Прога для автоматического переименовывания файлов в указанной папке. Новые имена имеют числовой вид начиная с нуля ( и по порядку 01,02,03...).Доставляет спереди нули, в зависимости от колличества файлов в папке.
Возможно доставлять спереди имени свою имя-приставку. Может служить для переименовывания большого колличества фото (фото-01,фото-02...), подсчитывает колличество файлов в папке. Пример хорошо прокоментирован.
Исходник программы, позволяющей получить имя домена по его IP-адресу, узнать IP-адрес домена по его имени, узнать IP-адрес компьютера по его имени, узнать имя компьютера по его IP-адресу, перевести IP-адрес компьютера в числовой формат. Также имеется возможность подсчета входящего/исходящего трафика через интерфейсы (учитывается весь трафик)
chmod играет важную роль при программировании на языке php. Особого внимания заслуживают случаи работы с файлами, особенно при настройке движков сайтов (CMS), форумов, гостевых книг и пр. Заметим, что chmod используется языком php только в Unix-подобной операционной системе, для которой и описаны приведенные ниже примеры. Заметим, что хостинг, в основном, базируется на Unix-подобной операционной системе.
В этих примерах показаны только принципы программирования в php при работе с chmod. В силу особенностей языка php права доступа в нем записывается только в числовом формате, поэтому рекомендуем символьный формат chmod предварять символом 0.
Читатели должны осознавать тот факт, что при программировании они должны использовать функции для определения наличия проверяемого файла, наличия переменных, приведения типов и пр.
Изменение chmod
chmod можно выставлять средствами языка php. Это можно делать только на уровне файловой системы сервера; изменение chmod для удаленных файлов не допускается.
Функция chmod() пытается изменить права доступа для filename на указанные в параметре mode. В случае успешного завершения функция возвращает true, в случае ошибки функция возвращает false. Поскольку числовой формат записи chmod является восьмеричным числом значение параметра mode рекомендуется предварять симоволом 0.
В указанном примере первая функция установит chmod 644 для файла /contacts/index.php. Вторая функция возвратит false, так как нельзя указавать в качестве параметра удаленные файлы. Третья функция установит chmod 467 для каталога /contacts/; во избежание недоразумений лучше всегда записывать в качестве второго параметра восьмеричное число, предваряя его симоволом 0. Четвертая фунция возвратит false, так как в качестве второго параметра обятельно надо указывать числовое значение.
Определение chmod
Для определения chmod воспользуемся функцией fileperms().
Функция fileperms() возвращает информацию о filename либо false в случае ошибки. Заметим, что получение информации об удаленных файлах не допускается.
Функция fileperms() возвращает больше информации, чем нам требуется (ее мы не будем затрагивать). Нам требуется определить последние 9 бит. Для этого воспользуемся логическим оператором & и функцией decoct().
Обращаем внимание, что функция decoct() возвращает переменную строкового типа (в которой записаны права доступа в числовом формате), поэтому при использовании полученных результатов в функции chmod() необходимо либо использовать функцию octdec(), либо не использовать функцию decoct(). Приведенные ниже два примера эквивалентны.
В приведенном выше примере в переменной $perms записана строка, состоящая из трех символов. Данный способ необходимо использовать в случаях, когда необходимо получить chmod в числовом формате, а затем использовать переменную для изменения chmod.
Данный пример предпочтительнее предыдущему, его необходимо использовать в случаях, когда переменная $perms используется исключительно для изменения прав доступа без промежуточных действий.
В этой статье описываются полезные функции и процедуры, помогающие эффективно работать с различными типами данных в системе "1С:Предприятие 7.7".
* Обработка значений
* Форматирование
* Список значений
* Таблица значений
* Таблица
* Период и дата
* Календари и праздники
* Справочники
* Документы
* Предопределённые функции
* Налоговый учёт
Обработка значений в 1С
Форматирование данных в 1С
Список значений в 1С
Таблица значений в 1С
Таблица или печатная форма в 1С
Периоды и даты в 1С
Календари и праздники в 1С
Справочники в 1С
Документы в 1С
Предопределённые функции и процедуры в 1С
Налоговый учёт и первое событие в 1С
Резюме
В статье описаны функции и процедуры, используемые в программе "1С:Предприятие 7.7" для работы со справочниками, документами, списками значений, таблицами значений и с прочими агрегатными типами данных. Образцы практического применения описанных средств Вы сможете найти в статьях "Отчёты для 1С" и "Обработки для 1С".
Информация в локальных сетях, как правило, передается отдельными порциями, кусками, называемыми в различных источниках пакетами (packets), кадрами (frames) или блоками. Причем предельная длина этих пакетов строго ограничена (обычно величиной в несколько килобайт). Ограничена длина пакета и снизу (как правило, несколькими десятками байт). Выбор пакетной передачи связан с несколькими важными соображениями.
Назначение пакетов и их структура
Информация в локальных сетях, как правило, передается отдельными порциями, кусками, называемыми в различных источниках пакетами (packets), кадрами (frames) или блоками. Причем предельная длина этих пакетов строго ограничена (обычно величиной в несколько килобайт). Ограничена длина пакета и снизу (как правило, несколькими десятками байт). Выбор пакетной передачи связан с несколькими важными соображениями.
Локальная сеть, как уже отмечалось, должна обеспечивать качественную, прозрачную связь всем абонентам (компьютерам) сети. Важнейшим параметром является так называемое время доступа к сети (access time), которое определяется как временной интервал между моментом готовности абонента к передаче (когда ему есть, что передавать) и моментом начала этой передачи. Это время ожидания абонентом начала своей передачи. Естественно, оно не должно быть слишком большим, иначе величина реальной, интегральной скорости передачи информации между приложениями сильно уменьшится даже при высокоскоростной связи.
Ожидание начала передачи связано с тем, что в сети не может происходить несколько передач одновременно (во всяком случае, при топологиях шина и кольцо). Всегда есть только один передатчик и один приемник (реже – несколько приемников). В противном случае информация от разных передатчиков смешивается и искажается. В связи с этим абоненты передают свою информацию по очереди. И каждому абоненту, прежде чем начать передачу, надо дождаться своей очереди. Вот это время ожидания своей очереди и есть время доступа.
Если бы вся требуемая информация передавалась каким-то абонентом сразу, непрерывно, без разделения на пакеты, то это привело бы к монопольному захвату сети этим абонентом на довольно продолжительное время. Все остальные абоненты вынуждены были бы ждать окончания передачи всей информации, что в ряде случаев могло бы потребовать десятков секунд и даже минут (например, при копировании содержимого целого жесткого диска). С тем чтобы уравнять в правах всех абонентов, а также сделать примерно одинаковыми для всех них величину времени доступа к сети и интегральную скорость передачи информации, как раз и применяются пакеты (кадры) ограниченной длины. Важно также и то, что при передаче больших массивов информации вероятность ошибки из-за помех и сбоев довольно высока. Например, при характерной для локальных сетей величине вероятности одиночной ошибки в 10-8пакет длиной 10 Кбит будет искажен с вероятностью 10-4, а массив длиной 10 Мбит – уже с вероятностью 10-1. К тому же выявить ошибку в массиве из нескольких мегабайт намного сложнее, чем в пакете из нескольких килобайт. А при обнаружении ошибки придется повторить передачу всего большого массива. Но и при повторной передаче большого массива снова высока вероятность ошибки, и процесс этот при слишком большом массиве может повторяться до бесконечности.
С другой стороны, сравнительно большие пакеты имеют преимущества перед очень маленькими пакетами, например, перед побайтовой (8 бит) или пословной (16 бит или 32 бита) передачей информации.
Дело в том, что каждый пакет помимо собственно данных, которые требуется передать, должен содержать некоторое количество служебной информации. Прежде всего, это адресная информация, которая определяет, от кого и кому передается данный пакет (как на почтовом конверте – адреса получателя и отправителя). Если порция передаваемых данных будет очень маленькой (например, несколько байт), то доля служебной информации станет непозволительно высокой, что резко снизит интегральную скорость обмена информацией по сети.
Существует некоторая оптимальная длина пакета (или оптимальный диапазон длин пакетов), при которой средняя скорость обмена информацией по сети будет максимальна. Эта длина не является неизменной величиной, она зависит от уровня помех, метода управления обменом, количества абонентов сети, характера передаваемой информации, и от многих других факторов. Имеется диапазон длин, который близок к оптимуму.
Таким образом, процесс информационного обмена в сети представляет собой чередование пакетов, каждый из которых содержит информацию, передаваемую от абонента к абоненту.
Передача пакетов в сети между двумя абонентами
Рис. 4.1. Передача пакетов в сети между двумя абонентами
В частном случае (рис. 4.1) все эти пакеты могут передаваться одним абонентом (когда другие абоненты не хотят передавать). Но обычно в сети чередуются пакеты, посланные разными абонентами (рис. 4.2).
Передача пакетов в сети между несколькими абонентами
Рис. 4.2. Передача пакетов в сети между несколькими абонентами
Структура и размеры пакета в каждой сети жестко определены стандартом на данную сеть и связаны, прежде всего, с аппаратурными особенностями данной сети, выбранной топологией и типом среды передачи информации. Кроме того, эти параметры зависят от используемого протокола (порядка обмена информацией).
Но существуют некоторые общие принципы формирования структуры пакета, которые учитывают характерные особенности обмена информацией по любым локальным сетям.
Чаще всего пакет содержит в себе следующие основные поля или части (рис. 4.3):
Типичная структура пакета
Рис. 4.3. Типичная структура пакета
* Стартовая комбинация битов или преамбула, которая обеспечивает предварительную настройку аппаратуры адаптера или другого сетевого устройства на прием и обработку пакета. Это поле может полностью отсутствовать или же сводиться к единственному стартовому биту.
* Сетевой адрес (идентификатор) принимающего абонента, то есть индивидуальный или групповой номер, присвоенный каждому принимающему абоненту в сети. Этот адрес позволяет приемнику распознать пакет, адресованный ему лично, группе, в которую он входит, или всем абонентам сети одновременно (при широком вещании).
* Сетевой адрес (идентификатор) передающего абонента, то есть индивидуальный номер, присвоенный каждому передающему абоненту. Этот адрес информирует принимающего абонента, откуда пришел данный пакет. Включение в пакет адреса передатчика необходимо в том случае, когда одному приемнику могут попеременно приходить пакеты от разных передатчиков.
* Служебная информация, которая может указывать на тип пакета, его номер, размер, формат, маршрут его доставки, на то, что с ним надо делать приемнику и т.д.
* Данные (поле данных) – это та информация, ради передачи которой используется пакет. В отличие от всех остальных полей пакета поле данных имеет переменную длину, которая, собственно, и определяет полную длину пакета. Существуют специальные управляющие пакеты, которые не имеют поля данных. Их можно рассматривать как сетевые команды. Пакеты, включающие поле данных, называются информационными пакетами. Управляющие пакеты могут выполнять функцию начала и конца сеанса связи, подтверждения приема информационного пакета, запроса информационного пакета и т.д.
* Контрольная сумма пакета – это числовой код, формируемый передатчиком по определенным правилам и содержащий в свернутом виде информацию обо всем пакете. Приемник, повторяя вычисления, сделанные передатчиком, с принятым пакетом, сравнивает их результат с контрольной суммой и делает вывод о правильности или ошибочности передачи пакета. Если пакет ошибочен, то приемник запрашивает его повторную передачу. Обычно используется циклическая контрольная сумма (CRC). Подробнее об этом рассказано в главе 7.
* Стоповая комбинация служит для информирования аппаратуры принимающего абонента об окончании пакета, обеспечивает выход аппаратуры приемника из состояния приема. Это поле может отсутствовать, если используется самосинхронизирующийся код, позволяющий определять момент окончания передачи пакета.
Вложение кадра в пакет
Рис. 4.4. Вложение кадра в пакет
Нередко в структуре пакета выделяют всего три поля:
* Начальное управляющее поле пакета (или заголовок пакета), то есть поле, включающее в себя стартовую комбинацию, сетевые адреса приемника и передатчика, а также служебную информацию.
* Поле данных пакета.
* Конечное управляющее поле пакета (заключение, трейлер), куда входят контрольная сумма и стоповая комбинация, а также, возможно, служебная информация.
Как уже упоминалось, помимо термина "пакет" (packet) в литературе также нередко встречается термин "кадр" (frame). Иногда под этими терминами имеется в виду одно и то же. Но иногда подразумевается, что кадр и пакет различаются. Причем единства в объяснении этих различий не наблюдается.
В некоторых источниках утверждается, что кадр вложен в пакет. В этом случае все перечисленные поля пакета кроме преамбулы и стоповой комбинации относятся к кадру (рис. 4.4). Например, в описаниях сети Ethernet говорится, что в конце преамбулы передается признак начала кадра.
В других, напротив, поддерживается мнение о том, что пакет вложен в кадр. И тогда под пакетом подразумевается только информация, содержащаяся в кадре, который передается по сети и снабжен служебными полями.
Во избежание путаницы, в данной книге термин "пакет" будет использоваться как более понятный и универсальный.
В процессе сеанса обмена информацией по сети между передающим и принимающим абонентами происходит обмен информационными и управляющими пакетами по установленным правилам, называемым протоколом обмена. Это позволяет обеспечить надежную передачу информации при любой интенсивности обмена по сети.
Пример простейшего протокола показан на рис. 4.5.
Пример обмена пакетами при сеансе связи
Рис. 4.5. Пример обмена пакетами при сеансе связи
Сеанс обмена начинается с запроса передатчиком готовности приемника принять данные. Для этого используется управляющий пакет "Запрос". Если приемник не готов, он отказывается от сеанса специальным управляющим пакетом. В случае, когда приемник готов, он посылает в ответ управляющий пакет "Готовность". Затем начинается собственно передача данных. При этом на каждый полученный информационный пакет приемник отвечает управляющим пакетом "Подтверждение". В случае, когда пакет данных передан с ошибками, в ответ на него приемник запрашивает повторную передачу. Заканчивается сеанс управляющим пакетом "Конец", которым передатчик сообщает о разрыве связи. Существует множество стандартных протоколов, которые используют как передачу с подтверждением (с гарантированной доставкой пакета), так и передачу без подтверждения (без гарантии доставки пакета). Подробнее о протоколах обмена будет рассказано в следующей главе.
При реальном обмене по сети применяются многоуровневые протоколы, каждый из уровней которых предполагает свою структуру пакета (адресацию, управляющую информацию, формат данных и т.д.). Ведь протоколы высоких уровней имеют дело с такими понятиями, как файл-сервер или приложение, запрашивающее данные у другого приложения, и вполне могут не иметь представления ни о типе аппаратуры сети, ни о методе управления обменом. Все пакеты более высоких уровней последовательно вкладываются в передаваемый пакет, точнее, в поле данных передаваемого пакета (рис. 4.6). Этот процесс последовательной упаковки данных для передачи называется также инкапсуляцией пакетов.
Многоуровневая система вложения пакетов
Рис. 4.6. Многоуровневая система вложения пакетов
Каждый следующий вкладываемый пакет может содержать собственную служебную информацию, располагающуюся как до данных (заголовок), так и после них (трейлер), причем ее назначение может быть различным. Безусловно, доля вспомогательной информации в пакетах при этом возрастает с каждым следующим уровнем, что снижает эффективную скорость передачи данных. Для увеличения этой скорости предпочтительнее, чтобы протоколы обмена были проще, и уровней этих протоколов было меньше. Иначе никакая скорость передачи битов не поможет, и быстрая сеть может передавать файл дольше, чем медленная сеть, которая пользуется более простым протоколом.
Обратный процесс последовательной распаковки данных приемником называется декапсуляцией пакетов.
В этой статье описываются полезные функции и процедуры, помогающие эффективно работать с различными типами данных в системе "1С:Предприятие 7.7".
Форматирование данных в 1С
Список значений в 1С
Таблица значений в 1С
Таблица или печатная форма в 1С
Периоды и даты в 1С
Календари и праздники в 1С
[pagebreak]
Справочники в 1С
Документы в 1С
Предопределённые функции и процедуры в 1С
Налоговый учёт и первое событие в 1С
Резюме
В статье описаны функции и процедуры, используемые в программе "1С:Предприятие 7.7" для работы со справочниками, документами, списками значений, таблицами значений и с прочими агрегатными типами данных. Образцы практического применения описанных средств Вы сможете найти в статьях "Отчёты для 1С" и "Обработки для 1С".
Задачей протокола транспортного уровня UDP (User Datagram Protocol) является передача данных между прикладными процессами без гарантий доставки, поэтому его пакеты могут быть потеряны, продублированы или прийти не в том порядке, в котором они были отправлены.
Зарезервированные и доступные порты UDP
В то время, как задачей сетевого уровня является передача данных между произвольными узлами сети, задача транспортного уровня заключается в передаче данных между любыми прикладными процессами, выполняющимися на любых узлах сети. Действительно, после того, как пакет средствами протокола IP доставлен в компьютер-получатель, данные необходимо направить конкретному процессу-получателю. Каждый компьютер может выполнять несколько процессов, более того, прикладной процесс тоже может иметь несколько точек входа, выступающих в качестве адреса назначения для пакетов данных.
Пакеты, поступающие на транспортный уровень, организуются операционной системой в виде множества очередей к точкам входа различных прикладных процессов. В терминологии TCP/IP такие системные очереди называются портами. Таким образом, адресом назначения, который используется на транспортном уровне, является идентификатор (номер) порта прикладного сервиса. Номер порта, задаваемый транспортным уровнем, в совокупности с номером сети и номером компьютера, задаваемыми сетевым уровнем, однозначно определяют прикладной процесс в сети.
Локальное присвоение номера порта заключается в том, что разработчик некоторого приложения просто связывает с ним любой доступный, произвольно выбранный числовой идентификатор, обращая внимание на то, чтобы он не входил в число зарезервированных номеров портов. В дальнейшем все удаленные запросы к данному приложению от других приложений должны адресоваться с указанием назначенного ему номера порта.
Мультиплексирование и демультиплексирование прикладных протоколов с помощью протокола UDP
Протокол UDP ведет для каждого порта две очереди: очередь пакетов, поступающих в данный порт из сети, и очередь пакетов, отправляемых данным портом в сеть.
Процедура обслуживания протоколом UDP запросов, поступающих от нескольких различных прикладных сервисов, называется мультиплексированием.
Распределение протоколом UDP поступающих от сетевого уровня пакетов между набором высокоуровневых сервисов, идентифицированных номерами портов, называется демультиплексированием.
Хотя к услугам протокола UDP может обратиться любое приложение, многие из них предпочитают иметь дело с другим, более сложным протоколом транспортного уровня TCP. Дело в том, что протокол UDP выступает простым посредником между сетевым уровнем и прикладными сервисами, и, в отличие от TCP, не берет на себя никаких функций по обеспечению надежности передачи. UDP является дейтаграммным протоколом, то есть он не устанавливает логического соединения, не нумерует и не упорядочивает пакеты данных.
С другой стороны, функциональная простота протокола UDP обуславливает простоту его алгоритма, компактность и высокое быстродействие. Поэтому те приложения, в которых реализован собственный, достаточно надежный, механизм обмена сообщениями, основанный на установлении соединения, предпочитают для непосредственной передачи данных по сети использовать менее надежные, но более быстрые средства транспортировки, в качестве которых по отношению к протоколу TCP и выступает протокол UDP. Протокол UDP может быть использован и в том случае, когда хорошее качество каналов связи обеспечивает достаточный уровень надежности и без применения дополнительных приемов типа установления логического соединения и квитирования передаваемых пакетов.
Формат сообщений UDP
Единица данных протокола UDP называется UDP-пакетом или пользовательской дейтаграммой (user datagram). UDP-пакет состоит из заголовка и поля данных, в котором размещается пакет прикладного уровня. Заголовок имеет простой формат и состоит из четырех двухбайтовых полей:
* UDP source port - номер порта процесса-отправителя,
* UDP destination port - номер порта процесса-получателя,
* UDP message length - длина UDP-пакета в байтах,
* UDP checksum - контрольная сумма UDP-пакета
Не все поля UDP-пакета обязательно должны быть заполнены. Если посылаемая дейтаграмма не предполагает ответа, то на месте адреса отправителя могут помещаться нули. Можно отказаться и от подсчета контрольной суммы, однако следует учесть, что протокол IP подсчитывает контрольную сумму только для заголовка IP-пакета, игнорируя поле данных.