Мы раскроем секрет, как удалить Windows Messenger или другие компоненты Windows, не показанные в разделе Add or Remove Programs. Список компонентов Windows хранится в файле Sysoc.inf в каталоге C:\Windows\Inf.
Некоторые его элементы под заголовком [Components], и среди них строка для Messenger, содержат слово hide. Чтобы увидеть их в списке утилиты Addor Remove Programs, а затем удалить, необходимо удалить команду hide (скрыть).
Во-первых, убедитесь, что в Windows Explorer установлен режим показа скрытых файлов: в Windows Explorer следует выбрать пункт Tools - Folder Options, а затем закладку View и установить флажок Show hidden files and folders.
Кроме того, нужно сбросить флажок режима скрытия защищенных файлов операционной системы: Hide protected operating system files (Recommended). Щелкнув на кнопке OK, можно перейти в папку C:\Windows\Inf. Откройте файл Sysoc.inf в окне Notepad и отыщите строку msmsgs=msgrocm.dll, OCEntry, msmsgs.inf, hide, 7.
Удалите слово hide, оставив запятые. Сохраните и закройте файл. Затем откройте Панель управления, выберите утилиту Add or Remove Programs и, когда она откроется, щелкните на закладке Add/Remove Windows Components. Теперь Windows Messenger должен быть в списке.
Повторив те же действия, можно добиться появления в списке и других скрытых компонентов.
В процессе первой инсталляции Windows XP вы не увидите на «рабочем столе» пиктограммы My Computer, My Documents, Network Places и Internet Explorer.
Чтобы добавить (или впоследствии удалить) любые из них, следует щелкнуть правой клавишей мыши на свободном пространстве «рабочего стола», выбрать из меню пункт Properties, закладку Desktop, а затем щелкнуть на кнопке Customize Desktop.
На экране появятся четыре флажка, которые можно «включить» или «выключить», чтобы добавить или удалить пиктограммы с «рабочего стола», а также варианты для изменения вида каждой пиктограммы.
Для жесткого диска компьютера Windows XP можно выбрать одну из двух файловых систем: FAT32 или NTFS. По умолчанию в процессе инсталляции ОС устанавливается NTFS. Но во многих случаях приемлема любая файловая система.
FAT32 —усовершенствованная версия системы FAT, которая использовалась с первых версий DOS. NTFS —файловая система, применяющаяся в Windows NT, 2000 и XP.
NTFS обладает рядом серьезных преимуществ, например, содержит средства для дросселирования ввода-вывода и улучшенные функции управления драйверами. (Механизм дросселирования ввода-вывода вступает в действие, когда возникают проблемы выделения памяти.
Как видно из названия метода, скорость ввода-вывода при необходимости снижается, и страницы обрабатываются по одной, тем самым работа продолжается с меньшей скоростью до тех пор, пока не высвободятся ресурсы.)
В результате повышаются надежность и стабильность ОС. Кроме того, NTFS позволяет использовать жесткие диски емкостью до 2Тбайт. Мы советуем выбирать FAT32 для дисков менее 32Гбайт и компьютеров с двумя или несколькими операционными системами. Для дисков емкостью выше 32Гбайт и компьютеров с одной ОС предпочтительнее NTFS.
Принимая решение о переходе на Windows XP или покупке новой машины, нужно выбрать подходящую версию, Home или Professional. Для большинства потребителей вполне подходит менее дорогостоящая Home Edition.
Windows XP Pro, расширенный вариант Windows XP Home - очевидный выбор для большинства компаний, но малым организациям вряд ли понадобятся ее более развитые функции управления доступом, безопасностии работы всети.
Некоторые дополнительные возможности Windows XP Professional:
* работа с двумя процессорами;
* работа в составе домена Windows NT;
* Internet Information Services/Personal Web Server (IIS Web Server 5.1);
* управление сетью через протокол SNMP;
* дистанционное управление через Remote Desktop.
Кроме того, существует новая 64-разрядная редакция Windows XP. Она предназначена только для компьютеров с Intel-процессорами Itanium или Itanium I и по своимфункциям аналогична Windows XP Pro.
Remote Desktop - хорошая программа дистанционного управления из состава Windows XP Professional, с помощью которой можно установить контроль над машиной Windows XP Pro с любого компьютера под управлением Windows.
Чтобы активизировать Remote Desktop, нужно перейти в раздел System Панели управления, щелкнуть на закладку Remote и выбрать режим Allow users to connect remotely to this computer (разрешить всем пользователям устанавливать удаленное соединение с компьютером).
Remote Desktop - очень быстродействующая программа, но для повышения скорости необходимо на компьютере, с которого вы будете управлять хост-машиной Remote Desktop, запустить клиентскую программу Remote Desktop Connection. Выберите пункт Options и щелкните на закладке Experience. Затем следует выбрать тип соединения, наиболее подходящий для связи с хост-машиной.
Данное тестирование позволяет использовать два типа объявлений AdSense, отображаемых на Вашей странице, с разными настройками, для того, чтобы Вы могли протестировать, какое из них наиболее эффективно для Вашего сайта.
Например, можно таким образом проверить, как работают объявления двух цветовых схем на одной и той же рекламной позиции, или как работают рекламные блоки разных размеров, скажем, квадрат 250х250 или полубаннер 234х60.
Первое, что необходимо сделать для запуска теста – это выбрать два канала, по одному на каждую единицу рекламы, для отслеживания Ваших результатов. Затем следует вставить в код страницы специальный код, указанный ниже, который чередует показ объявлений.
Причем, необходимо учитывать, что тестируемые объявления должны отображаться на равных условиях, т.е. на каждый из двух типов объявлений должно приходиться 50% просмотров.
Вот код JavaScript, который предлагает использовать Google AdSense, для чтобы Вы могли запустить в соответствии с такими условиями A/B тестинг Ваших рекламных объявлений AdSense:
Замените «//здесь код Вашего первого/второго рекламного объявления» на свой коды объявлений, расположенные между первым набором тегов . Помните о том, что сам код объявления в соответствии с правилами системы изменять нельзя. Однако в данном случае Google AdSense разрешает модифицировать его для использования со специальным, указанным выше скриптом, нацеленным на проведение A/B тестирования.
Это стоящий эксперимент, который позволяет удобно отследить эффективность использования тех или иных типов объявлений AdSense при сравнении на равных условиях. Приятно видеть, что AdSense делает это возможным.
Самая основная проблема при работе с сервисом Google Adsense для веб-мастеров Рунета - это то, что заработок присылают персональными чеками. Многие ломают голову над его обналичкой. Если в крупных городах типа Москвы, Санкт-Петербурга, данный чек можно обналичить в некоторых банках, то для жителей регионов - такая возможность отсутствует.
Все же несколько решений есть. Стандартный способ обналичивания через банки расссматривать не будем.
1 способ для тех, у кого нет еще аккаунта в сервисе. При создании аккаунта в Google Adsense нужно выбрать страну США, тип аккаунта - частный. Первоначально адрес можно ввести любой, налоговую информацию можно не указывать.
Далее регистрируемся в платежной системе CapitalCollect. Регистрация не займет много времени, но верификация аккаунта процедура не из простых. Для этого нужно сделать следующее:
Выслать сервису CapitalCollect копию Вашего паспорта - разворот с фотографией, разворот с пропиской, копию заграничного паспорта (для проверки написания Вашего имени по-английски), копию водительского удостоверения, верифицировать Ваш e-Mail, телефон (они Вам перезвонят), заполнить договор на обслуживание. Более подробно о регистрации и верификации в системе можно узнать по ссылке http://www.capitalcollect.com/faq_ru.html.
После того, как Ваш аккаунт верифицируют, Вы получите адрес, на который можно посылать чеки и информацию для подачи в налоговые органы. На данный же адрес Вы сможете получить пин-код для потверждения аккаунта в Google Adsense, когда сумма будет более 50 долларов на Вашем счету.
Посел этих процедур, Вы будете получать чеки на адрес CapitalCollect, который будет обналичен в течение 2-4 дней после его получения. Комиссия за обналичку составит 4 процента (минимум 8 долларов). Срок доставки чека примерно 7-14 обычной почтой, до 5 рабочих дней - экспресс-почтой.
Вывести средства из CapitalCollect можно на z-кошелек Webmoney, на аккаунт в e-gold или через посредников, обменные пункты. Раньше можно было переводить средства на счет в Rupay. Но после небольшого скандала, связанного с мошенничеством, Rupay и CapitalCollect теперь не сотрудничают.
2 способ для тех, кто уже имеет аккаунт в Google Adsense. Регистрируемся в сервисе CapitalCollect, процедура такая же, которая дана в первом способе.
Ждем чек на свой основной российский адрес, пересылаем его почтой (желательно авиа) на американский адрес, который дан в Вашем аккаунте CapitalCollect. Срок доставки примерно 14-21 день. Стоимость доставки 60-90 рублей.
После того, как чек дойдет до адресата, Вам зачислят сумму в аккаунте CapitalCollect за вычетом комиссии.
Данная статья полностью посвящена такому аспекту раскрутки сайта, как регистрация в каталогах. На примерах рассмотрим регистрацию в наиболее популярных каталогах: Top.Mail.ru, Yandex, Rambler's TOP100.
В процессе размещения сайта в каталогах нет ничего сложного. Благо, эти системы становятся более совершенными и простыми в использовании для владельцев сайтов. Как правило, для добавления сайта в каталог нужно выбрать соответствующий раздел каталога (или подкаталог в нем). Потом вам необходимо будет вручную заполнить регистрационную форму. Нажимаем "Разместить", "OK", "Submit" (в разных каталогах по-разному, но суть одна) - и все, ваш сайт в каталоге. Правда, его еще проверят модераторы на соответствие тематики сайта выбранному каталогу. И не нарушает ли ваш ресурс законов страны, в которой расположен каталог. Как правило, это относиться лишь к сайтам, размещенным на бесплатном хостинге. Это еще один из доводов в пользу платного хостинга - бесплатный сыр может оказаться вовсе не бесплатным.
Модератор всегда прав
Когда размещаете свой сайт в каталоге, не забывайте о пользователях. Ведь именно для них он и предназначен, поэтому постарайтесь наиболее точно составить его описание. В лучшем случае модератор каталога просто изменит его описание, или перенесет сайт в другую рубрику. В худшем... Будем стараться, чтобы такого не случилось. Советую также внимательно читать правила размещения ресурса в каталоге. И, само собой, придерживаться его требований и правил. Как и в любом деле, здесь нужно быть очень аккуратным и следовать правилам предоставления данной услуги.
По поводу выбора каталога, хочу заметить еще кое-что. Как правило, пользователи не случайно заходят в тот или иной каталог (рубрику) - хотя бывают и исключения :) Получается, что человек заинтересован именно в сайтах данной тематики, он ищет информацию в определенной области (наука, новости, автомобили и т.д.). Я думаю, он вряд ли зайдет на сайт, который не соответствует интересующей его тематике. А, случайно попав не него, долго на нем не пробудет. Но это, как правило, а в реальной жизни все может быть.
Шаги к успеху
А теперь о размещении в каталоге более детально. При регистрации вам предлагают внести название вашего сайта и его краткое описание. В названии, как правило, необходимо разместить название вашей организации (если сайт о ней) или же просто официальное название вашего сайта. Пусть это будет "Интернет-магазин "Все для кошек", "Домашняя страничка кота Мурчика", "Молокозавод "Лакомства для кошек" и т.п.
Можно, конечно, попробовать разместить в названии несколько ключевых слов. Можно, но в данном случае все на ваш страх и риск. Тут главное не перестараться, дабы не снискать немилость у владельцев каталога. И чем ресурс-владелец каталога популярнее, тем с ключевыми словами ситуация сложнее.
Теперь остановимся на описании сайта. Оно располагается сразу же после URL'а вашего сайта. Как и название, описание сайта является не менее важным. Тут главное еще до регистрации придумать описание, сбалансированное как по краткости, так и по соответствию тематике. Я думаю, что не стоит в нем использовать какие-либо жаргонные слова и делать его слишком длинным. Скорее всего модератору это понравиться, и будьте уверены, что он его заменит на свой лад. Вот чтобы не проверять судьбу, лучше этого не делать.
Ну а если составить описание вам все же сложно, то посмотрите описания сайтов с похожей тематикой. Гляди и появится идейка-вторая. Только вот копировать описание точь-в-точь я бы не советовал - проявите смекалку, пофантазируйте, переберите кучу вариантов. И у вас обязательно получится - не сомневайтесь. "Зато такого описания ни у кого нет" - разве это не может не радовать?
Еще можно использовать свой meta-description тег (если он удачно подобран). А почему бы и нет? Смело вносите его в описание сайта для каталога, не забывая при этом о вышеперечисленных советах.
Еще посоветую использовать те слова, которые часто встречаются на страницах вашего сайта. Если таковых вы не находите, или их совсем маловато, то тут следует призадуматься. Сайт у вас один, регистрировать вы его будете один раз, а его содержание будете часто менять (в идеале). Так почему бы сразу не оптимизировать текст под несколько ключевых слов? Я думаю, намек вам понятен...
Поэтому постарайтесь максимально придерживаться моих рекомендаций и у вас все непременно получиться. Конечно, у каждого каталога свои правила и требования к размещению ресурса. Тем не менее, главными остаются правильно выбрать раздел и составить понятное/точное описание.
Поменьше слов - побольше дела!
Ну а теперь рассмотрим наиболее популярные каталоги РУнета.
1) Яндекс
Тут ничего сложного нет. У Яндекса самая простая (по крайней мере из всех, что мне попадались) регистрация. Итак, заходим на Яндекс, на сайте находим ссылочку добавить сайт. А далее все просто - в строку постредине страницы вносим URL вашего сайта и жмем "Добавить".
Не лишним будет заметить, что Яндекс регистрирует только русскоязычные сайты или же представляющие интерес для русскоязычной аудитории.
2) Рамблер
У Рамблера каталог называется Rambler's TOP100. Вот на него-то мы и заходим Rambler's TOP100. Нажимаем на ссылочку "добавить ресурс" и переходим к соглашению о регистрации в каталоге. Прочитав его, жмем на кнопку "зарегистрировать". Ну а дальше все должно быть понятно, как-никак русским же языком все написано :)
Советую при выборе цвета счетчика подумать, как он будет сочетаться с цветовой гаммой вашего сайта. И не жмите дважды кнопку "зарегистрировать" :)
3) Рейтинг@Mail.ru
С регистрацией в данном каталоге у вас тоже не должно возникунть проблем. Сверху есть ссылка "зарегистрироваться в рейтинге@mail.ru" (так вот у них каталог своеобразно называется - как их почта).
Одно замечание - так как тематических каталогов и подкаталогов у них довольно много, то советую выбрать тот из них, который максимально соответствует тематике вашего сайта (можете просто зайти в заинтересовавший вас каталог и посмотореть на сайты, которые в нем размещены).
Для многих вебмастеров SEO (search engine optimization, оптимизация для поисковой машины) - это не что иное, как просто набор трюков и методик, которые несомненно должны поднимать их сайт в рейтингах всех поисковиков. Такое отношение к SEO может и дает временные результаты, тем не менее, здесь содержится большой недостаток: правила постоянно меняются.
Алгоритмы поисковых машин постоянно меняются, как, например, антивирусное программное обеспечение. Ведь в мире постоянно появляются новые вирусы, поэтому они и должны постоянно совершенствовать и вносить коррективы в свои программы. Аналогично обстоит дело и с поисковиками: все в этом мире быстро меняется, а интернет-сфера еще быстрее.
Тем не менее, существует определенный набор правил, по которым поисковики ранжируют сайты, которых должен придерживаться каждый вебмастер в нелегком процессе поисковой оптимизации. Конечно, нет 100% гарантии, что все это работает сейчас или уже появились новые правила игры, но идея остается прежней. Меняются лишь детали, как говорится.
Но если мы не можем применить для оптимизации стандартный набор правил, то что же нам делать? Выход здесь в том, что не нужно всеми силами стараться разобраться в хитростях работы поисковой машины, а просто понять каким образом они работают. У этих самых хитростей есть своя логика работы, которую довольно просто вычислить, что и является их недостатком.
Так что же на самом деле необходимо?
Для достижения высоких позиций в рейтинге (да еще на долгое время) следует понимать, что поисковый робот - это в своем роде живое существо. Конечно, я при этом не имею ввиду, что у них есть мозги, пусть это останется для писателей-фантастов. Тем не менее их поведение и способы работы во многом похожи на работу этого самого мозга.
А теперь остановимся на рассмотрении некоторых функций их "мозга". В общем можно сказать, что им присуща такая специфика, как (если принять интернет за мир с множеством дорог) ходить различными путями, следуя указаниям установленных знаков и собирая всевозможную информация об этой дороге. Затем они направляют собранную информацию группе серверов, которые уже по своим специфическим алгоритмам определяют ее важность для внесения в свои базы.
По каким принципам работают эти алгоритмы? Для начала они создаются людьми, которые прекрасно разбираются в принципах работы интернета и информации, которая в нем содержится. А так как всемирная паутина постоянно изменяется, то эти самые люди и вносят необходимые коррективы в поисковые алгоритмы. По своей сути поисковую машину следует рассматривать, как существо, которое постоянно собирает информацию, сохраняет ее, а потом сортирует исходя из ее важности и с большим удовольствием отсеивает ненужную. Только вот как это она делает и исходя из каких принципов - толком не ясно.
Присмотримся поближе
Понимание того, что из себя представляет поисковая машина на самом деле, попытаемся выяснить в сравнении с анатомией человека. Пусть машина и не дышит, но она содержит много схожего, что необходимо ей для ее виртуальной жизни. А состоит она из следующего:
Легкие: Данный орган у поисковой машины, как и большинство жизненно важных органов, расположены внутри огромных data-центров (сервера, специально предназначенные для хранения информации). Как и организме человека, легкие мы не считаем очень важным органом, тем не менее понимаем, что без них не обойтись и нужно поддерживать их здоровыми.
Руки и ноги: Представим себе, что руки и ноги поисковой машины не что иное, как ссылки на ресурсы, которые она щедро выдает по запросу пользователя. С помощью этого органа мы можем найти все, что нам нужно и получить указатель в виде ссылки на необходимый ресурс. Также, как и тело человека изначально было создано для движения и исследования окружающего мира, аналогично и поисковые машины изначально запрограммированы исследовать всемирную паутину.
Глаза: Глазами поисковой машины являются так называемые пауки (еще их называют роботами или краулерами). Эти самые пауки постоянно просматривают интернет для поиска новых сайтов и следят за изменениями на уже проиндексированных. В данном случае пауки "ползают" по страничкам сайта по его внутренним ссылкам (как по путям), аналогично человеку, который на своем пути видит множество дорог для своего передвижения. К счастью для нас, поисковые роботы движутся по оптико-волоконным проводам, вот поэтому они могут путешествовать по интернету со скоростью света. Это-то и позволяет им посетить все интернет-странички, которые попадаются им на пути.
Мозг: Мозг поисковой машины выполняет те же функции, что и мозг человека: содержит целый набор функций для управления организмом своего хозяина. Также у мозга должен быть свой инстинкт, который должен знать о работе и постоянно контролировать все органы и системы. Вот поэтому поисковой машине никак не обойтись без этого самого мозга, который ей и помогает выжить в этом враждебном мире (пусть в чем-то и виртуальном).
Инстинкт: С помощью инстинкта поисковые машины имеют набор ключевых функций, таких как просматривание сайтов и фильтрация данных, которые нужно или не нужно индексировать. Они запрограммированы игнорировать некоторые типы файлов, не соответствующих определенным критериям. Как мне кажется, в инстинкте поисковой машины главное - это механизм или алгоритм, с помощью которого она индексирует сайты.
Знания: Поисковые машины прекрасно осведомлены о всех тонкостях индексации сайтов. Те знания, которыми они владеют, идут далеко впереди знаний всех пользователей, вебмастеров и оптимизаторов. Поисковая машина знает множество методов сортировки, представления данных, и, естественно, еще и имеет свой специфический набор хитростей и уловок.
Пока поисковый робот путешествует по интернету и индексирует веб-странички, параллельно он отсылает обратно в свой data-центр собранные им данные. Именно в этом центре данные обрабатываются согласно алгоритмов, а спам-фильтры отсеивают ненужное.
Подобно тому, как мы анализируем информацию из статьи в газете согласно своему видению мира, так и поисковики обрабатывает и ранжируют данные в строгом соответствии со своими законами и пониманием работы интернета.
Изучение: Так как поисковая машина ранжирует веб-странички согласно своему видению и пониманию законов функционирования интернета, а эти правила постоянно изменяются, то поисковые алгоритмы постоянно изменяются. Вот тут-то как раз и нужен механизм адаптации или самообучения поисковика.
В то же время, наряду в способностях просматривать странички, поисковые роботы должны уметь определять и наказывать попытки запрещенной раскрутки сайта. При этом благосклонно относится к честным вебмастерам и оптимизаторам.
Вот примеры тех областей, в которых поисковые машины так часто любят менять свои алгоритмы:
* Определения релевантности контента того сайта, на который она нашла ссылку;
* Способность обнаруживать информацию, которая содержится в новых типах данных, к примеру, базы данных, flash и т.п.
* Понимание нечестных методов раскрутки сайтов, таких как размещение "невидимого" текста, ссылок и т.п. Данные технологии рассматриваются поисковой машиной как спам, а пойманные на этом ресурсы попадают в так называемый "черный список";
* Изучение полученных данных, выявление недостатков в индексации, что приводит в действие механизм изменения алгоритма в сторону более эффективного определения релевантности сайта.
Способность к изучению и адаптации к окружающему интернет-пространству изначально закладывается при разработке алгоритмов работы поисковой машины. Ну и, само собой, остается актуальной до следующего обновления алгоритма.
От теории к практике
Все, о чем было сказано выше, касалось лишь аспектов работы поисковой машины. А вот как эти знания применить для раскрутки сайта? Все дело в том, что для правильного выбора стратегии раскрутки необходимо хорошо понимать, каким образом работает эта самая поисковая машина: собирает информацию, ранжирует сайты и т.д.
В свое время, когда одним из основных методов раскрутки было размещение большого количества ключевых слов на страницах сайта, многие вебмастера создавали целые сообщества из сайтов, дабы взаимным обменом ссылок достичь высоких позиций в рейтингах. А вот работает ли эта тактика сегодня? Работает, только результат скорее всего будет временным и краткосрочным.
Ведь поисковая машина, как и человек, хочет выжить в агрессивной окружающей среде. Поэтому, если результаты их работы будут плохими (а вот как раз нечестные методы раскрутки часто ведут к выдаче ненужной посетителю информации), то они медленно, но уверенно перестанут существовать. А ведь при постоянно растущей конкуренции эволюционировать крайне необходимо.
Для примера, пользователю значительно удобнее и проще найти сайт с множеством контента, который ему необходим. Как правило, на таких сайтах он часто обновляется, что позволяет сайту быть актуальным. Поэтому делайте выводы.
Немаловажным моментом остается и обмен ссылками. В данном вопросе намечается тенденция к снижению релевантности обратных ссылок, а обмен ссылками между сайтами разных тематик и вовсе малоэффективен. Но если же вы все же решите поставить обратные ссылки, то обязательно убедитесь, что они ведут на родственные по тематике сайты.
Данная стратегия хорошо работает как для привлечения посетителей, так и для повышения релевантности сайта. Ведь многие пользователи переходят из сайта на сайт по внутренним ссылкам. А если они еще и стоят на авторитетном и посещаемом ресурсе, то это только дополнительный плюс.
И напоследок...
Сам собою напрашивается вывод делать ставку на будущее. И отношение к поисковой машине как живому организму (пусть и в общих чертах) поможет выбрать правильную тактику. Вот когда она в очередной раз придет на ваш сайт, то "накормите" ее вкусным новым контентом, новыми разделами и она обязательно еще к вам вернется. А вот негостеприимных сайтов они не любят, как и быть обманутыми нечестными хозяевами. У роботов память отменная...
На рынке веб-разработки сейчас имеется большой выбор готовых систем управления контентом (CMS) и каждый может себе выбрать по потребностям и деньгам. Хотя часто без специальных знаний (или услуг программиста) на этапе настройки не обойтись, тем и хороша CMS, что далее с ней можно работать, не имея навыков программирования.
При большом количестве систем управления сайтом (CMS), CMS является довольно сложным программным продуктом.
Поэтому важно правильно подобрать критерии выбора системы управления для решения своих бизнес-задач. В рамках данной статьи сформулировано небольшое количество понятных владельцу сайта факторов, которые рекомендуется учесть при выборе системы управления коммерческим сайтом.
Первым делом необходимо определить набор функций, которые необходимы на сайте необходимы сейчас и какие могут понадобиться в дальнейшем. После этого можно сузить круг систем и оставить для рассмотрения только те CMS, которые содержат необходимые функции. Это наиболее простая часть задачи, поскольку практически все разработчики систем управления сайтом публикуют функциональные возможности своих систем на сайтах.
После выбора системы ее необходимо будет установить. Вот список ключевых элементов, которые потребуются для установки системы::
- хостинг-площадка
- владелец сайта
- администратор сайта
- пользователи сайта и поисковые системы
Основными параметрами выбора CMS для владельца сайта являются: степень зависимости от разработчиков в будущем, сложность технической поддержки системы, возможность защиты информации, стоимость обновлений и информационной поддержки.
Администратор сайта
С точки зрения администратора сайта система управления должна быть удобной и позволять редактировать на сайте все, что необходимо редактировать без обращения к разработчикам сайта.
Удобство интерфейса администрирования проще всего оценить, поработав с CMS (в режиме наполнения информацией) около получаса. На практике затратить такое количество времени на каждую исследуемую систему почти невозможно, поэтому попробуем формализовать понятие "удобство работы" с позиции администратора типичного интернет-ресурса.
CMS должна запоминать последнее состояние всех открытых древовидных структур и диалогов с закладками. Редактор страниц должен поддерживать автоматическую чистку тэгов при вставке из MSWord или Excel. Лучшие системы позволяют также автоматически переносить на сайт картинки и файлы при копировании информации из MSWord или с других сайтов без дополнительных действий – используется только копирование и вставка.
Если эти требования выполнены, проблем с эксплуатацией системы управления скорее всего не возникнет. К сожалению, упомянутые моменты выяснить самостоятельно сможет далеко не каждый пользователь, поэтому в большинстве случаев придется при анализе опираться на заявления разработчика.
Заключение
Последним критерием при выборе системы должна стать, естественно, цена. Совокупные затраты обычно считаются как затраты на сам продукт (или лицензию на его использование), стоимость внедрения продукта, затраты на поддержку в течение 2 лет и ожидаемые затраты на модификацию сайта разработчиками.
Для получения целевых посетителей на ваш сайт необходимо иметь представление о факторах позиционирования сайта в поисковых результатах определенной поисковой машины. Под позиционированием подразумевается расположение сайта в выдаче по определенному поисковому запросу.
Как показывает статистика, основная часть посетителей переходит по сайтам, расположенным лишь на первой странице результатов выдачи. К тому же большинство из них предпочитают первые два сайта.
Логично, что если ваш сайт будет во второй десятке, то посетителей будет намного меньше. Таким образом, продвижение сайта нацелено на позиционирование сайта именно в первой десятке выдачи, а лучше – пятерке, идеально – тройке.
Рассмотрим наиболее важные факторы, которые влияют на позиционирование сайта.
Первым делом страница сайта, которая попадает в поисковую выдачу, должна соответствовать поисковому запросу. Для этого в ее содержании должны присутствовать слова поискового запроса и соблюдаться их процентное соотношение к остальному тексту.
Но это хоть и важный фактор, но не главный. Ведь можно создать большое количество страниц под определенные фразы. Пусть они даже будут нечитаемые для человека, но для поисковой машины они будут в самый раз.
Поэтому в последнее время все более важным для продвижения сайта является наличие достаточно большого количества ссылок, которые на него ведут. При этом важно, чтобы ссылки были со сходных по тематике ресурсов, не были взаимными и в тексте ссылки были нужные для владельца сайта ключевые слова.
Еще ссылки очень важны для эффективной раскрутки в такой поисковой системе, как Google. Ее алгоритмы оценивают авторитет сайта на основе ссылок на его с других сайтов, авторитет которых тоже очень важен.
Но недостаточно взять и купить, к примеру, 10000 ссылок с ключевым словом "раскрутка сайтов" и быть уверенным, что по этому запросу ваш сайт будет на первом месте и долгое время.
В последнее время поисковые машины совершенствуют свои алгоритмы на предмет неестественных или покупных ссылок. Поэтому быстрый рост их количества может быть расценен как обман поисковой машины и велика вероятность бана. Тогда сайт вообще может быть исключен из поисковой машины.
По этой причине важно выбрать ту организацию по раскрутке и продвижению сайтов, которая сможет провести наращивание входящих ссылок на сайт с гарантией соблюдения правил всех главных поисковых машин.
Обратите внимание на нашу фирму, которая имеет большой опыт раскрутки сайтов, которая имеет большой опыт раскрутки сайтов. На нашем сайте вы можете также прочитать отзывы наших клиентов.
Если вы решили всерьез заняться продвижением вашего сайта в сети интернет, то без механизмов, которые бы отслеживали его посещаемость, вам не обойтись. Ведь именно благодаря им вы можете узнать, сколько к вам пришло посетителей, их географию (из какой страны), как много страниц они просмотрели, какие из этих страниц наиболее популярны.
Также есть очень важные параметры - заходы поисковых (индексирующих) ботов на ваш сайт и реферальные ссылки - откуда посетители зашли на ваш сайт - это может быть как поисковая машина, так и другой сайт.
В этой статье рассмотрим способы, как получить информацию о посетителях вашего сайта.
Тут есть три основных варианта:
1) самостоятельно анализировать log-файлы своего сайта (дает максимально точную информацию, но не все хостеры дают к ним доступ, про бесплатный хостинг и говорить не приходится). Отличной программой, которой сам давно пользуюсь и вам рекомендую, является WebLog Expert (http://www.weblogexpert.com/) Программа не бесплатная, а триал, но при желании всегда можно найти к ней "лекарство". Среди возможностей программы - строит цветные графики и диаграммы для отображения информации о всех данных статистики. Есть возможность вывода отчета об анализе в виде html, pdf или cvs (для импорта в Excel). Работать с программой очень просто - указал пусть к лог-файлу (можно и не распаковывать его, программа понимает архивы gz, zip, и tar.gz), потом нажимаем кнопку "analize" и смотрим отчет.
2) если у вас платный хостинг, то можно использовать встроенные в CPanel или DirectAdmin (у всех по-разному) скрипты типа Webalizer или AwStats. Как с ними работать - об этом должно быть написано в "Вопросах и ответах" (FAQ, ЧАВО) вашего хостинг-провайдера. Многие предпочитают использовать эти скрипты, чтобы не возиться с программами лог-анализаторами или не замусоривать свой сайт кнопками бесплатных сервисов статистики.
3) использовать специальные скрипты, как правило написанные на php, устанавливаются в директорию вашего сайта, используют для хранения информации базу данных MySQL. Самый известный представитель подобного рода скриптов - это CNStats (site). Больше чем уверен, что в мире существует немало его аналогов, но этот скрипт имеет русский интерфейс, что, согласитесь, немаловажно для нас. Среди недостатков - опять же платный, но есть и бесплатные версии с ограниченной функциональностью. БД быстро разрастается, особенно на посещаемом сайте - придется постоянно следить за размером и периодически чистить.
4) бесплатные сервисы статистики - их даже на просторах рунета огромное множество. Рассмотрим лишь самые известные и с качественным сервисом.
SpyLog - spylog.ru
После регистрации и установки счётчика мы получаем возможность анализировать следующие показатели сайта: хиты (сегодня, неделя, месяц), хосты, ссылающиеся страницы, популярные страницы ресурса, география посетителей по странам, хосты, операционные системы, браузеры, дисплеи. В этом списке отсутствует такой важный отчёт как «поисковые запросы» - это один из самых главных показателей эффективности оптимизации сайта и его индексации в поисковых машинах.
Top Mail.ru - top.mail.ru
Предоставляет достаточно полную статистику по сайту в т.ч. по поисковым машинам. Всего – 12 отчётов:
* Позиции в рейтинге
* Динамика визитов
* Время визитов
* Страницы
* Ссылки
* Поисковики
* Каталоги
* Браузеры
* Настройки
* География
* Сравнение аудиторий
* Мой top
Работает счётчик достаточно хорошо, иногда, даже лучше, чем вышеупомянутый SpyLog. Его хорошая работа во многом обуславливается тем, что имеется возможность разделить код счётчика на две части. Первую часть (которая считает посетителей) поставить в начало страницы, а вторую (отображающую сам счётчик) можно разместить в любом месте страницы.
Мой top позволяет определить некий круг сайтов и отслеживать их посещаемость, общих посетителей и рейтинг относительно друг друга, что очень приятно. С помощью данного топа можно отслеживать посещаемость ближайших конкурентов ресурса, причём, они об этом могут даже не знать. А вот для того, чтобы закрыть вашу статистику от других, можете поставить ее на пароль. Насчет стабильности работы Top Mail.ru ходят легенды - не знаю, как сейчас (в последнее время не использую этот сервис), но 2-3 месяца назад были у него частые глюки - статистика была недоступна, обнулялась (да, именно так - на счетчике было три нуля в столбик :)), один раз даже была обратная сортировка рейтинга - на первых местах оказались ресурсы с нулевой посещаемостью, а гранды - на последних.
Liveinternet.ru - liveinternet.ru
Пожалуй, самый качественный и информативный сервер сбора статистики (хотя больше известен своими online-дневниками). Дает любую нужную вам информацию - и посещаемость, и географию посетителей, источники трафика (поисковики, рефералы, букмарки). За небольшую плату (где-то 3$ в месяц) можно установить невидимый счетчик, т.е. кнопки liveinternet.ru не будет на вашем сайте, а статистика будет считаться. Также есть возможность закрыть статистику на пароль.
Catalog.i.ua - catalog.i.ua
Сравнительно новый сервер сбора статистики и каталог одновременно. Появился в ноябре 2006 года, но уже успел зарекомендовать себя как стабильный и точный сервис. Информацию о посетителях выдает как в виде графиков, таблиц, так и есть возможность импорта данных в cvs - для дальнейшего анализа в Excel. Отличительной чертой от подобных сервисов является возможность просмотра не только самой рефссылки, но и поисковой фразы, если был заход из поисковика.
Подведу итог вышесказанному. Какой вид анализа и сбора статистики вам выбрать - решайте сами. В чем могут быть ограничения - это бесплатный хостинг, на котором у вас не будет доступа к лог-файлам и возможность выполнения php-скпритов. Главное, если вы используете бесплатные сервисы сбора статистики, то не переусердствуйте - не нужно ставить их более 3-х штук - ведь это дополнительное время, которое потребуется на загрузку графического счетчика и ява-скрипта.
Если вы читаете эту статью, значит вам интересны вопросы оптимизации сайтов под поисковые системы. Кто бы вы не были - веб-мастер или seo-оптимизатор, для получения качественного трафика с поисковиков без этого не обойтись.
Казалось бы - все просто, бери да создавай уникальный контент, заряжай его нужными ключевыми словами, правильно прописывай мета-теги. И будет тебе счастье. Но и тут есть свои "НО". Нужно подготовиться к тому, что эффект от таких действий будет не сразу.
Первым делом при создании нового сайта необходимо помнить о существовании такого технологии, как Google Sandbox или Песочница Google.
Что это на самом деле
По сути дела это фильтр, после преодоления которого сайт попадает в результаты поиска Google. Таким образом поисковая система борется с новыми сайтами, которые пытаются искусственно улучшить свои позиции.
Время, в течении которого сайт может пробыть в песочнице, по разным данным от двух недель до года. Как показывает практика оптимизации, то данная ситуация возникает только с поисковиком Googl'а. Получается, что пока ваш сайт находится в этом фильтре, в других поисковых системах он уже будет результатах поиска.
Как правило, такое очень вредит малобюджетным проектам - тут и денег на раскрутку не предусмотрено, а еще и сайт недоступен через поиск. Но придумываем это не мы, а бороться с этим - нам. В это время можно заняться добавлением новых статей, расширение ассортимента товара, предоставление новых услуг.
Каким образом можно выйти из Песочницы?
Как ни крути, а быстро из нее не выбраться. По крайней мере до тех пор, пока не измениться система работы поисковой машины. А еще не страшна Песочница тем сайтам, на которые нету ссылок с других ресурсов - поисковый робот-паук о них даже и не узнает.
Что необходимо предпринять?
Первым делом - не нервничать :) Ну а потом просто обзаведитесь авторитетными входящимы ссылками с других ресурсов. Желательно, подобной тематики. После этого ваш сайт будет замечен роботом (Googlebot) и отправлен в эту самую Песочницу. Еще есть хороший процент с "белых" каталогов.
Займитесь изучением реферальных ссылок - откуда на ваш сайт заходят, по каким ключевым словам. Необходимо выяснить, какие страницы сайта пользуются спросом, а какие нет. Для этого можно сделать счетчик количества прочтений или возможность оценить статью.
Так что качественным и интересным сайтам никакие "Песочницы" на страшны :)
Все протоколы обмена маршрутной информацией стека TCP/IP относятся к классу адаптивных протоколов, которые в свою очередь делятся на две группы, каждая из которых связана с одним из следующих типов алгоритмов:
* дистанционно-векторный алгоритм (Distance Vector Algorithms, DVA),
* алгоритм состояния связей (Link State Algorithms, LSA).
В алгоритмах дистанционно-векторного типа каждый маршрутизатор периодически и широковещательно рассылает по сети вектор расстояний от себя до всех известных ему сетей. Под расстоянием обычно понимается число промежуточных маршрутизаторов через которые пакет должен пройти прежде, чем попадет в соответствующую сеть. Может использоваться и другая метрика, учитывающая не только число перевалочных пунктов, но и время прохождения пакетов по связи между соседними маршрутизаторами.
Получив вектор от соседнего маршрутизатора, каждый маршрутизатор добавляет к нему информацию об известных ему других сетях, о которых он узнал непосредственно (если они подключены к его портам) или из аналогичных объявлений других маршрутизаторов, а затем снова рассылает новое значение вектора по сети. В конце-концов, каждый маршрутизатор узнает информацию об имеющихся в интерсети сетях и о расстоянии до них через соседние маршрутизаторы.
Дистанционно-векторные алгоритмы хорошо работают только в небольших сетях. В больших сетях они засоряют линии связи интенсивным широковещательным трафиком, к тому же изменения конфигурации могут отрабатываться по этому алгоритму не всегда корректно, так как маршрутизаторы не имеют точного представления о топологии связей в сети, а располагают только обобщенной информацией - вектором дистанций, к тому же полученной через посредников. Работа маршрутизатора в соответствии с дистанционно-векторным протоколом напоминает работу моста, так как точной топологической картины сети такой маршрутизатор не имеет.
Наиболее распространенным протоколом, основанным на дистанционно-векторном алгоритме, является протокол RIP.
Алгоритмы состояния связей обеспечивают каждый маршрутизатор информацией, достаточной для построения точного графа связей сети. Все маршрутизаторы работают на основании одинаковых графов, что делает процесс маршрутизации более устойчивым к изменениям конфигурации. Широковещательная рассылка используется здесь только при изменениях состояния связей, что происходит в надежных сетях не так часто.
Для того, чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами со своими ближайшими соседями. Этот трафик также широковещательный, но он циркулирует только между соседями и поэтому не так засоряет сеть.
Протоколом, основанным на алгоритме состояния связей, в стеке TCP/IP является протокол OSPF.
Дистанционно-векторный протокол RIP
Протокол RIP (Routing Information Protocol) представляет собой один из старейших протоколов обмена маршрутной информацией, однако он до сих пор чрезвычайно распространен в вычислительных сетях. Помимо версии RIP для сетей TCP/IP, существует также версия RIP для сетей IPX/SPX компании Novell.
В этом протоколе все сети имеют номера (способ образования номера зависит от используемого в сети протокола сетевого уровня), а все маршрутизаторы - идентификаторы. Протокол RIP широко использует понятие "вектор расстояний". Вектор расстояний представляет собой набор пар чисел, являющихся номерами сетей и расстояниями до них в хопах.
Вектора расстояний итерационно распространяются маршрутизаторами по сети, и через несколько шагов каждый маршрутизатор имеет данные о достижимых для него сетях и о расстояниях до них. Если связь с какой-либо сетью обрывается, то маршрутизатор отмечает этот факт тем, что присваивает элементу вектора, соответствующему расстоянию до этой сети, максимально возможное значение, которое имеет специальный смысл - "связи нет". Таким значением в протоколе RIP является число 16.
При необходимости отправить пакет в сеть D маршрутизатор просматривает свою базу данных маршрутов и выбирает порт, имеющий наименьшее расстояния до сети назначения (в данном случае порт, связывающий его с маршрутизатором 3).
Для адаптации к изменению состояния связей и оборудования с каждой записью таблицы маршрутизации связан таймер. Если за время тайм-аута не придет новое сообщение, подтверждающее этот маршрут, то он удаляется из маршрутной таблицы.
При использовании протокола RIP работает эвристический алгоритм динамического программирования Беллмана-Форда, и решение, найденное с его помощью является не оптимальным, а близким к оптимальному. Преимуществом протокола RIP является его вычислительная простота, а недостатками - увеличение трафика при периодической рассылке широковещательных пакетов и неоптимальность найденного маршрута.
При обрыве связи с сетью 1 маршрутизатор М1 отмечает, что расстояние до этой сети приняло значение 16. Однако получив через некоторое время от маршрутизатора М2 маршрутное сообщение о том, что от него до сети 1 расстояние составляет 2 хопа, маршрутизатор М1 наращивает это расстояние на 1 и отмечает, что сеть 1 достижима через маршрутизатор 2. В результате пакет, предназначенный для сети 1, будет циркулировать между маршрутизаторами М1 и М2 до тех пор, пока не истечет время хранения записи о сети 1 в маршрутизаторе 2, и он не передаст эту информацию маршрутизатору М1.
Для исключения подобных ситуаций маршрутная информация об известной маршрутизатору сети не передается тому маршрутизатору, от которого она пришла.
Существуют и другие, более сложные случаи нестабильного поведения сетей, использующих протокол RIP, при изменениях в состоянии связей или маршрутизаторов сети.
Комбинирование различных протоколов обмена. Протоколы EGP и BGP сети Internet
Большинство протоколов маршрутизации, применяемых в современных сетях с коммутацией пакетов, ведут свое происхождение от сети Internet и ее предшественницы - сети ARPANET. Для того, чтобы понять их назначение и особенности, полезно сначала познакомится со структурой сети Internet, которая наложила отпечаток на терминологию и типы протоколов.
Internet изначально строилась как сеть, объединяющая большое количество существующих систем. С самого начала в ее структуре выделяли магистральную сеть (core backbone network), а сети, присоединенные к магистрали, рассматривались как автономные системы (autonomous systems). Магистральная сеть и каждая из автономных систем имели свое собственное административное управление и собственные протоколы маршрутизации. Далее маршрутизаторы будут называться шлюзами для следования традиционной терминологии Internet.
Шлюзы, которые используются для образования подсетей внутри автономной системы, называются внутренними шлюзами (interior gateways), а шлюзы, с помощью которых автономные системы присоединяются к магистрали сети, называются внешними шлюзами (exterior gateways). Непосредственно друг с другом автономные системы не соединяются. Соответственно, протоколы маршрутизации, используемые внутри автономных систем, называются протоколами внутренних шлюзов (interior gateway protocol, IGP), а протоколы, определяющие обмен маршрутной информацией между внешними шлюзами и шлюзами магистральной сети - протоколами внешних шлюзов (exterior gateway protocol, EGP). Внутри магистральной сети также может использоваться любой собственный внутренний протокол IGP.
Смысл разделения всей сети Internet на автономные системы в ее многоуровневом представлении, что необходимо для любой крупной системы, способной к расширению в больших масштабах. Внутренние шлюзы могут использовать для внутренней маршрутизации достаточно подробные графы связей между собой, чтобы выбрать наиболее рациональный маршрут. Однако, если информация такой степени детализации будет храниться во всех маршрутизаторах сети, то топологические базы данных так разрастутся, что потребуют наличия памяти гигантских размеров, а время принятия решений о маршрутизации непременно возрастет.
Поэтому детальная топологическая информация остается внутри автономной системы, а автономную систему как единое целое для остальной части Internet представляют внешние шлюзы, которые сообщают о внутреннем составе автономной системы минимально необходимые сведения - количество IP-сетей, их адреса и внутреннее расстояние до этих сетей от данного внешнего шлюза.
При инициализации внешний шлюз узнает уникальный идентификатор обслуживаемой им автономной системы, а также таблицу достижимости (reachability table), которая позволяет ему взаимодействовать с другими внешними шлюзами через магистральную сеть.
Затем внешний шлюз начинает взаимодействовать по протоколу EGP с другими внешними шлюзами и обмениваться с ними маршрутной информацией, состав которой описан выше. В результате, при отправке пакета из одной автономной системы в другую, внешний шлюз данной системы на основании маршрутной информации, полученной от всех внешних шлюзов, с которыми он общается по протоколу EGP, выбирает наиболее подходящий внешний шлюз и отправляет ему пакет.
Каждая функция работает на основе обмена сообщениями запрос-ответ.
Так как каждая автономная система работает под контролем своего административного штата, то перед началом обмена маршрутной информацией внешние шлюзы должны согласиться на такой обмен. Сначала один из шлюзов посылает запрос на установление соседских отношений (acquisition request) другому шлюзу. Если тот согласен на это, то он отвечает сообщением подтверждение установления соседских отношений (acquisition confirm), а если нет - то сообщением отказ от установления соседских отношений (acquisition refuse), которое содержит также причину отказа.
После установления соседских отношений шлюзы начинают периодически проверять состояние достижимости друг друга. Это делается либо с помощью специальных сообщений (привет (hello) и Я-услышал-тебя (I-heard-you)), либо встраиванием подтверждающей информации непосредственно в заголовок обычного маршрутного сообщения.
Обмен маршрутной информацией начинается с посылки одним из шлюзов другому сообщения запрос данных (poll request) о номерах сетей, обслуживаемых другим шлюзом и расстояниях до них от него. Ответом на это сообщение служит сообщение обновленная маршрутная информация (routing ). Если же запрос оказался некорректным, то в ответ на него отсылается сообщение об ошибке.
Все сообщения протокола EGP передаются в поле данных IP-пакетов. Сообщения EGP имеют заголовок фиксированного формата.
Поля Тип и Код совместно определяют тип сообщения, а поле Статус - информацию, зависящую от типа сообщения. Поле Номер автономной системы - это номер, назначенный той автономной системе, к которой присоединен данный внешний шлюз. Поле Номер последовательности служит для синхронизации процесса запросов и ответов.
[pagebreak]
Поле IP-адрес исходной сети в сообщениях запроса и обновления маршрутной информации обозначает сеть, соединяющую два внешних шлюза.
Сообщение об обновленной маршрутной информации содержит список адресов сетей, которые достижимы в данной автономной системе. Этот список упорядочен по внутренним шлюзам, которые подключены к исходной сети и через которые достижимы данные сети, а для каждого шлюза он упорядочен по расстоянию до каждой достижимой сети от исходной сети, а не от данного внутреннего шлюза. Для примера внешний шлюз R2 в своем сообщении указывает, что сеть 4 достижима с помощью шлюза R3 и расстояние ее равно 2, а сеть 2 достижима через шлюз R2 и ее расстояние равно 1 (а не 0, как если бы шлюз измерял ее расстояние от себя, как в протоколе RIP).
Протокол EGP имеет достаточно много ограничений, связанных с тем, что он рассматривает магистральную сеть как одну неделимую магистраль.
Развитием протокола EGP является протокол BGP (Border Gateway Protocol), имеющий много общего с EGP и используемый наряду с ним в магистрали сети Internet.
Протокол состояния связей OSPF
Протокол OSPF (Open Shortest Path Firs) является достаточно современной реализацией алгоритма состояния связей (он принят в 1991 году) и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях.
Протокол OSPF вычисляет маршруты в IP-сетях, сохраняя при этом другие протоколы обмена маршрутной информацией.
Непосредственно связанные (то есть достижимые без использования промежуточных маршрутизаторов) маршрутизаторы называются "соседями". Каждый маршрутизатор хранит информацию о том, в каком состоянии по его мнению находится сосед. Маршрутизатор полагается на соседние маршрутизаторы и передает им пакеты данных только в том случае, если он уверен, что они полностью работоспособны. Для выяснения состояния связей маршрутизаторы-соседи достаточно часто обмениваются короткими сообщениями HELLO.
Для распространения по сети данных о состоянии связей маршрутизаторы обмениваются сообщениями другого типа. Эти сообщения называются router links advertisement - объявление о связях маршрутизатора (точнее, о состоянии связей). OSPF-маршрутизаторы обмениваются не только своими, но и чужими объявлениями о связях, получая в конце-концов информацию о состоянии всех связей сети. Эта информация и образует граф связей сети, который, естественно, один и тот же для всех маршрутизаторов сети.
Кроме информации о соседях, маршрутизатор в своем объявлении перечисляет IP-подсети, с которыми он связан непосредственно, поэтому после получения информации о графе связей сети, вычисление маршрута до каждой сети производится непосредственно по этому графу по алгоритму Дэйкстры. Более точно, маршрутизатор вычисляет путь не до конкретной сети, а до маршрутизатора, к которому эта сеть подключена. Каждый маршрутизатор имеет уникальный идентификатор, который передается в объявлении о состояниях связей. Такой подход дает возможность не тратить IP-адреса на связи типа "точка-точка" между маршрутизаторами, к которым не подключены рабочие станции.
Маршрутизатор вычисляет оптимальный маршрут до каждой адресуемой сети, но запоминает только первый промежуточный маршрутизатор из каждого маршрута. Таким образом, результатом вычислений оптимальных маршрутов является список строк, в которых указывается номер сети и идентификатор маршрутизатора, которому нужно переслать пакет для этой сети. Указанный список маршрутов и является маршрутной таблицей, но вычислен он на основании полной информации о графе связей сети, а не частичной информации, как в протоколе RIP.
Описанный подход приводит к результату, который не может быть достигнут при использовании протокола RIP или других дистанционно-векторных алгоритмов. RIP предполагает, что все подсети определенной IP-сети имеют один и тот же размер, то есть, что все они могут потенциально иметь одинаковое число IP-узлов, адреса которых не перекрываются. Более того, классическая реализация RIP требует, чтобы выделенные линии "точка-точка" имели IP-адрес, что приводит к дополнительным затратам IP-адресов.
В OSPF такие требования отсутствуют: сети могут иметь различное число хостов и могут перекрываться. Под перекрытием понимается наличие нескольких маршрутов к одной и той же сети. В этом случае адрес сети в пришедшем пакете может совпасть с адресом сети, присвоенным нескольким портам.
Если адрес принадлежит нескольким подсетям в базе данных маршрутов, то продвигающий пакет маршрутизатор использует наиболее специфический маршрут, то есть адрес подсети, имеющей более длинную маску.
Например, если рабочая группа ответвляется от главной сети, то она имеет адрес главной сети наряду с более специфическим адресом, определяемым маской подсети. При выборе маршрута к хосту в подсети этой рабочей группы маршрутизатор найдет два пути, один для главной сети и один для рабочей группы. Так как последний более специфичен, то он и будет выбран. Этот механизм является обобщением понятия "маршрут по умолчанию", используемого во многих сетях.
Использование подсетей с различным количеством хостов является вполне естественным. Например, если в здании или кампусе на каждом этаже имеются локальные сети, и на некоторых этажах компьютеров больше, чем на других, то администратор может выбрать размеры подсетей, отражающие ожидаемые требования каждого этажа, а не соответствующие размеру наибольшей подсети.
В протоколе OSPF подсети делятся на три категории:
* "хост-сеть", представляющая собой подсеть из одного адреса,
* "тупиковая сеть", которая представляет собой подсеть, подключенную только к одному маршрутизатору,
* "транзитная сеть", которая представляет собой подсеть, подключенную к более чем одному маршрутизатору.
Транзитная сеть является для протокола OSPF особым случаем. В транзитной сети несколько маршрутизаторов являются взаимно и одновременно достижимыми. В широковещательных локальных сетях, таких как Ethernet или Token Ring, маршрутизатор может послать одно сообщение, которое получат все его соседи. Это уменьшает нагрузку на маршрутизатор, когда он посылает сообщения для определения существования связи или обновленные объявления о соседях.
Однако, если каждый маршрутизатор будет перечислять всех своих соседей в своих объявлениях о соседях, то объявления займут много места в памяти маршрутизатора. При определении пути по адресам транзитной подсети может обнаружиться много избыточных маршрутов к различным маршрутизаторам. На вычисление, проверку и отбраковку этих маршрутов уйдет много времени.
Когда маршрутизатор начинает работать в первый раз (то есть инсталлируется), он пытается синхронизировать свою базу данных со всеми маршрутизаторами транзитной локальной сети, которые по определению имеют идентичные базы данных. Для упрощения и оптимизации этого процесса в протоколе OSPF используется понятие "выделенного" маршрутизатора, который выполняет две функции.
Во-первых, выделенный маршрутизатор и его резервный "напарник" являются единственными маршрутизаторами, с которыми новый маршрутизатор будет синхронизировать свою базу. Синхронизировав базу с выделенным маршрутизатором, новый маршрутизатор будет синхронизирован со всеми маршрутизаторами данной локальной сети.
Во-вторых, выделенный маршрутизатор делает объявление о сетевых связях, перечисляя своих соседей по подсети. Другие маршрутизаторы просто объявляют о своей связи с выделенным маршрутизатором. Это делает объявления о связях (которых много) более краткими, размером с объявление о связях отдельной сети.
Для начала работы маршрутизатора OSPF нужен минимум информации - IP-конфигурация (IP-адреса и маски подсетей), некоторая информация по умолчанию (default) и команда на включение. Для многих сетей информация по умолчанию весьма похожа. В то же время протокол OSPF предусматривает высокую степень программируемости.
Интерфейс OSPF (порт маршрутизатора, поддерживающего протокол OSPF) является обобщением подсети IP. Подобно подсети IP, интерфейс OSPF имеет IP-адрес и маску подсети. Если один порт OSPF поддерживает более, чем одну подсеть, протокол OSPF рассматривает эти подсети так, как если бы они были на разных физических интерфейсах, и вычисляет маршруты соответственно.
Интерфейсы, к которым подключены локальные сети, называются широковещательными (broadcast) интерфейсами, так как они могут использовать широковещательные возможности локальных сетей для обмена сигнальной информацией между маршрутизаторами. Интерфейсы, к которым подключены глобальные сети, не поддерживающие широковещание, но обеспечивающие доступ ко многим узлам через одну точку входа, например сети Х.25 или frame relay, называются нешироковещательными интерфейсами с множественным доступом или NBMA (non-broadcast multi-access).
Они рассматриваются аналогично широковещательным интерфейсам за исключением того, что широковещательная рассылка эмулируется путем посылки сообщения каждому соседу. Так как обнаружение соседей не является автоматическим, как в широковещательных сетях, NBMA-соседи должны задаваться при конфигурировании вручную. Как на широковещательных, так и на NBMA-интерфейсах могут быть заданы приоритеты маршрутизаторов для того, чтобы они могли выбрать выделенный маршрутизатор.
Интерфейсы "точка-точка", подобные PPP, несколько отличаются от традиционной IP-модели. Хотя они и могут иметь IP-адреса и подмаски, но необходимости в этом нет.
В простых сетях достаточно определить, что пункт назначения достижим и найти маршрут, который будет удовлетворительным. В сложных сетях обычно имеется несколько возможных маршрутов. Иногда хотелось бы иметь возможности по установлению дополнительных критериев для выбора пути: например, наименьшая задержка, максимальная пропускная способность или наименьшая стоимость (в сетях с оплатой за пакет). По этим причинам протокол OSPF позволяет сетевому администратору назначать каждому интерфейсу определенное число, называемое метрикой, чтобы оказать нужное влияние на выбор маршрута.
Число, используемое в качестве метрики пути, может быть назначено произвольным образом по желанию администратора. Но по умолчанию в качестве метрики используется время передачи бита в 10-ти наносекундных единицах (10 Мб/с Ethernet'у назначается значение 10, а линии 56 Кб/с - число 1785). Вычисляемая протоколом OSPF метрика пути представляет собой сумму метрик всех проходимых в пути связей; это очень грубая оценка задержки пути. Если маршрутизатор обнаруживает более, чем один путь к удаленной подсети, то он использует путь с наименьшей стоимостью пути.
В протоколе OSPF используется несколько временных параметров, и среди них наиболее важными являются интервал сообщения HELLO и интервал отказа маршрутизатора (router dead interval).
HELLO - это сообщение, которым обмениваются соседние, то есть непосредственно связанные маршрутизаторы подсети, с целью установить состояние линии связи и состояние маршрутизатора-соседа. В сообщении HELLO маршрутизатор передает свои рабочие параметры и говорит о том, кого он рассматривает в качестве своих ближайших соседей. Маршрутизаторы с разными рабочими параметрами игнорируют сообщения HELLO друг друга, поэтому неверно сконфигурированные маршрутизаторы не будут влиять на работу сети.
Каждый маршрутизатор шлет сообщение HELLO каждому своему соседу по крайней мере один раз на протяжении интервала HELLO. Если интервал отказа маршрутизатора истекает без получения сообщения HELLO от соседа, то считается, что сосед неработоспособен, и распространяется новое объявление о сетевых связях, чтобы в сети произошел пересчет маршрутов.
Пример маршрутизации по алгоритму OSPF
Представим себе один день из жизни транзитной локальной сети. Пусть у нас имеется сеть Ethernet, в которой есть три маршрутизатора - Джон, Фред и Роб (имена членов рабочей группы Internet, разработавшей протокол OSPF). Эти маршрутизаторы связаны с сетями в других городах с помощью выделенных линий.
Пусть произошло восстановление сетевого питания после сбоя. Маршрутизаторы и компьютеры перезагружаются и начинают работать по сети Ethernet. После того, как маршрутизаторы обнаруживают, что порты Ethernet работают нормально, они начинают генерировать сообщения HELLO, которые говорят о их присутствии в сети и их конфигурации. Однако маршрутизация пакетов начинает осуществляться не сразу - сначала маршрутизаторы должны синхронизировать свои маршрутные базы.
На протяжении интервала отказа маршрутизаторы продолжают посылать сообщения HELLO. Когда какой-либо маршрутизатор посылает такое сообщение, другие его получают и отмечают, что в локальной сети есть другой маршрутизатор. Когда они посылают следующее HELLO, они перечисляют там и своего нового соседа.
Когда период отказа маршрутизатора истекает, то маршрутизатор с наивысшим приоритетом и наибольшим идентификатором объявляет себя выделенным (а следующий за ним по приоритету маршрутизатор объявляет себя резервным выделенным маршрутизатором) и начинает синхронизировать свою базу данных с другими маршрутизаторами.
[pagebreak]
С этого момента времени база данных маршрутных объявлений каждого маршрутизатора может содержать информацию, полученную от маршрутизаторов других локальных сетей или из выделенных линий. Роб, например, вероятно получил информацию от Мило и Робина об их сетях, и он может передавать туда пакеты данных. Они содержат информацию о собственных связях маршрутизатора и объявления о связях сети.
Базы данных теперь синхронизированы с выделенным маршрутизатором, которым является Джон. Джон суммирует свою базу данных с каждой базой данных своих соседей - базами Фреда, Роба и Джеффа - индивидуально. В каждой синхронизирующейся паре объявления, найденные только в какой-либо одной базе, копируются в другую. Выделенный маршрутизатор, Джон, распространяет новые объявления среди других маршрутизаторов своей локальной сети.
Например, объявления Мило и Робина передаются Джону Робом, а Джон в свою очередь передает их Фреду и Джеффри. Обмен информацией между базами продолжается некоторое время, и пока он не завершится, маршрутизаторы не будут считать себя работоспособными. После этого они себя таковыми считают, потому что имеют всю доступную информацию о сети.
Посмотрим теперь, как Робин вычисляет маршрут через сеть. Две из связей, присоединенных к его портам, представляют линии T-1, а одна - линию 56 Кб/c. Робин сначала обнаруживает двух соседей - Роба с метрикой 65 и Мило с метрикой 1785. Из объявления о связях Роба Робин обнаружил наилучший путь к Мило со стоимостью 130, поэтому он отверг непосредственный путь к Мило, поскольку он связан с большей задержкой, так как проходит через линии с меньшей пропускной способностью. Робин также обнаруживает транзитную локальную сеть с выделенным маршрутизатором Джоном. Из объявлений о связях Джона Робин узнает о пути к Фреду и, наконец, узнает о пути к маршрутизаторам Келли и Джеффу и к их тупиковым сетям.
После того, как маршрутизаторы полностью входят в рабочий режим, интенсивность обмена сообщениями резко падает. Обычно они посылают сообщение HELLO по своим подсетям каждые 10 секунд и делают объявления о состоянии связей каждые 30 минут (если обнаруживаются изменения в состоянии связей, то объявление передается, естественно, немедленно). Обновленные объявления о связях служат гарантией того, что маршрутизатор работает в сети. Старые объявления удаляются из базы через определенное время.
Представим, однако, что какая-либо выделенная линия сети отказала. Присоединенные к ней маршрутизаторы распространяют свои объявления, в которых они уже не упоминают друг друга. Эта информация распространяется по сети, включая маршрутизаторы транзитной локальной сети. Каждый маршрутизатор в сети пересчитывает свои маршруты, находя, может быть, новые пути для восстановления утраченного взаимодействия.
Сравнение протоколов RIP и OSPF по затратам на широковещательный трафик
В сетях, где используется протокол RIP, накладные расходы на обмен маршрутной информацией строго фиксированы. Если в сети имеется определенное число маршрутизаторов, то трафик, создаваемый передаваемой маршрутной информацией, описываются формулой (1):
(1) F = (число объявляемых маршрутов/25) x 528 (байтов в сообщении) x
(число копий в единицу времени) x 8 (битов в байте)
В сети с протоколом OSPF загрузка при неизменном состоянии линий связи создается сообщениями HELLO и обновленными объявлениями о состоянии связей, что описывается формулой (2):
(2) F = { [ 20 + 24 + 20 + (4 x число соседей)] x
(число копий HELLO в единицу времени) }x 8 +
[(число объявлений x средний размер объявления) x
(число копий объявлений в единицу времени)] x 8,
где 20 - размер заголовка IP-пакета,
24 - заголовок пакета OSPF,
20 - размер заголовка сообщения HELLO,
4 - данные на каждого соседа.
Интенсивность посылки сообщений HELLO - каждые 10 секунд, объявлений о состоянии связей - каждые полчаса. По связям "точка-точка" или по широковещательным локальным сетям в единицу времени посылается только одна копия сообщения, по NBMA сетям типа frame relay каждому соседу посылается своя копия сообщения. В сети frame relay с 10 соседними маршрутизаторами и 100 маршрутами в сети (подразумевается, что каждый маршрут представляет собой отдельное OSPF-обобщение о сетевых связях и что RIP распространяет информацию о всех этих маршрутах) трафик маршрутной информации определяется соотношениями (3) и (4):
(3) RIP: (100 маршрутов / 25 маршрутов в объявлении) x 528 x
(10 копий / 30 сек) = 5 632 б/с
(4) OSPF: {[20 + 24 + 20 + (4 x 10) x (10 копий / 10 сек)] +
[100 маршрутов x (32 + 24 + 20) + (10 копий / 30 x 60 сек]} x 8 = 1 170 б/с
Как видно из полученных результатов, для нашего гипотетического примера трафик, создаваемый протоколом RIP, почти в пять раз интенсивней трафика, создаваемого протоколом OSPF.
Использование других протоколов маршрутизации
Случай использования в сети только протокола маршрутизации OSPF представляется маловероятным. Если сеть присоединена к Internet'у, то могут использоваться такие протоколы, как EGP (Exterior Gateway protocol), BGP (Border Gateway Protocol, протокол пограничного маршрутизатора), старый протокол маршрутизации RIP или собственные протоколы производителей.
Когда в сети начинает применяться протокол OSPF, то существующие протоколы маршрутизации могут продолжать использоваться до тех пор, пока не будут полностью заменены. В некоторых случаях необходимо будет объявлять о статических маршрутах, сконфигурированных вручную.
В OSPF существует понятие автономных систем маршрутизаторов (autonomous systems), которые представляют собой домены маршрутизации, находящиеся под общим административным управлением и использующие единый протокол маршрутизации. OSPF называет маршрутизатор, который соединяет автономную систему с другой автономной системой, использующей другой протокол маршрутизации, пограничным маршрутизатором автономной системы (autonomous system boundary router, ASBR).
В OSPF маршруты (именно маршруты, то есть номера сетей и расстояния до них во внешней метрике, а не топологическая информация) из одной автономной системы импортируются в другую автономную систему и распространяются с использованием специальных внешних объявлений о связях.
Внешние маршруты обрабатываются за два этапа. Маршрутизатор выбирает среди внешних маршрутов маршрут с наименьшей внешней метрикой. Если таковых оказывается больше, чем 2, то выбирается путь с меньшей стоимостью внутреннего пути до ASBR.
Область OSPF - это набор смежных интерфейсов (территориальных линий или каналов локальных сетей). Введение понятия "область" служит двум целям - управлению информацией и определению доменов маршрутизации.
Для понимания принципа управления информацией рассмотрим сеть, имеющую следующую структуру: центральная локальная сеть связана с помощью 50 маршрутизаторов с большим количеством соседей через сети X.25 или frame relay. Эти соседи представляют собой большое количество небольших удаленных подразделений, например, отделов продаж или филиалов банка.
Из-за большого размера сети каждый маршрутизатор должен хранить огромное количество маршрутной информации, которая должна передаваться по каждой из линий, и каждое из этих обстоятельств удорожает сеть. Так как топология сети проста, то большая часть этой информации и создаваемого ею трафика не имеют смысла.
Для каждого из удаленных филиалов нет необходимости иметь детальную маршрутную информацию о всех других удаленных офисах, в особенности, если они взаимодействуют в основном с центральными компьютерами, связанными с центральными маршрутизаторами. Аналогично, центральным маршрутизаторам нет необходимости иметь детальную информацию о топологии связей с удаленными офисами, соединенными с другими центральными маршрутизаторами.
В то же время центральные маршрутизаторы нуждаются в информации, необходимой для передачи пакетов следующему центральному маршрутизатору. Администратор мог бы без труда разделить эту сеть на более мелкие домены маршрутизации для того, чтобы ограничить объемы хранения и передачи по линиям связи не являющейся необходимой информации. Обобщение маршрутной информации является главной целью введения областей в OSPF.
В протоколе OSPF определяется также пограничный маршрутизатор области (ABR, area border router). ABR - это маршрутизатор с интерфейсами в двух или более областях, одна из которых является специальной областью, называемой магистральной (backbone area). Каждая область работает с отдельной базой маршрутной информации и независимо вычисляет маршруты по алгоритму OSPF.
Пограничные маршрутизаторы передают данные о топологии области в соседние области в обобщенной форме - в виде вычисленных маршрутов с их весами. Поэтому в сети, разбитой на области, уже не действует утверждение о том, что все маршрутизаторы оперируют с идентичными топологическими базами данных.
Маршрутизатор ABR берет информацию о маршрутах OSPF, вычисленную в одной области, и транслирует ее в другую область путем включения этой информации в обобщенное суммарное объявление (summary) для базы данных другой области. Суммарная информация описывает каждую подсеть области и дает для нее метрику. Суммарная информация может быть использована тремя способами: для объявления об отдельном маршруте, для обобщения нескольких маршрутов или же служить маршрутом по умолчанию.
Дальнейшее уменьшение требований к ресурсам маршрутизаторов происходит в том случае, когда область представляет собой тупиковую область (stub area). Этот атрибут администратор сети может применить к любой области, за исключением магистральной. ABR в тупиковой области не распространяет внешние объявления или суммарные объявления из других областей. Вместо этого он делает одно суммарное объявление, которое будет удовлетворять любой IP-адрес, имеющий номер сети, отличный от номеров сетей тупиковой области. Это объявление называется маршрутом по умолчанию.
Маршрутизаторы тупиковой области имеют информацию, необходимую только для вычисления маршрутов между собой плюс указания о том, что все остальные маршруты должны проходить через ABR. Такой подход позволяет уменьшить в нашей гипотетической сети количество маршрутной информации в удаленных офисах без уменьшения способности маршрутизаторов корректно передавать пакеты.
Время от времени мы хочем добавить на наш сайт интерактивности. Часто это бывают флеш-баннеры или просто gif-анимация. Некоторые же предпочитают добавлять на сайты музыкальные элементы. Но при этом не следует забывать о такой вещи, как дополнительные расходы на трафик, которые, несомненно, тоже необходимо учитывать.
Чаще всего используются звуковые файлы в форматах mp3 или wav. Как правило, они сильно сжаты для экономии времени их загрузки, не все ведь имеют выделенные каналы на несколько мб за секунду.
Даже само консорциум W3C довольно негативно относится к использованию тега <embed> на вебстраницах. Ведь в больщинстве сайтов звук не используется, поэтому его наличие чаще всего вызывает неприятные эмоции при посещении сайта с фоновой музыкой.
Но иногда встроить фоновый звук бывает необходимо. Рассмотрим, как это делается.
В реализации на HTML использование фоновой музыки не является сложной задачей. Вам просто необходимо выбрать звуковой файл. Это может быть музыкальная композиция в формате mp3, wav или ином, но при этом она должна быть как можно меньшей по размеру.
Теперь осталось лишь интегрировать звук в веб-страницу. Для этого был создан специальный тег <embed>.
Рассмотрим пример интеграции музыки в html-код. Вот пример кода, который будет воспроизводить музыку:
.
.
.
.
.
Этот простой фрагмент кода просто проигрывает данный ему mp3 файл. Естественно, всякий звуковой файл имеет свою длительность. Но нам бы хотелось, чтобы при завершении его звучания, он снова стал проигрываться:
Также можно контролировать размеры плагина:
Также было бы здорово, если бы у посетителя была возможность контролировать фоновую музыку, но иногда это трудно интегрировать в дизайн. Поэтому можно установить у тега <embed> вот такой скрытый параметр:
Осталось лишь посоветовать быть очень осторожным при использовании фоновой музыки на вебсайте. Ведь мы ставим цель привлечь пользвателя и сделать его пребываение на ресурсе приятным.