стандарт является Sound Blaster Live! (в разных модификациях). На сегодня Creative выпустила три версии этого стандарта.
DirectSound3D управляет местоположением в 3D пространстве игры источников звука и слушателя. Например, игра может использовать DirectSound3D для создания раздельных источников звука для каждого существа в игре, получая, таким образом, звуки выстрелов и голоса в разных местах 3D-мира. Эти звуки, также как и слушатель, могут перемещаться в пространстве. Разработчики игр могут использовать такие звуковые возможности, как палитра направлений (звук в одном направлении может идти громче, чем в другом), эффект Допплера (звук может нарастать, достигнув слушателя, и потом спадать, как бы удаляясь в пространство).
EAX улучшает DirectSound3D созданием виртуального окружающего аудио мира вокруг источников звука и слушателя. Эта технология эмулирует реверберации и отражения, идущие со всех сторон от слушателя. Эти эффекты создают впечатление, что вокруг слушателя существует реальный мир со своими параметрами, как то: размер помещения, отражающие и поглощающие свойства стен и другие. Программисты игр могут создавать различные акустические эффекты для разных помещений. Таким образом, игрок, который играет в EAX игру может слышать разницу в звуке при переходе из коридора в пещеру.
В дополнении к созданию окружающих эффектов, EAX 1.0 может изменять параметры различных источников звука. При изменении местоположения источника звука относительно слушателя автоматически изменяются параметры реверберации.
Что касается программирования, то здесь EAX предоставляет следующие возможности.
* Выбор среди большого числа "пресетов" для моделирования эффектов окружающей среды.
* Возможность изменять параметры пресетов окружающей среды для каждого источника в отдельности.
* Автоматическое изменение критических параметров, применяемых к позиции. Когда источник звука движется по отношению к слушателю, EAX автоматически изменяет параметры отражения звука и реверберации для создания более реальных звуковых эффектов при движении источника звука через 3D звуковой мир.
Occlusions и Obstructions
Эффект occlusions создаёт впечатление, что источник звука находится в другой комнате, в другом месте, за стеной. Это свойство позволяет изменять параметры передачи звуковой характеристики для получения эффекта различных материалов стен и их толщину. Например, программа может использовать это свойство для создания звука, идущего из-за двери, или из-за стены.
Эффект obstructions позволяет эмулировать звуковые препятствия, создавая ощущение, что источник звука находится в той же комнате, но за препятствием. Например, можно сделать так, что звук будет идти из-за большого камня, находящегося в той же пещере, что и слушатель.
Геометрическое моделирование и EAX
Геометрическая модель сцены используется как в графических целях, так и для создания 3D звука. Для создания геометрической модели компьютер должен иметь данные о физических свойствах мира: какие объекты где расположены, какие звуконепроницаемые, какие звукопоглощающие и так далее. После того, как эта информация получена, производится расчёт некоторого количества слышимых отражений и поглощений звука от этих объектов для каждого источника звука. Это приводит к затуханиям звука, из-за препятствий, звуконепроницаемых стен и так далее. Расчёты отражений методом "зеркала" широко используются для создания акустики зданий. Этот метод подразумевает, что звук отражается прямо (как от зеркала) без преломлений и поглощений. На самом же деле, вместо того, чтобы в реальном времени рассчитывать все отражения и особенности среды (что на самом деле процесс трудоёмкий) используются заранее рассчитанные упрощённые модели геометрических аудио сред, которые отличаются от графических представлений о среде. То есть в игре используются одновременно отдельная среда для визуальных эффектов и более простая для звуковых эффектов. Это создаёт проблемы, как, например, если бы вы захотели передвинуть часть стены в комнате, то вам пришлось бы создавать новую среду для звука. В настоящее время над геометрическим моделирование звука ведутся работы во многих звуковых лабораториях.
EAX для разработчиков
EAX не требует того, чтобы источники звука привязывались к графическому представлению об окружающей среде. Но при желании разработчик, который хочет создать звуковые эффекты "повышенной реальности", которые максимально близки к графическому представлению о сцене может использовать дополнительное управление ранними отражениями, преломлениями и поглощениями. При создании своих эффектов EAX использует статические модели среды, а не её геометрические параметры. Эти модели автоматически рассчитывают реверберации и отражения относительно слушателя с учётом размеров помещения, направления звука и других параметров, которые программист может добавлять, для каждого источника звука. Поэтому EAX намного проще других стандартов, так как он не требует описания геометрической среды сцены, а использует подготовленные заранее модели. Игра может менять звуковые модели при переходе от одного места к другому для создания реальных эффектов. Я хочу рассмотреть это подробней. Допустим, у вас есть сцена в игре ввиде каменной пещеры. Есть два способа получить высокореалистичные эффекты. Первый из них- рассчитать геометрическую модель и использовать её как аудио маску для сцены, причём новые технологии будут позволять делать это в реальном времени. Второй способ- взять готовый пресет и, при необходимости, изменить его для получения более качественных эффектов. Разумеется, первый способ даст больший реализм, чем второй, но и потратит ресурсов в несколько раз больше. А если учитывать лень программистов, то в этом случае EAX наиболее благоприятный вариант.
Различия между EAX 1.0, 2.0 и 3.0
EAX 1.0
* Поддерживает изменение места в игре реверберации и отражений.
* Имеет большое количество пресетов.
* Позволяет (ограниченно) изменять реверберацию окружения.
* Позволяет автоматически изменять интенсивность реверберации, в зависимости от положения источника звука относительно слушателя.
EAX 1.0 строит звуковую сцену на основе заранее созданных пресетов, учитывая дистанцию между источниками звука и слушателем. Соответственно, EAX 1.0 предоставляет большой набор пресетов "на каждый случай жизни". Также имеется возможность изменять параметры поздней реверберации (дэмпинг, уровень) и автоматическое изменение уровня в зависимости от расстояния. Благодаря этому происходит улучшенное восприятие расстояния до источника.
EAX 2.0
* Обновлена реверберационная модель.
* Добавлены эффекты звуковых преград (Obstructions) и поглощений (Occlusions).
* Отдельное управление начальными отражениями и поздними реверберациями. Продолжительный контроль размеров помещений. Улучшенная дистанционная модель для автоматического управления реверберациями и начальными отражениями, основанными на местоположении источника звука относительно слушателя.
* Возможность учитывать звуковые свойства воздуха (поглощение звука).
* Теперь для использования эффектов Environmental Audio не не требуется описание геометрии помещения.
EAX 2.0 построен на возможностях первой версии и создаёт ещё более реалистичные эффекты засчёт поддержки преграждения и отражения звука, а также на улучшенной технологии определения направления звука.
EAX 3.0
* Контроль за ранними реверберациями и отражениями для каждого источника звука.
* Динамический переход между окружающими моделями.
* Улучшенная дистанционная модель для автоматического управления реверберацией и начальными отражениями в зависимости от положения источников звука относительно слушателя.
* Расчёты Ray-Tracing (отражение лучей) для получения параметров отражения для каждого источника звука.
* Отдельные отражения для дальних эхо.
* Улучшенное дистанционное представление, призванное заменить статические реверберационные модели.
EAX 3.0 совмещает вторую версию с более мощными возможностями. Новый уровень реализма достигается засчёт поддержки местных отражений, изолированных отражений, продолжительных переходов между звуковыми сценами и другими особенностями.
Вывод: по всему вышесказанному можно судить о том, что на сегодня EAX является очень перспективным и конкурентоспособным стандартом. Любой программист, несведующий в особенностях 3D звука сможет создавать реальные эффекты для своих игр с помощью пресетов. Что касается качества 3D звука, то оно вне конкуренции. Сейчас большинство игр не поддерживает (или поддерживает криво) такие эффекты, как преграждение и поглощение звука. Первой игрой, полностью поддерживающей EAX 2.0 обещает быть Unreal Tournament, если его не опередят. Там будет видно.
P.S. Я специально не стал сравнивать EAX с другими стандартами, как, например, A3D. Для этого нужны игры, поддерживающие одновременно и то и другое в полной форме. На сегодня таких игр нет.
Лазерные диски – не слишком-то надежные носители информации. Даже при бережном обращении с ними вы не застрахованы от появления царапин и загрязнения поверхности (порой диск фрезерует непосредственно сам привод и вы бессильны этому противостоять). Но даже вполне нормальный на вид диск может содержать внутренние дефекты, приводящие к его полной или частичной нечитаемости на штатных приводах.
Особенно это актуально для CD-R/CD-RW дисков, качество изготовления которых все еще оставляет желать лучшего, а процесс записи сопряжен с появлением различного рода ошибок. Однако даже при наличии физических разрушений поверхности лазерный диск может вполне нормально читаться за счет огромной избыточности хранящихся на нем данных, но затем, по мере разрастания дефектов, корректирующей способности кодов Рида-Соломона неожиданно перестает хватать, и диск безо всяких видимых причин отказывается читаться, а то и вовсе не опознается приводом.
К счастью, в подавляющем большинстве случаев хранимую на диске информацию все еще можно спасти, и эта статья рассказывает как.
Общие рекомендации по восстановлению
Не всякий не читающийся (нестабильно читающийся) диск – дефектный. Зачастую в этом виновен отнюдь не сам диск, а операционная система или привод. Прежде чем делать какие-либо заключения, попробуйте прочесть диск на всех доступных вам приводах, установленных на компьютерах девственно-чистой операционной системой. Многие приводы, даже вполне фирменные и дорогие (например, мой PHILIPS CD-RW 2400), после непродолжительной эксплуатации становятся крайне капризными и раздражительными, отказывая в чтении тем дискам, которые все остальные приводы читают безо всяких проблем. А операционная система по мере обрастания свежим софтом склонна подхватывать различные глюки подчас проявляющиеся самым загадочным образом (в частности, привод TEAC, установленный в систему с драйвером CDR4_2K.SYS, доставшемся ему в наследство от PHILIPS'a, конфликтует с CD Player'ом, не соглашаясь отображать содержимое дисков с данными, если тот активен, после удаления же CDR4_2K.SYS все идет как по маслу).
Также не стоит забывать и о том, что корректирующая способность различных моделей приводов очень и очень неодинакова. Как пишет инженер-исследователь фирмы ЕПОС Павел Хлызов в своей статье "Проблема: неисправный CD-ROM": "…в зависимости от выбранной для конкретной модели CD-ROM стратегии коррекции ошибок и, соответственно, сложности процессора и устройства в целом, на практике тот или иной CD-ROM может либо исправлять одну-две мелкие ошибки в кадре информации (что соответствует дешевым моделям), либо в несколько этапов восстанавливать, с вероятностью 99,99%, серьезные и длинные разрушения информации. Как правило, такими корректорами ошибок оснащены дорогостоящие модели CD-ROM. Это и есть ответ на часто задаваемый вопрос: "Почему вот этот диск читается на машине товарища, а мой ПК его даже не видит?".
Вообще-то, не совсем понятно, что конкретно господином инженером-исследователем имелось ввиду: корректирующие коды C1, C2, Q- и P- уровней корректно восстанавливают все известные мне приводы, и их корректирующая способность равна: до двух 2 ошибок на каждый из C1 и C2 уровней и до 86- и 52-ошибок на Q- и P- уровни соответственно. Правда, количество обнаруживаемых, но уже математически неисправимых ошибок составляет до 4 ошибок на C1 и C2 уровней и до 172/104 ошибок на Q/P, но… гарантированно определяется лишь позиция сбойных байт во фрейме/секторе, а не их значение. Впрочем, зная позицию сбойных байт и имея в своем распоряжении исходный HF-сигнал (т. е. аналоговый сигнал, снятый непосредственно со считывающей головки), кое-какие крохи информации можно и вытянуть, по крайней мере теоретически… так что приведенная выше цитата в принципе может быть и верна, однако, по наблюдениям автора данной статьи, цена привода очень слабо коррелирует с его "читабельной" способностью. Так, относительно дешевые ASUS читают практически все, а дорогие PHILIPS'ы даже свои родные диски с драйверами опознают через раз.
Другая немаловажная характеристика – доступный диапазон скоростей чтения. В общем случае – чем ниже скорость вращения диска, тем мягче требования, предъявляемые к его качеству. Правда, зависимость эта не всегда линейна. Большинство приводов имеют одну или несколько наиболее предпочтительных скоростей вращения, на которых их читабельная способность максимальна. Например, на скорости 8x дефектный диск читается на ура, а на всех остальных скоростях (скажем, 2x, 4x, 16x, 32x) – не читается вообще. Предпочтительная скорость легко определяется экспериментально, необходимо лишь перебрать полный диапазон доступных скоростей.
При покупке CD-ROM'a выбирайте тот привод, у которого скоростной диапазон максимален. Например, уже упомянутый выше PHILIPS CDRW 2400 умеет работать лишь на: 16x, 24x, 38x и 42x. Отсутствие скоростей порядка 4x – 8x ограничивает "рацион" привода только высококачественными дисками.
По непонятным причинам, штатные средства операционной системы Windows не позволяют управлять скоростью диска и потому приходится прибегать к помощи сторонних утилит, на недостаток которых, впрочем, жаловаться не приходится. Вы можете использовать Slow CD, Ahead Nero Drive Speed и т. д. Вообще-то, большинство приводов самостоятельно снижают скорость, натолкнувшись на не читающиеся сектора, однако качество заложенных в них алгоритмов все еще оставляет желать лучшего, поэтому "ручное" управление скоростью дает значительно лучший результат.
Если же ни на одном из доступных вам приводов диск все равно не читается, можно попробовать отшлифовать его какой-нибудь полировальной пастой. Технике полирования оптических поверхностей (и лазерных дисков в частности) посвящено огромное количество статей, опубликованных как в печатных изданиях, так и в Интернете (особенно полезны в этом смысле астрономические книги по телескопостроению), поэтому здесь этот вопрос будет рассмотрен лишь кратко. Да, действительно, поцарапанный диск в большинстве случав можно отполировать, и если все сделать правильно, диск с высокой степенью вероятности возвратится из небытия, но… Во-первых, полировка восстанавливает лишь царапины нижней поверхности диска и бессильна противостоять разрушениям отражающего слоя. Во-вторых, устраняя одни царапины, вы неизбежно вносите другие - после иной полировки лазерному диску может очень сильно поплохеть. В-третьих, полировке дисков невозможно научиться за раз, – вам понадобиться уйма времени и куча "подопытных" дисков. Нет уж, благодарю покорно! Лучше мы пойдем другим путем!
А вот что вашему диску действительно не помешает – так это протирка обычными салфетками, пропитанными антистатиком (ищите их в компьютерных магазинах). Прежде чем вытирать диск, сдуйте все частицы пыли, осевшие на него (иначе вы его только больше поцарапаете) и ни в коем случае не двигайтесь концентрическими мазками! Вытирать поверхность диска следует радиальными движениями от центра к краям, заменяя салфетку на каждом проходе.
Дело в том, что PHP-сценарии, запущенные модулем mod_php, выполняются от имени пользователя wwwserver. Соответственно, если на чтение/модификацию не были выставлены разрешения для всех (достаточно 666 — для файлов, 777 — для каталогов), то модификация созданных такими скриптами файлов (каталогов) пользователю будет запрещена (при доступе по SSH, по FTP).
Исключить проблему можно, установив достаточные для модификации файлов посредством функции chmod.
Сделать это рекурсивно можно, исполнив PHP-сценарий:
Разместите этот файл на площадке, в директории, доступной веб-серверу, например, как: domain.tld/www/chmod.php где domain.tld/www — корневая директория (DocumentRoot) вашего сайта на сервере.
Вызывать скрипт нужно так: http://domain.tld/chmod.php?путь_к_нужной_директории
или так: http://domain.tld/chmod.php?/home/uXXXXX/domain.tld/www/путь_к_нужной_директории
В первом случае указывается путь относительно DocumentRoot для вашего сайта (domain.tld/www/ в данном примере). Во втором случае (uXXXXX — идентификатор вашей площадки) — абсолютный путь от корневой директории сервера.
При запуске скрипта без параметров будут изменены права для всех файлов и директорий, располагающихся в DocumentRoot.
Бурное развитие телекоммуникаций застало приход нового тысячелетия в новом витке технологических преобразований. Не остался в стороне и Web-Hosting как одна из профилирующих услуг интернет-сервиса. И если стремительное развитие IT характеризовалось, прежде всего, широко представленным предложением виртуального (в т.ч. бесплатного) хостинга, то новое десятилетие отмечает возросший интерес к разного рода технологиям выделенных серверов (dedicated servers) и co-location.
Что такое co-location? Co-location (colocation, collocation) дословно - это размещение физической машины клиента в специально оборудованном помещении провайдера на его технической площадке (в дата-центре). Помимо собственно размещения в базовый набор услуг по co-location входит:
Предоставление определенного объема предоплаченного трафика (входящего или исходящего, в зависимости от провайдера) или полосы пропускания;
Подключение к внешним каналам с высокой пропускной способностью (от 100 Мбит/c), наличие резервных каналов;
Повышенный уровень безопасности (система бесперебойного электропитания, климат-контроль, backup, охрана от физического проникновения посторонних на техническую площадку и т.д.);
Круглосуточная поддержка;
Оперативное устранение неисправностей непосредственно "на месте" (on-site).
Смежной с co-location является услуга аренды выделенного сервера (сервер не принадлежит клиенту, а взят в аренду у провайдера). В базовый набор услуг при аренде выделенного сервера обычно входит в дополнение к выше перечисленному :
Программное обеспечение для управления функциями сервера;
Услуга аренды сервера интересна в большей степени клиентам, территориально удаленным от коммуникационных центров (в России это Москва и Санкт-Петербург), а также тем, кто не хочет вкладывать деньги в покупку сервера, и тем у кого нет возможности инсталировать сервер своими силами, т.к. для этого нужно обладать знаниями системного администратора.
Co-location и dedicated существенно расширяют возможности веб-узла и являются единственно возможным решением для некоторых интернет-проектов. Как правило, к услугам аренды и размещения сервера прибегают при высоких требованиях к безопасности, потреблении большого объема трафика, высокой нагрузке на вычислительные мощности. Ведь при виртуальном хостинге ресурсы сервера делятся на всех клиентов размещенных на нем, и в случае появления высоко загруженного ресурса на сервере, вероятен отказ в обслуживании. Кроме того, безопасность виртуального хостинга вызывает большие сомнения: в 80% случаев взломы таких серверов производятся самими же клиентами. Немаловажным фактором при выборе выделенного сервера является возможность использования различного программного обеспечения и полный контроль над сервером. Последнее обстоятельство позволяет реализовать проект любой сложности с гарантированной защищенностью данных; для высоко загруженных проектов возможна реализация распределения вычислительной и сетевой нагрузки по нескольким серверам.
Среди проектов, решение которых в сети Интернет требует услуги co-location или выделенного сервера, следует назвать:
поисковые системы (www.yandex.ru)
фото-галереи (www.alenmax.ru)
виртуальные магазины (www.ozon.ru)
хостинг-провайдеры (www.alexhost.ru)
on-line базы данных (www.integrum.ru)
крупные проекты (www.uptime.ru)
интернет-версии оффлайновых СМИ (www.comprice.ru)
сайты с большим трафиком (www.mail.ru)
особо важные проекты (www.government.ru)
порталы (www.interpress.ru)
Несмотря на непространственную природу Интернет, широкое распространение спроса на услуги co-location в последнее время является своеобразной реакцией на распространение виртуального хостинга. Можно сказать, что в случае заключения контракта на co-location абонент покупает прежде всего определенное географическое место. Это место может характеризоваться особым географическим положением провайдера, включенностью в оптимальную телекоммуникационную инфраструктуру или, что тоже важно, хотя бы как психологический фактор, относительной близостью к главному офису заказчика.
Учитывая все эти факторы можно уверенно прогнозировать стремительное развитие данного вида web-услуг в Санкт-Петербурге. Данный регион - являющийся важнейшим телекоммуникационным центром России, местом, где пересекаются основные магистральные линии, связывающие страну с мировыми коммуникациями, - является вторым по экономической значимости регионом РФ. Более низкая по отношению к Москве затратная часть IT-бизнеса, высокий профессиональный уровень кадров, быстрое экономическое развитие региона в целом позволяют прогнозировать развитие спроса на услуги co-location и dedicated на петербургском рынке.
Создать гиперссылку в Delphi довольно просто. На простом примере разберемся с созданием ссылки в Delphi, а затем оформим все в виде компонента.
Алгоритм создания такой: ставим на форму метку (TLabel), приводим ее внешний вид к привычному нам виду гиперссылки в нашем браузере и пишем обработчик события OnClick.
А чтобы можно было постоянно использовать гиперссылку в программах, мы создадим компонент. Начнем с того, что поставим на форму нашего проекта метку (TLabel), пусть ее имя останется Label1. Теперь мы напишем обработчик события OnClick, для нее:
Теперь поясню что мы здесь написали. Функция ShellExecute предназначена для открытия или печати файла, как исполняемого, так и документа. Первый параметр - это handle родительского окна, второй параметр - строка, указывает, что надо сделать с файлом, третий параметр содержит имя открываемого файла, четвертый параметр указывает дополнительные параметры запуска исполняемого файла, пятый параметр определяет директорию по умолчанию, последний параметр определяет где будет отображен файл после октрытия.
Если Вы уже попробовали запустить приведенный код, то скорее всего у Вас ничего не вышло, потому что функция ShellExecute, находится в модуле ShellAPI, который конечно же надо добавить в секцию uses, кода нашего приложения.
Теперь разберем параметры относительно нашего случая:
handle - это дескриптор главной формы (аналогично Form1.handle)
open - тип действия с файлом. Нам надо его открыть.
http://delphiworld.narod.ru/ - имя файла, который надо открыть. У нас это может быть гиперссылка, содержащая абсолютный URI.
nil - здесь никаких дополнительных параметров открытия файла не должно быть, поэтому nil.
nil - директория по умолчанию нас так же не интересует.
SW_SHOW - активирует окно и отображает его с текущими размерами и положением. Об остальных режимах можно узнать в хелпе (о функции ShellExecute).
Второй и третий параметры функции являются нуль терминированными строками, т.е. строками типа PChar, поэтому для использования в функции имени файла, полученного из OpenDialog1, нужно использовать PChar(OpenDialog1.Filename).
В браузере (при настройках по умолчанию) ссылка меняет цвет в зависимости от своего состояния и действий пользователя, мы тоже сделаем так. Для этого создадим три константы (в них будут определяться цвета), которые надо поместить в раздел Implementation:
Теперь в обработчике события формы OnCreate нужно написать:
В обработчике события метки OnMouseDown мы напишем:
А в обработчике события OnMouseUp нашей метки напишем:
Для придания полной реалистичности нашей ссылке, нужно установить свойство метки Cursor в crHandPoint. При наведении на ссылку указатель будет иметь вид привычной нам кисти руки с вытянутым указательным пальцем и ссылка будет подчеркнутой.
Ну вот и разобрались, а теперь напишем компонент. Там все предельно просто и понятно, поэтому объяснения напишу только в виде комментариев в коде.
В качестве родительского класса (Ancestor Type) мы конечно же должны выбрать TLabel. Привожу полный код модуля компонента Link класса Tlink (текст модуля надо сохранить в файле Link.pas):
Вот мы и разобрались с созданием гиперссылок в Delphi, как оказалось все очень просто.