Обычно после переустановки Windows XP необходима повторная активация ОС.
Однако это требование можно обойти. Информация об активации хранится в файле wpa.dbl в каталоге Windows\System32.
После активации и установки в машине какого-то дополнительного аппаратного устройства скопируйте этот файл на другой диск. Если есть основания для переустановки Windows XP, выполните процедуру инсталляции, а затем скопируйте последнюю версию wpa.dbl в папку Windows\System32.
Эту операцию может выполнить пользователь, зарегистрированный с правами Administrator.
Следует запустить программу Regedit и перейти к разделу HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Command Processor. После щелчка правой клавишей мыши на параметре CompletionChar DWORD выберите из меню пункт .
Измените значение на 9. После перезагрузки проведите эксперимент с командной строкой. Введите команду cd, затем первый символ нужного вам каталога и нажмите клавишу TAB.
В строке появится первый каталог, начинающийся с этой буквы. Продолжайте нажимать на TAB, чтобы увидеть в строке поочередно все папки, названия которых начинаются с данной буквы.
Этот прием применим к папкам, файлам и различным командам, таким, как rd и copy.
Дам вам несколько советов, которые желательно учесть, прежде чем устанавливать контекстную рекламу Google AdSense у себя на сайте. Хотя перед добавлением сайта (издателя) в программу Google AdSense и нужно пройти аппрув сайта, но прежде чем подавать на него сайт, лучше почитать, что они не принимают.
На сайте не должна содержаться следующая информация:
* Большое количество ненормативной лексики.
* Жестокость, расовая нетерпимость или пропаганда действий против личности, группы или организации.
* Взлом компьютерных систем.
* Наркотики и их атрибутика.
* Порнография и информация только для взрослых.
* Азартные игры или информация, относящаяся к казино.
* Чрезмерное количество рекламы на сайте.
* Любая информация, пропагандирующая нелегальную деятельность или нарушающая права других людей.
* Всплывающие окна переднего плана, всплывающие окна заднего фона или окна, открывающиеся при уходе со страницы, которые мешают навигации по сайту, скрывают объявления Google, меняют настройки пользователя или предназначены для загрузки. Использование других типов всплывающих окон, окон заднего плана или окон, открывающихся при уходе со страницы, разрешено, но их общее число не должно превышать 5 окон за один сеанс.
* Наличие чрезмерного количества часто повторяющихся и несоответствующих содержанию страницы ключевых слов на самой странице или в коде страницы.
* Содержание, вводящее пользователя в заблуждение или манипулирующее им, а также структура, позволяющая увеличить рейтинг страницы при поиске, например Вашего сайта .
* Денежные поощрения или призывы к пользователям или третьей заинтересованной стороне кликнуть на объявлениях или ссылках, провести поиск на сайтах, выполнить навигацию по сайту, прочитать письма электронной почты или заполнить какие-либо опросники
* Продажа или реклама определенных видов оружия, например, огнестрельного оружия, боеприпасов, складных ножей и кастетов.
* Продажа или реклама пива или крепких алкогольных напитков.
* Продажа или реклама табака или табачных изделий.
* Продажа или реклама лекарств, отпускаемых по рецепту.
* Продажа или продвижение товаров, являющихся копией или имитацией изделий от дизайнеров.
Из вышеизложенного становится понятно, что в адсенс принимаются лишь "белые" сайты с легальной тематикой и никак иначе. Серьезная контора, этот Google :)
Этот документ дает основную информацию о том как создавать VLANы наКаталистах, которые работают на программном обеспечении CatOS.Нижеслежующая информация применима для Catalyst 4000/4500, 5000/5500 и6000/6500 работающих в режиме Hybrid.
VLAN - это механизм создания логических броадкастовых доменов, которые могут распространяться через один или множество свичей независимо от физического местоположения (географии). Эта функция полезна для уменьшения размера броадкастовых доменов или позволяет логически сгурппировать пользователей без необходимости физического размещения последних на том же самом свитче.
Для того, чтобы создать VLAN, вы должны определить:
* Какой VTP режим и доменное имя будет использовать свитч
* Какие порты на свитче будут принадлежать к какому VLANу
* Нужна ли вам связь между VLANами или последние изолированы
Создание VLAN и портов
Прежде чем вы создадите VLAN свитч должен находиться в VTP режиме "сервер" или VTP режиме "прозрачный". Если свитч это VTP-сервер, вы должны опреелить VTP доменное имя, прежде чем вы сможете добавлять ВЛАНы. Вы должны определить доменное имя независимо от того используете ли бы VTP для распространения ВЛАНов другим свитчам в сети или нет.
1. Устанавливаем VTP домен
VTP - конфигурация по умолчнию на свитче:
CatosSwitch> (enable) show vtp domain
Domain Name Domain Index VTP Version Local Mode Password
- -
1 2 server -
CatosSwitch> (enable)set vtp domain cisco mode server
VTP domain cisco modified
2. Проверяем установленную конфигурацию
CatosSwitch> (enable)show vtp domain
Domain Name Domain Index VTP Version Local Mode Password
- -
cisco 1 2 server -
3. После установки домена, создаем VLANы на свитче
По умолчанию, все порты принадлежат одному единственному ВЛАНу. Этот VLAN называется default и имеет номер 1. Вы не можете переименоватьили удалить VLAN 1. Команда show vlan покажет все сконфигурированные VLANы в административном домене.
CatosSwitch> (enable)show vlan
VLAN Name Status IfIndex Mod/Ports, Vlans
- -
1 default active 5 1/1-2
3/1-48
4/1-16
CatosSwitch> (enable)set vlan 2 name cisco_vlan_2
Vlan 2 configuration successful
CatosSwitch> (enable)show vlan
VLAN Name Status IfIndex Mod/Ports, Vlans
- -
1 default active 5 1/1-2
3/1-48
4/1-16
2 cisco_vlan_2 active 75
Теперь добавляем в созданный VLAN порты с помошью команды set vlan vlan_number mod/ports
VLAN Name Status IfIndex Mod/Ports, Vlans
- -
1 default active 5 1/1-2
3/16-48
4/1-16
2 cisco_vlan_2 active 75 3/1-12
3 VLAN0003 active 76 3/13-15
Удаление портов из VLAN
Для удаления порта из VLAN выполните команду set vlan vlan_number mod/ports и поместите порт в другой VLAN. Такое перемещение в конечном счете назначит порт в другой VLAN, т.к. все порты изначально принадлежат VLAN 1.
Для того, чтобы удалить VLAN выполните команду clear vlan. В этом случае порты отключаются, поскольку они остаются чатью этого VLAN, а такого VLAN больше не существует. Свитч выведет предупреждение и даст вам возможность отменить последнюю команду.
CatosSwitch> (enable)clear vlan 3
This command will deactivate all ports on vlan 3
in the entire management domain.
Do you want to continue(y/n) [n]? y
Vlan 3 deleted
CatosSwitch> (enable)show vlan
VLAN Name Status IfIndex Mod/Ports, Vlans
- -
1 default active 5 1/1-2
3/16-48
4/1-16
2 cisco_vlan_2 active 75 3/1-12
Порты 3/13-3/15 не отображаются в выводе команды show vlan, поскольку удаленеие VLAN 3 деактивировало эти порты. Порты останутся в таком состоянии до тех пор пока вы их не добавите обратно в другой VLAN.
Этот документ показывает как создавать и конфигурировать VLANы на свитчах серий Catalyst 2900XL, 3500XL, 2950, 2970, и 2940.
Создание VLAN и портов
Выполняйте нижеследуюшие шаги для того, чтобы создать VLAN.
1. Решите, нужно ли вам использование VTP. C VTP вы можете выполнять конфигурационные изменения централизированно на одном свитче, далее эти изменения автоматически распространятся на все остальные свитчи в вашей сети. По умолчнию свитчи серий Catalyst 2900XL, 3500XL, 2950, 2970, и 2940 находятся в режиме "сервер". Команда show vtp status показывает состояние VTP.
3524XL#show vtp status
VTP Version : 2
Configuration Revision : 0
Maximum VLANs supported locally : 254
Number of existing VLANs : 5
VTP Operating Mode : Server
!- Это режим по умолчанию
VTP Domain Name :
VTP Pruning Mode : Disabled
VTP V2 Mode : Disabled
VTP Traps Generation : Disabled
MD5 digest : 0xBF 0x86 0x94 0x45 0xFC 0xDF 0xB5 0x70
Configuration last modified by 0.0.0.0 at 0-0-00 00:00:00
2. После того как вы установили и проверили VTP домен, создаем VLAN на свитче. По умолчению все порты находятся в одном единственном VLAN, называемом default и имееющим номер 1. Вы не можете переименовать или удалить VLAN 1. Команда show vlan покажет информацию о VLANах на этом свитче.
Для того, чтобы создать VLAN используете следующие команды:
3524XL# vlan database
!- Вы должны войти в базу данных VLAN чтобы сконфигурировать VLAN.
3524XL(vlan)# vtp server
Device mode already VTP SERVER.
!- Вы можете опустить последнюю команду, если свитч уже находится в режиме "сервер" и
!- вы хотите, чтобы свитч оставлся в этом режиме.
Внимание! Свитч может создавать VLAN только если он находиться в режиме VTP - "сервер" или VTP - "прозрачный".
3524XL(vlan)# vlan 2 name cisco_vlan_2
VLAN 2 added:
Name: cisco_vlan_2
3524XL(vlan)# exit
!- Вы должны выйти из базыданный VLAN для того, чтобы изменения были приняты.
APPLY completed.
Exiting....
3524XL#
3. Проверяем созданный VLAN
3524XL# show vlan
VLAN Name Status Ports
-
1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/4,
Fa0/5, Fa0/6, Fa0/7, Fa0/8,
Fa0/9, Fa0/10, Fa0/11, Fa0/12,
Fa0/13, Fa0/14, Fa0/15, Fa0/16,
Fa0/17, Fa0/18, Fa0/19, Fa0/20,
Fa0/21, Fa0/22, Fa0/23, Fa0/24,
Gi0/1, Gi0/2
2 cisco_vlan_2 active
Вы можете добавить порты в созданный VLAN. Вы должны перейти в режим конфигурации интерфейса для каждого порта, кторый вы хотите добавить в VLAN.
3524XL#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
!- Эти команды назначат интерфейсFast Ethernet 0/2 в VLAN 2.
3524XL(config)#interface fastethernet 0/2
3524XL(config-if)#switchport access vlan 2
3524XL(config-if)#exit
!- Эти команды назначат интерфейсFast Ethernet 0/3 в VLAN 2.
3524XL(config)#interface fastethernet 0/3
3524XL(config-if)#switchport access vlan 2
3524XL(config-if)#end
3524XL#
00:55:26: %SYS-5-CONFIG_I: Configured console by console
!- Сохраняем конфигурацию
3524XL#write memory
Building configuration...
3524XL# show vlan
VLAN Name Status Ports
-
1 default active Fa0/1, Fa0/4, Fa0/5, Fa0/6,
Fa0/7, Fa0/8, Fa0/9, Fa0/10,
Fa0/11, Fa0/12, Fa0/13, Fa0/14,
Fa0/15, Fa0/16, Fa0/17, Fa0/18,
Fa0/19, Fa0/20, Fa0/21, Fa0/22,
Fa0/23, Fa0/24, Gi0/1, Gi0/2
2 cisco_vlan_2 active Fa0/2, Fa0/3
Вы можете назначать порты свитчей уровня L2 серии Catalyst XL в несколько VLANов, но свитч поддерживает только один активный интерфейс управления VLAN и другие SVI не поднимутся в сотсояние up/up из-за L2 функциональности. Поэтому такой свитч поддерживает только один активны управляющий L3 адрес.
[pagebreak]
На свитчах серии Catalyst XL вы можете выполнить команду management в конфигурационном режиме SVI интерфейса, для того, чтобы автоматически погасить VLAN 1 и перетащить IP адрес в новый VLAN.
Interface IP-Address OK? Method Status Protocol
VLAN1 10.0.0.2 YES manual up down
VLAN2 20.0.0.2 YES manual up up
FastEthernet0/1 unassigned YES unset up up
FastEthernet0/2 unassigned YES unset up up
Удаление порта из VLAN
Для того, чтобы удалить порт из VLAN используйте команду no switchport access vlan vlan_number в конфигурации интерфейса. После того, как порт удаляется из VLANа, он автоматически помещается в default VLAN. Например, если мы удаляем интерфейс fa0/2 из VLAN 2, выполним команды:
3524XL#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
!- Эти две команды удалят интерфейсFast Ethernet 0/2 из VLAN 2.
3524XL(config)#interface fastethernet 0/2
3524XL(config-if)#no switchport access vlan 2
3524XL(config-if)#end
3524XL# show vlan
VLAN Name Status Ports
- -
1 default active Fa0/1, Fa0/2, Fa0/4, Fa0/5,
!- Заметим: Fast Ethernet 0/2 обратно добавлен в default VLAN.
Для того, чтобы удалить VLAN используем команду no vlan vlan_number в режиме базы данных VLAN. Интерфейс в этом VLAN остается частью такого VLAN и деактивируется, поскольку он не принадлежит никакому VLANу. Например:
Заметим, что порт fa0/3 не отображается в выводе команды show vlan. Удаление VLAN 2 деактивировало этот порт и до тех порт пока вы его не добавите обратно в какой-нибудь VLAN, этот порт не будет отображаться и не будет функционировать.
Типы адресов: физический (MAC-адрес), сетевой (IP-адрес) и символьный (DNS-имя).
Каждый компьютер в сети TCP/IP имеет адреса трех уровней:
* Локальный адрес узла, определяемый технологией, с помощью которой построена отдельная сеть, в которую входит данный узел. Для узлов, входящих в локальные сети - это МАС-адрес сетевого адаптера или порта маршрутизатора, например, 11-А0-17-3D-BC-01. Эти адреса назначаются производителями оборудования и являются уникальными адресами, так как управляются централизовано. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байтов: старшие 3 байта - идентификатор фирмы производителя, а младшие 3 байта назначаются уникальным образом самим производителем. Для узлов, входящих в глобальные сети, такие как Х.25 или frame relay, локальный адрес назначается администратором глобальной сети.
* IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Network Information Center, NIC), если сеть должна работать как составная часть Internet. Обычно провайдеры услуг Internet получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами.
Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла - гибкое, и граница между этими полями может устанавливаться весьма произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.
* Символьный идентификатор-имя, например, SERV1.IBM.COM. Этот адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена. Такой адрес, называемый также DNS-именем, используется на прикладном уровне, например, в протоколах FTP или telnet.
Три основных класса IP-адресов
IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значения каждого байта в десятичной форме, и разделенных точками, например:
128.10.2.30 - традиционная десятичная форма представления адреса,
10000000 00001010 00000010 00011110 - двоичная форма представления этого же адреса.
Адрес состоит из двух логических частей - номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая к номеру узла, определяется значениями первых битов адреса:
* Если адрес начинается с 0, то сеть относят к классу А, и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) В сетях класса А количество узлов должно быть больше 216 , но не превышать 224.
* Если первые два бита адреса равны 10, то сеть относится к классу В и является сетью средних размеров с числом узлов 28 - 216. В сетях класса В под адрес сети и под адрес узла отводится по 16 битов, то есть по 2 байта.
* Если адрес начинается с последовательности 110, то это сеть класса С с числом узлов не больше 28. Под адрес сети отводится 24 бита, а под адрес узла - 8 битов.
* Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес - multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.
* Если адрес начинается с последовательности 11110, то это адрес класса Е, он зарезервирован для будущих применений.
В таблице приведены диапазоны номеров сетей, соответствующих каждому классу сетей.
Класс | Наименьший адрес | Наибольший адрес
A _________01.0.0 ___________126.0.0.0
B _________128.0.0.0_________191.255.0.0
C _________192.0.1.0._________223.255.255.0
D _________224.0.0.0__________239.255.255.255
E _________240.0.0.0 _________247.255.255.255
Уже упоминавшаяся форма группового IP-адреса - multicast - означает, что данный пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Узлы сами идентифицируют себя, то есть определяют, к какой из групп они относятся. Один и тот же узел может входить в несколько групп. Такие сообщения в отличие от широковещательных называются мультивещательными. Групповой адрес не делится на поля номера сети и узла и обрабатывается маршрутизатором особым образом.
В протоколе IP нет понятия широковещательности в том смысле, в котором оно используется в протоколах канального уровня локальных сетей, когда данные должны быть доставлены абсолютно всем узлам. Как ограниченный широковещательный IP-адрес, так и широковещательный IP-адрес имеют пределы распространения в интерсети - они ограничены либо сетью, к которой принадлежит узел - источник пакета, либо сетью, номер которой указан в адресе назначения. Поэтому деление сети с помощью маршрутизаторов на части локализует широковещательный шторм пределами одной из составляющих общую сеть частей просто потому, что нет способа адресовать пакет одновременно всем узлам всех сетей составной сети.
Отображение физических адресов на IP-адреса: протоколы ARP и RARP
В протоколе IP-адрес узла, то есть адрес компьютера или порта маршрутизатора, назначается произвольно администратором сети и прямо не связан с его локальным адресом, как это сделано, например, в протоколе IPX. Подход, используемый в IP, удобно использовать в крупных сетях и по причине его независимости от формата локального адреса, и по причине стабильности, так как в противном случае, при смене на компьютере сетевого адаптера это изменение должны бы были учитывать все адресаты всемирной сети Internet (в том случае, конечно, если сеть подключена к Internet'у).
Локальный адрес используется в протоколе IP только в пределах локальной сети при обмене данными между маршрутизатором и узлом этой сети. Маршрутизатор, получив пакет для узла одной из сетей, непосредственно подключенных к его портам, должен для передачи пакета сформировать кадр в соответствии с требованиями принятой в этой сети технологии и указать в нем локальный адрес узла, например его МАС-адрес. В пришедшем пакете этот адрес не указан, поэтому перед маршрутизатором встает задача поиска его по известному IP-адресу, который указан в пакете в качестве адреса назначения. С аналогичной задачей сталкивается и конечный узел, когда он хочет отправить пакет в удаленную сеть через маршрутизатор, подключенный к той же локальной сети, что и данный узел.
Для определения локального адреса по IP-адресу используется протокол разрешения адреса Address Resolution Protocol, ARP. Протокол ARP работает различным образом в зависимости от того, какой протокол канального уровня работает в данной сети - протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещательного доступа одновременно ко всем узлам сети, или же протокол глобальной сети (X.25, frame relay), как правило не поддерживающий широковещательный доступ. Существует также протокол, решающий обратную задачу - нахождение IP-адреса по известному локальному адресу. Он называется реверсивный ARP - RARP (Reverse Address Resolution Protocol) и используется при старте бездисковых станций, не знающих в начальный момент своего IP-адреса, но знающих адрес своего сетевого адаптера.
В локальных сетях протокол ARP использует широковещательные кадры протокола канального уровня для поиска в сети узла с заданным IP-адресом.
Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно. Все узлы локальной сети получают ARP запрос и сравнивают указанный там IP-адрес с собственным. В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP запросе отправитель указывает свой локальный адрес. ARP-запросы и ответы используют один и тот же формат пакета. Так как локальные адреса могут в различных типах сетей иметь различную длину, то формат пакета протокола ARP зависит от типа сети.
В поле типа сети для сетей Ethernet указывается значение 1. Поле типа протокола позволяет использовать пакеты ARP не только для протокола IP, но и для других сетевых протоколов.
Длина локального адреса для протокола Ethernet равна 6 байтам, а длина IP-адреса - 4 байтам. В поле операции для ARP запросов указывается значение 1 для протокола ARP и 2 для протокола RARP.
Узел, отправляющий ARP-запрос, заполняет в пакете все поля, кроме поля искомого локального адреса (для RARP-запроса не указывается искомый IP-адрес). Значение этого поля заполняется узлом, опознавшим свой IP-адрес.
В глобальных сетях администратору сети чаще всего приходится вручную формировать ARP-таблицы, в которых он задает, например, соответствие IP-адреса адресу узла сети X.25, который имеет смысл локального адреса. В последнее время наметилась тенденция автоматизации работы протокола ARP и в глобальных сетях. Для этой цели среди всех маршрутизаторов, подключенных к какой-либо глобальной сети, выделяется специальный маршрутизатор, который ведет ARP-таблицу для всех остальных узлов и маршрутизаторов этой сети.
При таком централизованном подходе для всех узлов и маршрутизаторов вручную нужно задать только IP-адрес и локальный адрес выделенного маршрутизатора. Затем каждый узел и маршрутизатор регистрирует свои адреса в выделенном маршрутизаторе, а при необходимости установления соответствия между IP-адресом и локальным адресом узел обращается к выделенному маршрутизатору с запросом и автоматически получает ответ без участия администратора.
[pagebreak]
Отображение символьных адресов на IP-адреса: служба DNS
DNS (Domain Name System) - это распределенная база данных, поддерживающая иерархическую систему имен для идентификации узлов в сети Internet. Служба DNS предназначена для автоматического поиска IP-адреса по известному символьному имени узла. Спецификация DNS определяется стандартами RFC 1034 и 1035. DNS требует статической конфигурации своих таблиц, отображающих имена компьютеров в IP-адрес.
Протокол DNS является служебным протоколом прикладного уровня. Этот протокол несимметричен - в нем определены DNS-серверы и DNS-клиенты. DNS-серверы хранят часть распределенной базы данных о соответствии символьных имен и IP-адресов. Эта база данных распределена по административным доменам сети Internet. Клиенты сервера DNS знают IP-адрес сервера DNS своего административного домена и по протоколу IP передают запрос, в котором сообщают известное символьное имя и просят вернуть соответствующий ему IP-адрес.
Если данные о запрошенном соответствии хранятся в базе данного DNS-сервера, то он сразу посылает ответ клиенту, если же нет - то он посылает запрос DNS-серверу другого домена, который может сам обработать запрос, либо передать его другому DNS-серверу. Все DNS-серверы соединены иерархически, в соответствии с иерархией доменов сети Internet. Клиент опрашивает эти серверы имен, пока не найдет нужные отображения. Этот процесс ускоряется из-за того, что серверы имен постоянно кэшируют информацию, предоставляемую по запросам. Клиентские компьютеры могут использовать в своей работе IP-адреса нескольких DNS-серверов, для повышения надежности своей работы.
База данных DNS имеет структуру дерева, называемого доменным пространством имен, в котором каждый домен (узел дерева) имеет имя и может содержать поддомены. Имя домена идентифицирует его положение в этой базе данных по отношению к родительскому домену, причем точки в имени отделяют части, соответствующие узлам домена.
Корень базы данных DNS управляется центром Internet Network Information Center. Домены верхнего уровня назначаются для каждой страны, а также на организационной основе. Имена этих доменов должны следовать международному стандарту ISO 3166. Для обозначения стран используются трехбуквенные и двухбуквенные аббревиатуры, а для различных типов организаций используются следующие аббревиатуры:
* com - коммерческие организации (например, microsoft.com);
* edu - образовательные (например, mit.edu);
* gov - правительственные организации (например, nsf.gov);
* org - некоммерческие организации (например, fidonet.org);
* net - организации, поддерживающие сети (например, nsf.net).
Каждый домен DNS администрируется отдельной организацией, которая обычно разбивает свой домен на поддомены и передает функции администрирования этих поддоменов другим организациям. Каждый домен имеет уникальное имя, а каждый из поддоменов имеет уникальное имя внутри своего домена. Имя домена может содержать до 63 символов. Каждый хост в сети Internet однозначно определяется своим полным доменным именем (fully qualified domain name, FQDN), которое включает имена всех доменов по направлению от хоста к корню.
Автоматизация процесса назначения IP-адресов узлам сети - протокол DHCP
Как уже было сказано, IP-адреса могут назначаться администратором сети вручную. Это представляет для администратора утомительную процедуру. Ситуация усложняется еще тем, что многие пользователи не обладают достаточными знаниями для того, чтобы конфигурировать свои компьютеры для работы в интерсети и должны поэтому полагаться на администраторов.
Протокол Dynamic Host Configuration Protocol (DHCP) был разработан для того, чтобы освободить администратора от этих проблем. Основным назначением DHCP является динамическое назначение IP-адресов. Однако, кроме динамического, DHCP может поддерживать и более простые способы ручного и автоматического статического назначения адресов.
В ручной процедуре назначения адресов активное участие принимает администратор, который предоставляет DHCP-серверу информацию о соответствии IP-адресов физическим адресам или другим идентификаторам клиентов. Эти адреса сообщаются клиентам в ответ на их запросы к DHCP-серверу.
При автоматическом статическом способе DHCP-сервер присваивает IP-адрес (и, возможно, другие параметры конфигурации клиента) из пула наличных IP-адресов без вмешательства оператора. Границы пула назначаемых адресов задает администратор при конфигурировании DHCP-сервера. Между идентификатором клиента и его IP-адресом по-прежнему, как и при ручном назначении, существует постоянное соответствие. Оно устанавливается в момент первичного назначения сервером DHCP IP-адреса клиенту. При всех последующих запросах сервер возвращает тот же самый IP-адрес.
При динамическом распределении адресов DHCP-сервер выдает адрес клиенту на ограниченное время, что дает возможность впоследствии повторно использовать IP-адреса другими компьютерами. Динамическое разделение адресов позволяет строить IP-сеть, количество узлов в которой намного превышает количество имеющихся в распоряжении администратора IP-адресов.
DHCP обеспечивает надежный и простой способ конфигурации сети TCP/IP, гарантируя отсутствие конфликтов адресов за счет централизованного управления их распределением. Администратор управляет процессом назначения адресов с помощью параметра "продолжительности аренды" (lease duration), которая определяет, как долго компьютер может использовать назначенный IP-адрес, перед тем как снова запросить его от сервера DHCP в аренду.
Примером работы протокола DHCP может служить ситуация, когда компьютер, являющийся клиентом DHCP, удаляется из подсети. При этом назначенный ему IP-адрес автоматически освобождается. Когда компьютер подключается к другой подсети, то ему автоматически назначается новый адрес. Ни пользователь, ни сетевой администратор не вмешиваются в этот процесс. Это свойство очень важно для мобильных пользователей.
Протокол DHCP использует модель клиент-сервер. Во время старта системы компьютер-клиент DHCP, находящийся в состоянии "инициализация", посылает сообщение discover (исследовать), которое широковещательно распространяется по локальной сети и передается всем DHCP-серверам частной интерсети. Каждый DHCP-сервер, получивший это сообщение, отвечает на него сообщением offer (предложение), которое содержит IP-адрес и конфигурационную информацию.
Компьютер-клиент DHCP переходит в состояние "выбор" и собирает конфигурационные предложения от DHCP-серверов. Затем он выбирает одно из этих предложений, переходит в состояние "запрос" и отправляет сообщение request (запрос) тому DHCP-серверу, чье предложение было выбрано.
Выбранный DHCP-сервер посылает сообщение DHCP-acknowledgment (подтверждение), содержащее тот же IP-адрес, который уже был послан ранее на стадии исследования, а также параметр аренды для этого адреса. Кроме того, DHCP-сервер посылает параметры сетевой конфигурации. После того, как клиент получит это подтверждение, он переходит в состояние "связь", находясь в котором он может принимать участие в работе сети TCP/IP. Компьютеры-клиенты, которые имеют локальные диски, сохраняют полученный адрес для использования при последующих стартах системы. При приближении момента истечения срока аренды адреса компьютер пытается обновить параметры аренды у DHCP-сервера, а если этот IP-адрес не может быть выделен снова, то ему возвращается другой IP-адрес.
В протоколе DHCP описывается несколько типов сообщений, которые используются для обнаружения и выбора DHCP-серверов, для запросов информации о конфигурации, для продления и досрочного прекращения лицензии на IP-адрес. Все эти операции направлены на то, чтобы освободить администратора сети от утомительных рутинных операций по конфигурированию сети.
Однако использование DHCP несет в себе и некоторые проблемы. Во-первых, это проблема согласования информационной адресной базы в службах DHCP и DNS. Как известно, DNS служит для преобразования символьных имен в IP-адреса. Если IP-адреса будут динамически изменятся сервером DHCP, то эти изменения необходимо также динамически вносить в базу данных сервера DNS. Хотя протокол динамического взаимодействия между службами DNS и DHCP уже реализован некоторыми фирмами (так называемая служба Dynamic DNS), стандарт на него пока не принят.
Во-вторых, нестабильность IP-адресов усложняет процесс управления сетью. Системы управления, основанные на протоколе SNMP, разработаны с расчетом на статичность IP-адресов. Аналогичные проблемы возникают и при конфигурировании фильтров маршрутизаторов, которые оперируют с IP-адресами.
Наконец, централизация процедуры назначения адресов снижает надежность системы: при отказе DHCP-сервера все его клиенты оказываются не в состоянии получить IP-адрес и другую информацию о конфигурации. Последствия такого отказа могут быть уменьшены путем использовании в сети нескольких серверов DHCP, каждый из которых имеет свой пул IP-адресов.
Реферал - это url, с которого посетитель приходит на ваш сайт. К примеру, на странице http://www.site.com/links.html есть ссылка на ваш сайт. Если человек нажмет на нее, то он попадет на ваш сайт. Тогда url http://www.site.com/links.html будет вашим рефералом. Каждому владельцу ресурса не будет лишним знать, откуда именно заходят посетители на его сайт. Для тех, кому интересно решение данной проблемы (задачи) с помощью PHP, и посвящена данная статья.
Не спорю, что у любой уважающей себя CMS (content management system, система управления содержанием) есть модули (боты), которые отвечают за сбор статистики. Для тех же, у кого на сайте не стоит CMS, есть возможность попрактиковаться в написании и конфигурировании собственного мини-модуля статистики.
Его можно реализовать в небольшом скрипте, который будет отслеживать нажатия на ссылки, записывать их URL'ы в базу данных (в нашем примере это MySQL) и генерировать статистику в виде графика. Да и поможет разобраться, как это все работает на самом деле, не копаясь в модулях сторонних разработчиков.
Нам потребуется три файла:
* referer.sql (запрос к БД на создание таблицы, где будет храниться статистика);
* referer.php (сам скрипт);
* viewreferer.php (скрипт для просмотра статистики).
Для создания таблицы referer необходимо выполнить запрос referer.sql. Вот его содержание:
Теперь займемся файлом referer.php. Зададим значения переменным:
.
.
.
.
.
.
.
.
.
.
.
.
В переменную $ref заносим информацию о ссылке-реферере:
.
.
С помощью функции strtolower переводим значение переменной $ref в нижний регистр. Это делается для того, чтобы ссылки типа www.site.com, www.Site.com или WWW.SITE.COM были одинакового регистра.
Если переменная $ref не пустая,
.
.
то подключаемся к БД:
Производим выборку из столбца url, значение которого совпадает с $ref
Переменная $rows содержит количество совпадений
.
.
.
Если же не найдено ни одной записи (т.е c такого url'a еще не было рефералов)
устанавливаем значение переменной $hits в "1"
.
.
А далее просто выполняем вставку url'а и переменной $hits в нашу таблицу (referer):
Выполняем запрос:
.
.
.
Если же были найдены записи по данному url (т.е c этого url'a уже заходили рефералы),
Инкрементируем значение переменной $hits (увеличиваем на "1")
.
.
.
.
.
.
В ту страницу сайта, для которой необходима статистика по рефералам (как правило - это главная страница, index.php), необходимо вставить ссылку на скрипт referer.php. Предполагается, что файлы referer.php и index.php находятся в одной папке.
.
.
.
На этом и заканчивается содержимое скрипта referer.php. Но, как я написал выше, есть также и графическая статистика. Это будет наш третий файл - viewreferer.php.
Задаем переменные для подключения к БД:
.
.
.
.
.
.
Так как этот скрипт генерирует таблицу с графиком, то есть смысл для определенных диапазонов значений хитов назначить определенные цвета.
Опять соединяемся с БД:
Делаем выборку из БД и упорядочиваем ее по убыванию (desc) количества хитов (столбец hits).
Подсчитываем количество строк с уникальными рефералами (это попросту число строк в нашей таблице referer).
.
.
.
Если же не найдено ни одной записи (таблица пуста), то выводим сообщение:
Выбираем цвет для текущего значения hits:
Табличка с графиком строится как результат MySQL-запроса. В первой колонке содержится название url'а, а во второй - количество хитов, а в третей - цветная полоса.
.
.
.
.
.
.
.
.
.
.
.
Итак, все готово! Теперь можно периодически вызывать скрипт viewreferer.php и смотреть графическую статистику переходов на ваш сайт.
Еще более интеллектуальный вид управления предоставляет HTTP/1.1 на основе содержимого с помощью директив Vary. Я очень рекомендую применять его при формировании изображений или текстов большого объема, которые как показывает практика изменяются крайне редко.
При этом у пользователя в случае возврата не будет происходить их повторной выгрузки, если содержание осталось прежним, и страница будет взята с Вашего сервера, если ее содержание изменилось. Рассмотрим пример выдачи изображения из базы данных индентифицируемых по ID. Вызов страницы выглядит следующим образом:
а значит по правилам страница не будет сохраняться в кэш (присутствуют параметры), но через заголовок можно управлять этим.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Для управления используется MD5 сумма содержимого изображения. Пока содержание не изменилось, сумма будет постояной. В случае изменения содержания в базе на сервере клиент выполнит запрос для повторного формирования содержания. Пока изображение постоянно содержимое будет отображаться из кэш.
Я провел небольшое исследование, и вот что я выяснил: При закрытии приложения (используя системное меню или вызывая метод закрытия формы), возникают следующие события:
FormCloseQuery - действие по умолчанию, устанавливает переменную CanClose в значание TRUE и продолжает закрытие формы.
1. FormClose
2. FormDestroy
Если приложение активно и вы пытаетесь завершить работу Windows (Shut Down), происходят следующие события (с соблюдением последовательности):
1. FormCloseQuery
2. FormDestroy
Мы видим, что метод FormClose в этом случае не вызывается.
Теперь воспроизведем всю последовательность событий, происходящую при попытке завершить работу Windows:
1. Windows посылает сообщение WM_QUERYENDSESSION всем приложениям и ожидает ответ.
2. Каждое приложение получает сообщение и возвращает одну из величин: не равную нулю - приложение готово завершить свою работу, 0 - приложение не может завершить свою работу.
3. Если одно из приложений возвращает 0, Windows не завершает свою работу, а снова рассылает всем окнам сообщение, на этот раз WM_ENDSESSION.
4. Каждое приложение должно снова подтвердить свою готовность завершить работу, поэтому операционная система ожидает ответа TRUE, резонно предполагая, что оставшиеся приложения с момента предыдущего сообщения закрыли свои сессии и готовы завершить работу. Теперь посмотрим, как на это реагирует Delphi-приложение: приложение возвращает значение TRUE и немедленно вызывает метод FormDestroy, игнорируя при этом метод FormClose. Налицо проблема.
5. Завершение работы Windows.
Первое решение проблемы: приложение Delphi на сообщение WM_QUERYENDSESSION должно возвратить 0, не дав при этом Windows завершить свою работу. При этом бессмысленно пытаться воспользоваться методом FormCloseQuery, поскольку нет возможности определить виновника завершения работы приложения (это может являться как результатом сообщения WM_QUERYENDSESSION, так и просто действием пользователя при попытке закрыть приложение).
Другое решение состоит в том, чтобы при получении сообщения WM_QUERYENDSESSION самим выполнить необходимые действия, вызвав метод FormClose.
Закладка - это элемент документа, которому присвоено уникальное имя.
Это имя можно использовать для последующих ссылок. Например, можно использовать закладку для определения текста, который необходимо проверить (вставить, заменить) позже.
Ниже представлен программный код, позволяющий устанавливать, удалять закладки, а так же осуществлять переход к существующей закладке.
Естественно, перед применением описанных команд, нужно выполнить инициализацию переменной Word, а затем открыть или создать новый документ. Подробнее...
1. Добавление закладки
где BookMarkName - переменная типа string, содержащая имя закладки.
2. Переход к закладке
Переход к закладке можно осуществить по ее имени:
либо по порядковому номеру:
3. Удаление закладки
Удаление производится аналогично переходу к закладке, соответственно, можно использовать два варианта: через имя или индекс закладки.
4. Отображение закладок в документе
5. Скрытые (зарезервированные) закладки
MS Word автоматически устанавливает следующие закладки:
StartOfDoc - начало документа;
EndOfDoc - конец документа;
Sel - переход к текущей позиции ввода.
Например, переход в начало документа.
Примечания:
Название закладки должно начинаться с буквы. Чтобы отобразить закладки в документе, выберите в Word в меню Сервис команду Параметры, а затем на вкладке Вид установите флажок Закладки.