Для наполнения сайта контентом нужно прежде всего определиться с тематикой вашего сайта и типом информации, которая будет основным содержанием сайта: новости, статьи, обзоры… И в соответствии с этими критериями уже делать выбор откуда будет черпаться информация для сайта. Самый постой и дешевый вариант – это писать статьи, обзоры или новости самостоятельно, но это возможно только в случае наличия у вас свободного времени, желания и самое главное – понимания того, о чем вы пишите. Но в большинстве случаев, через некоторое время это надоедает, становится неинтересным, не хватает времени или проста становится лень это делать… вот тут то вы и задаетесь вопросом: «Где брать контент?»
Вот несколько вариантов ответа на этот вопрос:
Нанять человека (копирайтера), который будет постоянно писать статьи для вашего сайта по заданной вами тематике, с использованием выбранных вами ключевых слов. Но за определенную плату. Обычно цена рассчитывается по объему и качеству текста.
Покупать статьи интересующей вас тематики на биржах готовых статей, таких как TextSale и Content - Market или же можно заказать SEO-тексты у нас. Обычно тексты на таких биржах не блещут особым качеством, потому что большая часть из всего материала является сканированным и распознанным вариантом какой-либо печатной статьи из журнала или книги. Хотя иногда и попадаются и достойные варианты статей, но и цена у них обычно адекватно отличается от средней цены по системе.
Использовать рерайт – из исходного текста статьи получают новую со старым смыслом, стоит обычно значительно дешевле, обычно на 1-2 порядка. Использование данного варианта идеально при маленьком бюджете и сжатых сроках.
Так же можно использовать чужие статьи, новости или обзоры. Но в этом случае на целевых посетителей, которые будут идти из поисковых систем рассчитывать, особо не стоит. Данный вариант только кажется наиболее дешевым, на самом деле, на продвижение такого сайта в поисковых системах понадобится значительно больше сил, времени и денег. Поэтому НЕ СОВЕТУЮ.
Существуют и другие источники контента, о которых говорить думаю, пока не стоит.
В заключении хотелось бы посоветовать начинающим сайто-строителям, писать свои статьи самостоятельно, пусть они будут по началу некрасивые и не звучные, зато написанные вами, и в случае вопросов у посетителей вы всегда сможете на них квалифицированно ответить, не прибегая к консультациям автора вашей статьи.
В этой статье я попытаюсь дать оценку быстродействию файловых систем, используемых в операционных системах WindowsNT/2000. Статья не содержит графиков и результатов тестирований, так как эти результаты слишком сильно зависят от случая, методик тестирования и конкретных систем, и не имеют почти никакой связи с реальным положением дел. В этом материале я вместо этого постараюсь описать общие тенденции и соображения, связанные с производительностью файловых систем. Прочитав данный материал, вы получите информацию для размышлений и сможете сами сделать выводы, понять, какая система будет быстрее в ваших условиях, и почему. Возможно, некоторые факты помогут вам также оптимизировать быстродействие своей машины с точки зрения файловых систем, подскажут какие-то решения, которые приведут к повышению скорости работы всего компьютера.
В данном обзоре упоминаются три системы - FAT (далее FAT16), FAT32 и NTFS, так как основной вопрос, стоящий перед пользователями Windows2000 - это выбор между этими вариантами. Я приношу извинение пользователям других файловых систем, но проблема выбора между двумя, внешне совершенно равнозначными, вариантами со всей остротой стоит сейчас только в среде Windows2000. Я надеюсь, всё же, что изложенные соображения покажутся вам любопытными, и вы сможете сделать какие-то выводы и о тех системах, с которыми вам приходится работать.
Данная статья состоит из множества разделов, каждый из которых посвящен какому-то одному вопросу быстродействия. Многие из этих разделов в определенных местах тесно переплетаются между собой. Тем не менее, чтобы не превращать статью в кашу, в соответствующем разделе я буду писать только о том, что имеет отношение к обсуждаемый в данный момент теме, и ни о чем более. Если вы не нашли каких-то важных фактов в тексте - не спешите удивляться: скорее всего, вы встретите их позже. Прошу вас также не делать никаких поспешных выводов о недостатках и преимуществах той или иной системы, так как противоречий и подводных камней в этих рассуждениях очень и очень много. В конце я попытаюсь собрать воедино всё, что можно сказать о быстродействии систем в реальных условиях.
Теория
Самое фундаментальное свойство любой файловой системы, влияющее на быстродействие всех дисковых операций - структура организации и хранения информации, т.е. то, как, собственно, устроена сама файловая система. Первый раздел - попытка анализа именно этого аспекта работы, т.е. физической работы со структурами и данными файловой системы. Теоретические рассуждения, в принципе, могут быть пропущены - те, кто интересуется лишь чисто практическими аспектами быстродействия файловых систем, могут обратиться сразу ко второй части статьи.
Для начала хотелось бы заметить, что любая файловая система так или иначе хранит файлы. Доступ к данным файлов - основная и неотъемлемая часть работы с файловой системой, и поэтому прежде всего нужно сказать пару слов об этом. Любая файловая система хранит данные файлов в неких объемах - секторах, которые используются аппаратурой и драйвером как самая маленькая единица полезной информации диска. Размер сектора в подавляющем числе современных систем составляет 512 байт, и все файловые системы просто читают эту информацию и передают её без какой либо обработки приложениям. Есть ли тут какие-то исключения? Практически нет. Если файл хранится в сжатом или закодированном виде - как это возможно, к примеру, в системе NTFS - то, конечно, на восстановление или расшифровку информации тратится время и ресурсы процессора. В остальных случаях чтение и запись самих данных файла осуществляется с одинаковой скоростью, какую файловую систему вы не использовали бы.
Обратим внимание на основные процессы, осуществляемые системой для доступа к файлам:
Поиск данных файла
Выяснение того, в каких областях диска хранится тот или иной фрагмент файла - процесс, который имеет принципиально разное воплощение в различных файловых системах. Имейте в виду, что это лишь поиск информации о местоположении файла - доступ к самим данным, фрагментированы они или нет, здесь уже не рассматривается, так как этот процесс совершенно одинаков для всех систем. Речь идет о тех "лишних" действиях, которые приходится выполнять системе перед доступом к реальным данным файлов.
На что влияет этот параметр: на скорость навигации по файлу (доступ к произвольному фрагменту файла). Любая работа с большими файлами данных и документов, если их размер - несколько мегабайт и более. Этот параметр показывает, насколько сильно сама файловая система страдает от фрагментации файлов.
NTFS способна обеспечить быстрый поиск фрагментов, поскольку вся информация хранится в нескольких очень компактных записях (типичный размер - несколько килобайт). Если файл очень сильно фрагментирован (содержит большое число фрагментов) - NTFS придется использовать много записей, что часто заставит хранить их в разных местах. Лишние движения головок при поиске этих данных, в таком случае, приведут к сильному замедлению процесса поиска данных о местоположении файла.
FAT32, из-за большой области самой таблицы размещения будет испытывать огромные трудности, если фрагменты файла разбросаны по всему диску. Дело в том, что FAT (File Allocation Table, таблица размещения файлов) представляет собой мини-образ диска, куда включен каждый его кластер. Для доступа к фрагменту файла в системе FAT16 и FAT32 приходится обращаться к соответствующей частичке FAT. Если файл, к примеру, расположен в трех фрагментах - в начале диска, в середине, и в конце - то в системе FAT нам придется обратиться к фрагменту FAT также в его начале, в середине и в конце. В системе FAT16, где максимальный размер области FAT составляет 128 Кбайт, это не составит проблемы - вся область FAT просто хранится в памяти, или же считывается с диска целиком за один проход и буферизируется. FAT32 же, напротив, имеет типичный размер области FAT порядка сотен килобайт, а на больших дисках - даже несколько мегабайт. Если файл расположен в разных частях диска - это вынуждает систему совершать движения головок винчестера столько раз, сколько групп фрагментов в разных областях имеет файл, а это очень и очень сильно замедляет процесс поиска фрагментов файла.
Вывод: Абсолютный лидер - FAT16, он никогда не заставит систему делать лишние дисковые операции для данной цели. Затем идет NTFS - эта система также не требует чтения лишней информации, по крайней мере, до того момента, пока файл имеет разумное число фрагментов. FAT32 испытывает огромные трудности, вплоть до чтения лишних сотен килобайт из области FAT, если файл разбросан разным областям диска. Работа с внушительными по размеру файлами на FAT32 в любом случае сопряжена с огромными трудностями - понять, в каком месте на диске расположен тот или иной фрагмент файла, можно лишь изучив всю последовательность кластеров файла с самого начала, обрабатывая за один раз один кластер (через каждые 4 Кбайт файла в типичной системе). Стоит отметить, что если файл фрагментирован, но лежит компактной кучей фрагментов - FAT32 всё же не испытывает больших трудностей, так как физический доступ к области FAT будет также компактен и буферизован.
Поиск свободного места
Данная операция производится в том случае, если файл нужно создать с нуля или скопировать на диск. Поиск места под физические данные файла зависит от того, как хранится информация о занятых участках диска.
На что влияет этот параметр: на скорость создания файлов, особенно больших. Сохранение или создание в реальном времени больших мультимедийных файлов (.wav, к примеру), копирование больших объемов информации, т.д. Этот параметр показывает, насколько быстро система сможет найти место для записи на диск новых данных, и какие операции ей придется для этого проделать.
Для определения того, свободен ли данный кластер или нет, системы на основе FAT должны просмотреть одну запись FAT, соответствующую этому кластеру. Размер одной записи FAT16 составляет 16 бит, одной записи FAT32 - 32 бита. Для поиска свободного места на диске может потребоваться просмотреть почти всего FAT - это 128 Кбайт (максимум) для FAT16 и до нескольких мегабайт (!) - в FAT32. Для того, чтобы не превращать поиск свободного места в катастрофу (для FAT32), операционной системе приходится идти на различные ухищрения.
NTFS имеет битовую карту свободного места, одному кластеру соответствует 1 бит. Для поиска свободного места на диске приходится оценивать объемы в десятки раз меньшие, чем в системах FAT и FAT32.
Вывод: NTFS имеет наиболее эффективную систему нахождения свободного места. Стоит отметить, что действовать "в лоб" на FAT16 или FAT32 очень медленно, поэтому для нахождения свободного места в этих системах применяются различные методы оптимизации, в результате чего и там достигается приемлемая скорость. (Одно можно сказать наверняка - поиск свободного места при работе в DOS на FAT32 - катастрофический по скорости процесс, поскольку никакая оптимизация невозможна без поддержки хоть сколь серьезной операционной системы).
Работа с каталогами и файлами
Каждая файловая система выполняет элементарные операции с файлами - доступ, удаление, создание, перемещение и т.д. Скорость работы этих операций зависит от принципов организации хранения данных об отдельных файлах и от устройства структур каталогов.
На что влияет этот параметр: на скорость осуществления любых операций с файлом, в том числе - на скорость любой операции доступа к файлу, особенно - в каталогах с большим числом файлов (тысячи).
FAT16 и FAT32 имеют очень компактные каталоги, размер каждой записи которых предельно мал. Более того, из-за сложившейся исторически системы хранения длинных имен файлов (более 11 символов), в каталогах систем FAT используется не очень эффективная и на первый взгляд неудачная, но зато очень экономная структура хранения этих самих длинных имен файлов. Работа с каталогами FAT производится достаточно быстро, так как в подавляющем числе случаев каталог (файл данных каталога) не фрагментирован и находится на диске в одном месте.
Единственная проблема, которая может существенно понизить скорость работы каталогов FAT - большое количество файлов в одном каталоге (порядка тысячи или более). Система хранения данных - линейный массив - не позволяет организовать эффективный поиск файлов в таком каталоге, и для нахождения данного файла приходится перебирать большой объем данных (в среднем - половину файла каталога).
NTFS использует гораздо более эффективный способ адресации - бинарное дерево, о принципе работы которого можно прочесть в другой статье (Файловая система NTFS). Эта организация позволяет эффективно работать с каталогами любого размера - каталогам NTFS не страшно увеличение количества файлов в одном каталоге и до десятков тысяч.
Стоит заметить, однако, что сам каталог NTFS представляет собой гораздо менее компактную структуру, нежели каталог FAT - это связано с гораздо большим (в несколько раз) размером одной записи каталога. Данное обстоятельство приводит к тому, что каталоги на томе NTFS в подавляющем числе случаев сильно фрагментированы. Размер типичного каталога на FAT-е укладывается в один кластер, тогда как сотня файлов (и даже меньше) в каталоге на NTFS уже приводит к размеру файла каталога, превышающему типичный размер одного кластера. Это, в свою очередь, почти гарантирует фрагментацию файла каталога, что, к сожалению, довольно часто сводит на нет все преимущества гораздо более эффективной организации самих данных.
Вывод: структура каталогов на NTFS теоретически гораздо эффективнее, но при размере каталога в несколько сотен файлов это практически не имеет значения. Фрагментация каталогов NTFS, однако, уверенно наступает уже при таком размере каталога. Для малых и средних каталогов NTFS, как это не печально, имеет на практике меньшее быстродействие.
Преимущества каталогов NTFS становятся реальными и неоспоримыми только в том случае, если в одно каталоге присутствуют тысячи файлов - в этом случае быстродействие компенсирует фрагментированность самого каталога и трудности с физическим обращением к данным (в первый раз - далее каталог кэшируется). Напряженная работа с каталогами, содержащими порядка тысячи и более файлов, проходит на NTFS буквально в несколько раз быстрее, а иногда выигрыш в скорости по сравнению с FAT и FAT32 достигает десятков раз.
Практика
К сожалению, как это часто бывает во всевозможных компьютерных вопросах, практика не очень хорошо согласуется с теорией. NTFS, имеющая, казалось бы, очевидные преимущества в структуре, показывает не настолько уж фантастические результаты, как можно было бы ожидать. Какие еще соображения влияют на быстродействие файловой системы? Каждый из рассматриваемых далее вопросов вносит свой вклад в итоговое быстродействие. Помните, однако, что реальное быстродействие - результат действия сразу всех факторов, поэтому и в этой части статьи не стоит делать поспешных выводов.
Объем оперативной памяти (кэширование)
Очень многие данные современных файловых систем кэшируются или буферизируются в памяти компьютера, что позволяет избежать лишних операций физического чтения данных с диска. Для нормальной (высокопроизводительной) работы системы в кэше приходится хранить следующие типы информации:
Данные о физическом местоположении всех открытых файлов. Это, прежде всего, позволит обращаться к системным файлам и библиотекам, доступ к которым идет буквально постоянно, без чтения служебной (не относящейся к самим файлам) информации с диска. Это же относится к тем файлам, которые исполняются в данный момент - т.е. к выполняемым модулям (.exe и .dll) активных процессов в системе. В эту категорию попадают также файлы системы, с которыми производится работа (прежде всего реестр и виртуальная память, различные .ini файлы, а также файлы документов и приложений).
Наиболее часто используемые каталоги. К таковым можно отнести рабочий стол, меню "пуск", системные каталоги, каталоги кэша интернета, и т.п.
Данные о свободном месте диска - т.е. та информация, которая позволит найти место для сохранения на диск новых данных.
В случае, если этот базовый объем информации не будет доступен прямо в оперативной памяти, системе придется совершать множество ненужных операций еще до того, как она начнет работу с реальными данными. Что входит в эти объемы в разных файловых системах? Или, вопрос в более практической плоскости - каким объемом свободной оперативной памяти надо располагать, чтобы эффективно работать с той или иной файловой системой?
FAT16 имеет очень мало данных, отвечающих за организацию файловой системы. Из служебных областей можно выделить только саму область FAT, которая не может превышать 128 Кбайт (!) - эта область отвечает и за поиск фрагментов файлов, и за поиск свободного места на томе. Каталоги системы FAT также очень компактны. Общий объем памяти, необходимый для предельно эффективной работы с FAT-ом, может колебаться от сотни килобайт и до мегабайта-другого - при условии огромного числа и размера каталогов, с которыми ведется работа.
FAT32 отличается от FAT16 лишь тем, что сама область FAT может иметь более внушительные размеры. На томах порядка 5 - 10 Гбайт область FAT может занимать объем в несколько Мбайт, и это уже очень внушительный объем, надежно кэшировать который не представляется возможным. Тем не менее, область FAT, а вернее те фрагменты, которые отвечают за местоположение рабочих файлов, в подавляющем большинстве систем находятся в памяти машины - на это расходуется порядка нескольких Мбайт оперативной памяти.
NTFS, к сожалению, имеет гораздо большие требования к памяти, необходимой для работы системы. Прежде всего, кэширование сильно затрудняет большие размеры каталогов. Размер одних только каталогов, с которыми активно ведет работу система, может запросто доходить до нескольких Мбайт и даже десятков Мбайт! Добавьте к этому необходимость кэшировать карту свободного места тома (сотни Кбайт) и записи MFT для файлов, с которыми осуществляется работа (в типичной системе - по 1 Кбайт на каждый файл). К счастью, NTFS имеет удачную систему хранения данных, которая не приводит к увеличению каких-либо фиксированных областей при увеличении объема диска. Количество данных, с которым оперирует система на основе NTFS, практически не зависит от объема тома, и основной вклад в объемы данных, которые необходимо кэшировать, вносят каталоги. Тем не менее, уже этого вполне достаточно для того, чтобы только минимальный объем данных, необходимых для кэширования базовых областей NTFS, доходил до 5 - 8 Мбайт.
[pagebreak]
К сожалению, можно с уверенностью сказать: NTFS теряет огромное количество своего теоретического быстродействия из-за недостаточного кэширования. На системах, имеющих менее 64 Мбайт памяти, NTFS просто не может оказаться быстрее FAT16 или FAT32. Единственное исключение из этого правила - диски FAT32, имеющие объем десятки Гбайт (я бы лично серьезно опасался дисков FAT32 объемом свыше, скажем, 30 Гбайт). В остальных же случаях - системы с менее чем 64 мегабайтами памяти просто обязаны работать с FAT32 быстрее.
Типичный в настоящее время объем памяти в 64 Мбайта, к сожалению, также не дает возможности организовать эффективную работу с NTFS. На малых и средних дисках (до 10 Гбайт) в типичных системах FAT32 будет работать, пожалуй, немного быстрее. Единственное, что можно сказать по поводу быстродействия систем с таким объемом оперативной памяти - системы, работающие с FAT32, будут гораздо сильнее страдать от фрагментации, чем системы на NTFS. Но если хотя бы изредка дефрагментировать диски, то FAT32, с точки зрения быстродействия, является предпочтительным вариантом. Многие люди, тем не менее, выбирают в таких системах NTFS - просто из-за того, что это даст некоторые довольно важные преимущества, тогда как типичная потеря быстродействия не очень велика.
Системы с более чем 64 Мбайтами, а особенно - со 128 Мбайт и более памяти, смогут уверенно кэшировать абсолютно всё, что необходимо для работы систем, и вот на таких компьютерах NTFS, скорее всего, покажет более высокое быстродействие из-за более продуманной организации данных. В наше время этим показателям соответствует практически любой компьютер.
Быстродействие накопителя
Влияют ли физические параметры жесткого диска на быстродействие файловой системы? Да, хоть и не сильно, но влияют. Можно выделить следующие параметры физической дисковой системы, которые по-разному влияют на разные типы файловых систем:
Время случайного доступа (random seek time). К сожалению, для доступа к системным областям на типичном диске более сложной файловой системы (NTFS) приходится совершать, в среднем, больше движений головками диска, чем в более простых системах (FAT16 и FAT32). Гораздо большая фрагментация каталогов, возможность фрагментации системных областей - всё это делает диски NTFS гораздо более чувствительными к скорости считывания произвольных (случайных) областей диска. По этой причине использовать NTFS на медленных (старых) дисках не рекомендуется, так как высокое (худшее) время поиска дорожки дает еще один плюс в пользу систем FAT.
Наличие Bus Mastering. Bus Mastering - специальный режим работы драйвера и контроллера, при использовании которого обмен с диском производится без участия процессора. Стоит отметить, что система запаздывающего кэширования NTFS сможет действовать гораздо более эффективно при наличии Bus Mastering, т.к. NTFS производит отложенную запись гораздо большего числа данных. Системы без Bus Mastering в настоящее время встречаются достаточно редко (обычно это накопители или контроллеры, работающие в режиме PIO3 или PIO4), и если вы работаете с таким диском - то, скорее всего, NTFS потеряет еще пару очков быстродействия, особенно при операциях модификации каталогов (например, активная работа в интернете - работа с кэшем интернета).
Кэширование как чтения, так и записи на уровне жестких дисков (объем буфера HDD - от 128 Кбайт до 1-2 Мбайт в современных дорогих дисках) - фактор, который будет более полезен системам на основе FAT. NTFS из соображений надежности хранения информации осуществляет модификацию системных областей с флагом "не кэшировать запись", поэтому быстродействие системы NTFS слабо зависит от возможности кэширования самого HDD. Системы FAT, напротив, получат некоторый плюс от кэширования записи на физическом уровне. Стоит отметить, что, вообще говоря, всерьез принимать в расчет размер буфера HDD при оценке быстродействия тех или иных файловых систем не стоит.
Подводя краткий итог влиянию быстродействия диска и контроллера на быстродействия системы в целом, можно сказать так: NTFS страдает от медленных дисков гораздо сильнее, чем FAT.
Размер кластера
Хотелось бы сказать пару слов о размере кластера - тот параметр, который в файловых системах FAT32 и NTFS можно задавать при форматировании практически произвольно. Прежде всего, надо сказать, что больший размер кластера - это практически всегда большее быстродействие. Размер кластера на томе NTFS, однако, имеет меньшее влияние на быстродействие, чем размер кластера для системы FAT32.
Типичный размер кластера для NTFS - 4 Кбайта. Стоит отметить, что при большем размере кластера отключается встроенная в файловую систему возможность сжатия индивидуальных файлов, а также перестает работать стандартный API дефрагментации - т.е. подавляющее число дефрагментаторов, в том числе встроенный в Windows 2000, будут неспособны дефрагментировать этот диск. SpeedDisk, впрочем, сможет - он работает без использования данного API. Оптимальным с точки зрения быстродействия, по крайней мере, для средних и больших файлов, считается (самой Microsoft) размер 16 Кбайт. Увеличивать размер далее неразумно из-за слишком больших расходов на неэффективность хранения данных и из-за мизерного дальнейшего увеличения быстродействия. Если вы хотите повысить быстродействие NTFS ценой потери возможности сжатия - задумайтесь о форматировании диска с размером кластера, большим чем 4 Кбайта. Но имейте в виду, что это даст довольно скромный прирост быстродействия, который часто не стоит даже уменьшения эффективности размещения файлов на диске.
Быстродействие системы FAT32, напротив, можно довольно существенно повысить, увеличив размер кластера. Если в NTFS размер кластера почти не влияет на размер и характер данных системных областей, то в системе FAT увеличивая кластер в два раза, мы сокращаем область FAT в те же два раза. Вспомните, что в типичной системе FAT32 эта очень важная для быстродействия область занимает несколько Мбайт. Сокращение области FAT в несколько раз даст заметное увеличение быстродействия, так как объем системных данных файловой системы сильно сократиться - уменьшается и время, затрачиваемое на чтение данных о расположении файлов, и объем оперативной памяти, необходимый для буферизирования этой информации. Типичный объем кластера для систем FAT32 составляет тоже 4 Кбайт, и увеличение его до 8 или даже до 16 Кбайт - особенно для больших (десяток и более гигабайт) дисков - достаточно разумный шаг.
Другие соображения
NTFS является достаточно сложной системой, поэтому, в отличие от FAT16 и FAT32, имеются и другие факторы, которые могут привести к существенному замедлению работы NTFS:
Диск NTFS был получен преобразованием раздела FAT16 или FAT32 (команда convert). Данная процедура в большинстве случаев представляет собой тяжелый случай для быстродействия, так как структура служебных областей NTFS, скорее всего, получится очень фрагментированной. Если есть возможность - избегайте преобразования других систем в NTFS, так как это приведет к созданию очень неудачного диска, которому не поможет даже типичный (неспециализированный) дефрагментатор, типа Diskeeper-а или встроенного в Windows 2000.
Активная работа с диском, заполненным более чем на 80% - 90%, представляет собой катастрофический для быстродействия NTFS случай, так как фрагментация файлов и, самое главное, служебных областей, будет расти фантастически быстро. Если ваш диск используется в таком режиме - FAT32 будет более удачным выбором при любых других условиях.
Выводы
В данной заключительной части "одной строчкой" собраны ключевые особенности быстродействия этих трех файловых систем.
FAT - плюсы:
Для эффективной работы требуется немного оперативной памяти.
Быстрая работа с малыми и средними каталогами.
Диск совершает в среднем меньшее количество движений головок (в сравнении с NTFS).
Эффективная работа на медленных дисках.
FAT - минусы:
Катастрофическая потеря быстродействия с увеличением фрагментации, особенно для больших дисков (только FAT32).
Сложности с произвольным доступом к большим (скажем, 10% и более от размера диска) файлам.
Очень медленная работа с каталогами, содержащими большое количество файлов.
NTFS - плюсы:
Фрагментация файлов не имеет практически никаких последствий для самой файловой системы - работа фрагментированной системы ухудшается только с точки зрения доступа к самим данным файлов.
Сложность структуры каталогов и число файлов в одном каталоге также не чинит особых препятствий быстродействию.
Быстрый доступ к произвольному фрагменту файла (например, редактирование больших .wav файлов).
Очень быстрый доступ к маленьким файлам (несколько сотен байт) - весь файл находится в том же месте, где и системные данные (запись MFT).
NTFS - минусы:
Существенные требования к памяти системы (64 Мбайт - абсолютный минимум, лучше - больше).
Медленные диски и контроллеры без Bus Mastering сильно снижают быстродействие NTFS.
Работа с каталогами средних размеров затруднена тем, что они почти всегда фрагментированы.
Диск, долго работающий в заполненном на 80% - 90% состоянии, будет показывать крайне низкое быстродействие.
Хотелось бы еще раз подчеркнуть, что на практике основной фактор, от которого зависит быстродействие файловой системы - это, как ни странно, объем памяти машины. Системы с памятью 64-96 Мбайт - некий рубеж, на котором быстродействие NTFS и FAT32 примерно эквивалентно. Обратите внимание также на сложность организации данных на вашей машине. Если вы не используете ничего, кроме простейших приложений и самой операционной системы - может случиться так, что FAT32 сможет показать более высокое быстродействие и на машинах с большим количеством памяти.
NTFS - система, которая закладывалась на будущее, и это будущее для большинства реальных применений сегодняшнего дня еще, к сожалению, видимо не наступило. На данный момент NTFS обеспечивает стабильное и равнодушное к целому ряду факторов, но, пожалуй, всё же невысокое - на типичной "игровой" домашней системе - быстродействие. Основное преимущество NTFS с точки зрения быстродействия заключается в том, что этой системе безразличны такие параметры, как сложность каталогов (число файлов в одном каталоге), размер диска, фрагментация и т.д. В системах FAT же, напротив, каждый из этих факторов приведет к существенному снижению скорости работы.
Только в сложных высокопроизводительных системах - например, на графических станциях или просто на серьезных офисных компьютерах с тысячами документов, или, тем более, на файл-серверах - преимущества структуры NTFS смогут дать реальный выигрыш быстродействия, который порой заметен невооруженным глазом. Пользователям, не имеющим большие диски, забитые информацией, и не пользующимся сложными программами, не стоит ждать от NTFS чудес скорости - с точки зрения быстродействия на простых домашних системах гораздо лучше покажет себя FAT32.
Жесткие диски (винчестеры), как электромеханические устройства, являются одним из самых ненадежных компонентов современного компьютера. Несмотря на то, что в большинстве случаев срок службы последних соизмерим, и даже превосходит время их эксплуатации до момента морального устаревания и замены более новыми моделями, все же отдельные экземпляры выходят из строя в течение первых месяцев эксплуатации. Выход жесткого диска из строя - самое худшее, что может случиться с вашим компьютером, так как при этом часто необратимо теряются накопленные на нем данные. Если резервная копия по какой-то причине отсутствует, то суммарный ущерб от поломки заметно превышает номинальную стоимость современных винчестеров.
Многие фирмы, пользуясь ситуацией, предлагают свои услуги по восстановлению информации с вышедшего из строя накопителя. Очевидно, это обходится недешево и целесообразно только тогда, когда на диске находилось что-то действительно ценное. В противном случае легче просто смириться с потерей.
Ремонт жестких дисков требует специального оборудования и практически невозможен в домашних условиях. Так, например, для вскрытия контейнера необходима особо чистая от пыли комната. Казалось бы, положение безнадежно и нечего даже помышлять о восстановлении поломанного диска в домашних условиях. Но, к счастью, не все поломки настолько серьезны, и во многих случаях можно обойтись для ремонта подручными (а иногда чисто программными) средствами.
Один из самых частых отказов винчестеров фирмы western digital (а также и некоторых других) выглядит следующим образом: жесткий диск не опознается bios, а головки при этом отчетливо стучат. Скорее всего, по какой-то причине не работает блок термокалибровки, и устройство не может обеспечить нужный зазор между головкой и рабочей поверхностью "блина". Обычно это происходит при отклонении от нормального температурного режима эксплуатации, например, в зимнее время, когда жесткие диски в плохо отапливаемых помещениях "выстывают" за ночь (при температуре 18...210С жесткий диск часто может исправно функционировать и с испорченным механизмом термокалибровки). Попробуйте дать поработать винчестеру в течение нескольких часов, чтобы он прогрелся, при этом рано или поздно винчестер попадает в необходимый диапазон температур и работоспособность (возможно, временно) восстанавливается. Разумеется, первым делом нужно скопировать всю информацию, поскольку работоспособность такого диска уже не гарантируется. То же можно рекомендовать и в отношении устаревших моделей без термокалибровки; часто они оказываются зависимыми от температурного режима, и с ростом износа винчестера эта зависимость проявляется все сильнее.
Вторым по распространенности отказом является выход из строя модуля диагностики при полной исправности остальных компонентов. Как это ни покажется парадоксальным, но полностью рабочий винчестер не проходит диагностику. При этом в регистре ошибок (порт ox1f1 для первого жесткого диска) могут содержаться значения, приведенные ниже:
Диагностические ошибки
Бит Содержимое Источник ошибки
7 0 Ошибка master диска
1 Ошибка slave диска
2-0 011 Ошибка секторного буфера
100 Ошибка контрогльной суммы, не устранимая избыточным кодированием
101 Ошибка микроконтроллера
Разные biosы могут различно реагировать на такую ситуацию, но все варианты сводятся к одному - жесткий диск не определяется и не "чувствуется". Однако на уровне портов ввода/вывода устройство функционирует отлично. Заметим, что существуют такие материнские платы (особенно среди новых моделей), которые, обнаружив ошибку микроконтроллера винчестера, просто отключают питание жесткого диска. Несложно написать для испорченного таким образом винчестера драйвер, который обеспечит работу с диском через высокоуровневый интерфейс int 0x13. Например, следующая процедура обеспечивает посекторное чтение и запись через порты ввода/вывода для первого жесткого диска в chs режиме.
lba mode для упрощения понимания не поддерживается. Необходимую техническую информацию обычно можно найти на сайте производителя вашего жесткого диска.
Этот фрагмент может служить вполне работоспособным ядром для драйвера 16-ти разрядного режима. Для упрощения понимания не включена задержка после каждого обращения к порту. В зависимости от соотношений скорости вашего процессора и контроллера диска эта задержка может и не потребоваться (в противном случае рекомендуется читать регистр статуса ox1f7, дожидаясь готовности контроллера). При этом не следует спешить с заменой такого жесткого диска на новый, с подобной неисправностью можно успешно работать не год и не два. Последнее, правда, лишь при условии, что все используемое программное обеспечение не будет конфликтовать с нестандартным драйвером. Писать драйвер, скорее всего, придется вам самому, поскольку не известно ни одной коммерческой разработки в этом направлении, а все любительские разработки выполнены в основном "под себя". Так, например, драйвер от kpnc hddfix3a поддерживает только винчестеры primary master до пятисот мегабайт и не работает в среде windows 95 (разработан на год раньше ее появления).
Более легкий, но не всегда осуществимый путь - запретить тестирование жестких дисков biosом или, по крайней мере, игнорировать результаты такового. Как это осуществить, можно прочесть в руководстве на материнскую плату (или обратиться за помощью к службе технической поддержки фирмы-производителя, поскольку в руководствах пользователя такие тонкости нередко опускают). Например, попробуйте установить "halt on" в "never" или перезаписать flach bios, модифицировав его так, чтобы тот не выполнял подобную проверку. Если Вам повезет, жесткий диск заработает! Однако иногда все же происходят и аппаратные отказы. Например, у винчестеров фирм samsung и conner отмечены случаи отказа модуля трансляции мультисекторного чтения/записи. Если это не будет обнаружено внутренним тестом устройства, то такой жесткий диск вызовет зависание операционной системы на стадии ее загрузки. Для предотвращения этого достаточно добавить в config.sys ключ multi-track=off и отключить аналогичные опции в blose. При этом, проиграв в скорости, все же можно заставить жесткий диск сносно работать. Понятно, что эксплуатировать восстановленный таким образом диск длительное время нерационально по причине потери быстродействия. Лучше приобрести новый, на который и скопировать всю информацию. С другой стороны, такой жесткий диск все же остается полностью рабочим и успешно может служить, например, в качестве резервного.
На том же connere эпизодически выходит из строя блок управления позиционированием головок, так что последние уже не могут удержаться на дорожке и при обращении к следующему сектору немного "уползают". При этом считывание на выходе дает ошибочную информацию, а запись необратимо затирает соседние сектора. Бороться с этим можно позиционированием головки перед каждой операцией записи/чтения, обрабатывая за один проход не более сектора. Понятно, что для этого необходимо вновь садиться за написание собственного драйвера. К счастью, он достаточно простой (можно использовать аппаратное прерывание от жесткого диска int 0x76 irq14, вставив в тело обработчика команду сброса контроллера. В данном случае подразумевается, что контроллер используемого жесткого диска проводит рекалибровку головки во время операции сброса. Некоторые модели этого не делают. В этом случае придется прибегнуть к операции позиционирования головки (функция ОхС дискового сервиса 0x13). Первые модели от вторых можно отличить временем, требуемым на сброс контроллера. Понятно, что электроника "сбрасывается" мгновенно, а позиционирование головки требует хоть и не большого, но все же заметного времени. Современные модели с поддержкой кэширования этого часто не делают или "откладывают" операции с головкой до первого к ней обращения. Разумеется, в этом случае кэширование придется выключить. Большинство bios позволяет это делать без труда, и нет нужды программировать контроллер самостоятельно. В другом случае вышедший из строя блок позиционирования (трансляции) подводит головки вовсе не к тому сектору, который запрашивался. Например, головки могли физически сместиться с оси, "уползая" в сторону. Разумеется, этот дефект можно скорректировать программно, достаточно проанализировать ситуацию и логику искажения трансляции. Многие модели позиционируют головку, используя разметку диска, что страхует от подобных поломок (к сожалению, сейчас от такого подхода большинство фирм отказались, выигрывая в скорости).
Конечно, все описанные программные подходы в действительности не устраняют неисправность, а только позволяют скопировать с казалось бы уже нерабочего винчестера ценные и еще не сохраненные данные. При этом ни к чему писать универсальный драйвер для win32 и защищенного режима. Вполне можно ограничиться dos-режимом. Для копирования файлов последнего должно оказаться вполне достаточно, конечно за исключением тех случаев, когда диск был отформатирован под ntsf или другую, не поддерживаемую ms-dos, систему. К счастью, для многих из них есть драйверы, которые позволяют "видеть" подобные разделы даже из "голой" ms-dos. В крайнем случае, можно ограничиться посекторным копированием на винчестер точно такой же топологии. При этом совершенно не имеет значения используемая файловая система и установленная операционная система.
Посекторно скопировать диск на винчестер с иной топологией трудно, но возможно. Дело в том, что многие современные контроллеры жестких дисков позволяют пользователю менять трансляцию произвольным образом. Для этого необходимо приобрести винчестер, поддерживающий lba-режим (а какой из современных жестких дисков его не поддерживает?). При этом он может быть даже большего объема, нежели исходный, но это никак не помешает копированию. Другой вопрос, что без переразбиения скопированный таким образом диск не "почувствует" дополнительных дорожек и следует запустить norton disk doctor, который устранит эту проблему.
Достаточно часто нарушается вычисление зон предком-пенсации. Дело в том, что плотность записи на разных цилиндрах не одинакова, так как линейная скорость растет от центра диска к периферии. Разумеется, гораздо легче постепенно уплотнять записи, нежели искать некий усредненный компромисс. На всех существующих моделях плотность записи изменяется скачкообразно и на последних моделях программно доступна через соответствующие регистры контроллера. При этом значения, выставленные в bios, практически любой жесткий диск (с интерфейсом ide) просто игнорирует. Предыдущие модели не имели с этим проблем, и только винчестеры, выпущенные в течение последних двух лет, склонны к подобным поломкам. Скорее, даже не к поломкам, а к сбоям, в результате которых искажается хранимая где-то в недрах жесткого диска информация. Если контроллер позволяет ее программно корректировать, то считайте, что ваш жесткий диск спасен. Конечно, придется пройти сквозь мучительные попытки угадать оригинальные значения, однако это можно делать и автоматическим перебором до тех пор, пока винчестер не начнет без ошибок читать очередную зону. Помните, что любая запись на диск способна нарушить низкоуровневую разметку винчестера, после чего последний восстановлению не подлежит и его останется только выкинуть. Производите только чтение секторов!
Если же контроллер не позволяет программно управлять предкомпенсацией, то еще не все потеряно. Попробуйте перед каждым обращением делать сброс контроллера, а точнее, его рекалибровку (команда ixh). В некоторых случаях это срабатывает, поскольку с целью оптимизации скорости обмена предкомпенсацией обычно управляет не один блок. И, кроме того, иногда контроллер кэша не учитывает предкомпенсацию, а его сброс реализует последнюю аппаратно. К сожалению, это по большей части догадки и результаты экспериментов автора, так как техническая документация фирм-производителей по этому поводу не отличается полнотой, а местами содержит противоречия. Можно испытать и другой способ - попробовать перезаписать микрокод контроллера (команда 92h). Конечно, это доступно только для специалистов очень высокого класса, но ведь доступно! Заметим, что не все контроллеры поддерживают такую операцию. С другой стороны, это и хорошо, так как уменьшает вероятность сбоя и не дает некорректно работающим программам (вирусам в том числе) испортить дорогое устройство. Жесткие диски от samsung обладают еще одной неприятной особенностью - часто при подключении шлейфа "на лету", при включенном питании, они перестают работать. Внешне это выглядит так: индикатор обращения к диску постоянно горит, но диск даже не определяется biosom, или определяется, но все равно не работает. Близкое рассмотрение показывает, что на шине пропадает сигнал готовности устройства. В остальном контроллер остается неповрежденным. Разумеется, если не обращать внимание на отсутствие сигнала готовности, то с устройством можно общаться, делая вручную необходимые задержки (поскольку физическую готовность устройства уже узнать не представляется возможным, приходится делать задержки с изрядным запасом времени). При этом, к сожалению, придется отказаться от dma-mode (а уж тем более ultra-dma) и ограничиться pio 1 (с небольшим риском - pio 2) режимом. Конечно, писать соответствующий драйвер вам придется опять самостоятельно. Разумеется, скорость обмена в режиме pio 1 по сегодняшним меркам совершенно неудовлетворительна и не годится ни для чего другого, кроме как копирования информации со старого на новый винчестер, но некоторые "нечистоплотные" продавцы компьютерной техники как-то ухитряются устанавливать подобные экземпляры на продаваемые машины. Будьте осторожны! Учитывая, что написание подобных драйверов для win32 - трудоемкое занятие, большинство ограничивается поддержкой одной лишь ms-dos, и вовсе не факт, что компьютер, демонстрирующий загрузку win95, содержит исправный, а не реанимированный подобным образом жесткий диск.
У жестких дисков фирмы samsung при подключении "налету" может появляться другой неприятный дефект - при запросах на чтение контроллер периодически "повисает" и не завершает операцию. В результате "замирает" вся операционная система (впрочем, windows nt с этим справляется, но, вероятно, не всегда). На первый взгляд может показаться, что с этого винчестера несложно скопировать ценные файлы, но при попытке выполнить это выясняется, что диск "зависает" все чаще и чаще и копирование растягивается до бесконечности. Однако если выполнить сброс контроллера, то можно будет повторить операцию. Это можно сделать аппарат -но, подпаяв одну кнопку на линию сброса и статуса. Последнее нужно для указания на ошибочную ситуацию, чтобы операционная система повторила незавершенную операцию. Если этого не сделать, то часть секторов не будет реально прочитана (записана). Или можно выполнять сброс автоматически, например, по таймеру. Чтобы не сталкиваться с подобной ситуацией, никогда не следует подсоединять/отсоединять винчестер при включенном питании. Очень часто это приводит к подобным ошибкам, хотя производители других фирм, по-видимому, как-то от этого все же защищаются, ибо аналогичной ситуации у них практически не встречается. Все же не стоит искушать судьбу... От аппаратных ошибок теперь перейдем к дефектам поверхности. Заметим сразу, что последнее встречается гораздо чаще и проявляется намного коварнее. Обычно это ситуация, в которой мало что можно предпринять. Но достичь главной цели - спасти как можно больше уцелевших данных - довольно часто удается. Возьмем такую типичную ситуацию как ошибка чтения сектора. Маловероятно, чтобы сектор был разрушен целиком. Чаще всего "сыплется" только какая-то его часть, а все остальные данные остаются неискаженными. Существуют контроллеры двух типов. Первые, обнаружив расхождение контрольной суммы считанного сектора, все же оставляют прочитанные данные в буфере и позволяют их извлечь оттуда, проигнорировав ошибку чтения. Вторые либо очищают буфер, либо просто не сбрасывают внутренний кэш, в результате чего все равно прочитать буфер невозможно. На практике обычно встречаются последние. При этом сброс кэша можно инициировать серией запросов без считывания полученных данных. Кэш при этом переполняется, и наиболее старые данные будут вытолкнуты в буфер. Остается их только прочесть. Конечно,-это крайне медленно, но, к сожалению, универсальной команды сброса кэша не существует. Разные разработчики реализуют это по-своему (впрочем, иногда это можно найти в документации на чипы, используемые в контроллере). western digital сообщает в техническом руководстве что при длинном чтении сектора без повтора контроль сектора не выполняется и он будет-таки целиком помещен в буфер. Кстати, так и должно быть по стандарту. Увы, остальные фирмы от него часто отклоняются по разным соображениям. Остается определить, какие же из прочитанных данных достоверные, а какие нет (если этого не видно "визуально" - например, в случае текстового или графического файлов)? Разумеется, в подобных рамках задача кажется неразрешимой, но это не совсем так. Дело в том, что можно произвести не только короткое, но и длинное чтение (ox22h req ploin long with retry), для чего можно использовать следующую процедуру. При этом кроме собственно данных читаются также и корректирующие коды. Автоматическая коррекция не выполняется (хотя некоторые контроллеры это реализуют аппаратно и не могут отключить автокоррекцию; в документации этот момент, кстати, не уточняется). Как правило, используются корректирующие коды Рида-Соломона, хотя последнее не обязательно. Математические законы позволяют не только определить место возникновения сбоя, но и даже восстановить несколько бит. При больших разрушениях можно определить только место сбоя, но достоверно восстановить информацию не удается.
Модуляция при записи такова, что все биты, стоящие справа от сбойного, уже не достоверны. Точнее, не все, а только в пределах одного пакета. Обычно за один раз записывается от 3 до 9 бит (необходимо уточнить у конкретного производителя) и содержимое остальных пакетов, как правило, остается достоверным. Самое интересное, что зачастую сбойный пакет можно восстановить методом перебора! При этом можно даже рассчитать, сколько вариантов должно получиться. Учитывая хорошую степень "рассеяния" корректирующих кодов можно сказать, что не очень много. И таким образом можно восстановить казалось бы безнадежно испорченные сектора, а вместе с ними и файлы, расположенные "поверх" последних.
Выше были перечислены наиболее типичные случаи отказов жестких дисков, которые поддавались чисто программному восстановлению если уж не винчестера, то хотя бы хранимых на нем данных. Разумеется, что иногда жесткий диск выходит из строя полностью (например, при неправильно подключенном питании, скачках напряжения) от вибрации или ударов, а то и просто из-за откровенного заводского брака. Есть один старый проверенный способ - найти жесткий диск такой же точно модели и заменить электронную плату. К сожалению, последнее из-за ряда конструктивных особенностей все реже и реже бывает возможно, а уж дефекты поверхности этот способ и вовсе бессилен вылечить. Поэтому, берегите свой жесткий диск и почаще проводите резервное копирование. Помните, что самое дорогое это не компьютер, а хранимая на нем информация!
Потоки всегда создаются в контексте какого-либо процесса, и вся их жизнь проходит только в его границах. На практике это означает, что потоки исполняют код и манипулируют данными в адресном пространстве процесса. Если два или более потока выполняются внутри одного процесса, они делят одно адресное пространство.
Любой поток (thread) состоит из двух компонентов:
объекта ядра, через который ОС управляет потоком. Там же хранится статистическая информация о потоке.
Стека потока, который содержит параметры всех функций и локальные переменные, необходимые потоку для выполнения кода.
Потоки могут выполнять один и тот же код, манипулировать одними и теми же данными, а также совместно использовать описатели объектов ядра, поскольку таблица описателей создается не в отдельных потоках, а в процессах.
Потоки используют намного меньше ресурсов системы, чем процессы, поэтому все задачи, требующие параллельного выполнения нескольких подзадач, стоит решать по возможности с помощью потоков, не прибегая к созданию нескольких процессов.
Обычная структура многопоточного приложения рассчитана на одновременное исполнение нескольких подзадач. Однако стоит помнить, что, создавая многопоточное приложение, нам придется заботиться о сохранности и ликвидности, общих для всех потоков, данных.
Создание потока.
Первичный поток, который присутствует в программе, начинает свое выполнение с главной функции потока типа WinMain.
Для создания вторичного потока необходимо создать и для него входную функцию, которая выглядит примерно так:
Имя у функции вторичного потока, в отличии от первичного, может быть любым однако, при наличии нескольких разных потоков, назвать функции необходимо по-разному, иначе система создаст разные реализации одной и той же функции.
Когда поток закончит свое исполнение, он вернет управление системе, память, отведенная под его стек, будет освобождена, а счетчик пользователей его объекта ядра "поток" уменьшится на 1. Когда счетчик обнулится, этот объект ядра будет разрушен.
Для создания своего потока необходимо использовать функцию CreateThread:
При каждом вызове этой функции система создает объект ядра (поток). Это не сам поток, а компактная структура данных, которая используется операционной системой для управления потоком и хранит статистическую информацию о потоке.
Система выделяет память под стек потока из адресного пространства процесса. Новый поток выполняется в контексте того же процесса, что и родительский поток. Поэтому он получает доступ ко всем описателям объектов ядра, всей памяти и стекам всех потоков в процессе. За счет этого потоки в рамках одного процесса могут легко взаимодействовать друг с другом.
CreateThread - это Windows-функция, создающая поток. Если вы пишете код на С/С++ не вызывайте ее. Вместо нее Вы должны использовать _beginthreadex из библиотеки Visual C++. Почему это так важно в наших следующих выпусках.
Параметры функции CreateThread.
LpThreadAttributes - является указателем на структуру LPSECURITY_ATTRIBUTES. Для присвоения атрибутов защиты по умолчанию, передавайте в этом параметре NULL.
DwStackSize - параметр определяет размер стека, выделяемый для потока из общего адресного пространства процесса. При передаче 0 - размер устанавливается в значение по умолчанию.
LpStartAddress - указатель на адрес входной функции потока.
LpParameter - параметр, который будет передан внутрь функции потока.
DwCreationFlags - принимает одно из двух значений: 0 - исполнение начинается немедленно, или CREATE_SUSPENDED - исполнение приостанавливается до последующих указаний.
LpThreadId - Адрес переменной типа DWORD в который функция возвращает идентификатор, приписанный системой новому потоку.
Завершение потока
Поток можно завершит четырьмя способами:
функция потока возвращает управление (рекомендуемо);
поток самоуничтожается вызовом функции ExitThread;
другой поток процесса вызывает функцию TerminateThread;
завершается процесс, содержащий данный поток.
Все способы , за исключением рекомендуемого, являются нежелательными и должны использоваться только в форс-мажорных обстоятельствах.
Функция потока, возвращая управление, гарантирует корректную очистку всех ресурсов, принадлежащих данному потоку. При этом:
любые С++ объекты, созданные данным потоком, уничтожаются соответствующими деструкторами;
система корректно освобождает память, которую занимал стек потока;
система устанавливает код завершения данного потока. Его функция и возвращает;
счетчик пользователей данного объекта ядра (поток) уменьшается на 1.
При желании немедленно завершить поток изнутри используют функцию ExitThread(DWORD dwExitCode).
При этом освобождаются все ресурсы ОС, выделенные данному потоку, но С С++ ресурсы (например, объекты классов С++) не очищаются. Именно поэтому не рекомендовано завершать поток, используя эту функцию.
Если же вы ее использовали, то кодом возврата потока будет тот параметр, который вы передадите в данную функцию.
Как и для CreateThread для библиотеки Visual C++ существует ее аналог _endthreadex, который и стоит использовать. Об причинах в следующем выпуске.
Если появилась необходимость уничтожить поток снаружи, то это моет сделать функция TeminateThread.
Эта функция уменьшит счетчик пользователей объекта ядра (поток) на 1, однако при этом не разрушит и не очистит стек потока. Стек будет существовать, пока не завершится процесс, которому принадлежит поток. При задачах, постоянно создающих и уничтожающих потоки, это приводит к потере памяти внутри процесса.
При завершении процесса происходит следующее.
Завершение потока происходит принудительно. Деструкторы объектов не вызываются, и т.д. и т.д.
При завершении потока по такой причине, связанный с ним объект ядра (поток) не освобождается до тех пор, пока не будут закрыты все внешние ссылки на этот объект.
Довольно часто встречается мнение, что в подобных статьях слишком много говорится о теории разработки успешных сайтов. Что ж, отбросим теорию и обратимся к проверенным временем методам. Следующая система со 100%-ной вероятностью достичь желаемого положения в Google по широкому кругу запросов. Это те методы, которые я использую постоянно в своей работе. Результаты зависят, как правило, от темы, потенциальной аудитории и уровня конкуренции в нише.
Следующие методы позволят построить успешный сайт для Google в течение одного года. Впрочем, можно уложиться и в более короткий срок - если вы действительно решите постараться.
A) Начинайте строить содержание сайта. Прежде чем даже выбрать доменное имя для сайта, отметьте для себя следующее - необходимо иметь 100 страниц сайта. Это, причем, только для начала. Это только страницы с реальным содержанием - не списки ссылок, вступительные страницы и что-либо подобное.
B) Доменное имя - легко запоминающееся и осмысленное. Не надо вставлять ключевые слова - вам надо создать брэнд, торговую марку, которые будут легко запоминаться. Времена доменов из ключевых слов прошли. Поучитесь на примере GoTo.com, который недавно стал Overture.com - по моему мнению, это был один из лучших примеров создания брэнда в Интернет, который, кстати, потребовал отбросить целые годы, потраченные на создание другого брэнда.
C) Дизайн сайта - чем проще, тем лучше. Текста должно быть больше, чем тэгов разметки. Страницы должны быть видны в любом броузере - от lynx до IE 6.0 - старайтесь соблюдать стандарт HTML 3.2. Не похоже, чтобы роботы понимали HTML 4.0. Воздерживайтесь от всякого рода тяжестей на странице - Flash, Java, JavaScript - они, как правило, мало помогают сайту, но могут серьезно повредить по целому ряду причин, и нелюбовь поисковиков к ним лишь одна из них.
Стройте сайт структурно понятным. Включайте в имена директорий слова запросов, которые вы хотите “перекрыть”. Можете поступить иначе и все страницы положить в корневую директорию - несмотря на противоположность совета, он неплохо срабатывает на многих поисковиках, и в т.ч. на Google.
Воздержитесь от ненужных ссылок, засоряющих сайт, например, “Best viewed with”, счетчиков, кнопочек, и т.д. Сделайте его простым и профессионально выглядящим. Поучитесь на примере самого Google - простота - вот что хочет посетитель.
Скорость загрузки - это еще не все. Ваш сайт должен отзываться мгновенно. Если после перехода на сайт в броузере ничего не происходит в течение 3-4 секунд - у вас есть проблемы. Это время может меняться в зависимости от местонахождения сервера, но сайт, расположенный в вашей стране, должен отзываться в течение 3-4 секунд. Секундой больше - и вы начинаете терять аудиторию, по 10% примерно за каждую секунду. Между тем, 10% могут быть разницей между успехом и неудачей.
Страницы:
D) Размер страниц - чем меньше, тем лучше. Постарайтесь не превысить 15 кБ. Чем меньше, тем лучше. Постарайтесь не превысить 12 кБ. Чем меньше, тем лучше. Постарайтесь не превысить 10 кБ. Идея понятна? Удержитесь в пределах от 5 до 10 кБ. Да, это сложно сделать - но возможно и это работает. Как для поисковых систем, так и для посетителей.
E) Содержание - сделайте одну страницу с текстом и выкладывайте по 200-250 слов в день. Если вы не знаете, что должно быть на странице - воспользуйтесь сервисом Overture. Полученный список - это ядро вашей страницы, стартовая линия.
F) Частота, положение и т.д. - простой, старомодный стиль здесь наиболее уместен. Включите ключевое слово по разу в title, description, тэге H1, тексте ссылки, жирным шрифтом, курсивом, в начале страницы. Постарайтесь выдерживать частоту употребления ключевого слова в пределах от 5 до 20%. Используйте красивые фразы и проверьте их написание. Поисковые системы все чаще применяют автоматическую корректировку запросов и нет никаких причин этим пренебрегать.
G) Внешние ссылки - поставьте на каждой странице ссылки на один или два сайта, которые хорошо находятся по нужным вам запросам. Используйте эти запросы в тексте ссылок - это окажется весьма полезным в будущем.
Выбор ключевых слов является одним из важнейших этапов оптимизации сайта под поисковые системы. Так как поисковики являются основным источником целевых посетителей, то этому вопросу надо уделять особое внимание. Правильно подобранные ключевые слова помогут пользователям легко находить страницы сайта, а также повысят их позицию в результатах выдачи по запросу.
Итак, для начала необходимо проанализировать тематику сайта и постараться взглянуть на него глазами посетителя. Цель такого упражнения-разминки – подбор слов и выражений, по которым, на ваш взгляд, производится поиск подобных сайтов.
Теперь можно приступить к детализации задачи, а именно, подбору ключевых слов для каждой страницы сайта отдельно. Большинство начинающих разработчиков при оптимизации допускают одну критическую ошибку, а именно, оптимизируют все страницы под одни и те же запросы. Они не учитывают тот факт, что машины поиска каждую страницу рассматривают независимо от остальных, поэтому необходимо оптимизировать страницы по отдельности, тщательно подбирая для них ключевые слова.
При анализе страницы необходимо написать около двух десятков ключевых слов, из которых попробовать сформировать фразы с учетом возможностей морфологического поиска и расположить слова и выражения в порядке их соответствия тематике страницы.
Например, ваша компания занимается продажей бытовой техники. Вместо использования в тегах HTML-кода и содержимом страниц ключевой фразы “продажа бытовой техники”, нужно уточнить эту фразу в зависимости от содержимого каждой страницы. Если на данной странице внимание сфокусировано, например, на кухонных комбайнах, то теги и текст необходимо оптимизировать именно под это выражение.
Сейчас идет тенденция к оптимизации страниц больше под ключевые выражения, чем под отдельные слова. Это связано с повышением уровня интернет-пользователей, которые для уточнения поисковых запросов из ключевых слов с помощью служебных символов строят ключевые фразы, значительно повышающие релевантность результатов поиска.
Следующий этап - это анализ частоты запросов по пунктам списка, составленного на этапе обдумывания тематики сайта. Здесь уже придется излагать не свое видение сайта, а вооружиться поисковой системой. Желательно брать тот поисковик, в трафике которого вы больше всего заинтересованы.
Составленный список предполагаемых ключевых слов можно проверить, например, с помощью сервиса «Яндекс.Директ» и выделить в нем фразы, сходные с заданными изначально. Далее необходимо посмотреть количество запросов для каждого выражения, выбранного на первом этапе, и попробовать найти фразы-синонимы. Если для них количество запросов будет больше, есть смысл заменить первоначальный вариант.
Чтобы выявить близкие по значению выражения, можно использовать сервис «Рамблер-Ассоциации», который представляет статистику поисковых запросов и работает по принципу «Те, кто ищут [запрос пользователя], ищут также». Сервис предназначен в помощь пользователю, совершившему поиск по какому-либо запросу и не получившему нужной информации. Статистика “ассоциаций” помогает выяснить интересы пользователей, путем анализа списка запросов, схожих с основным. Для выявления англоязычных запросов можно использовать сервис Wordtracker, который в бесплатной версии выдает ограниченные отчеты по поисковым запросам.
Теперь необходимо проанализировать полученную статистику запросов по списку ключевых слов. Если по некоторым из них результаты зашкаливают за десятки тысяч, их однозначно можно убрать из дальнейшего рассмотрения т.к. эти слова используются многими конкурентами. Здесь надо учесть тот факт, что если для оптимизации будет выбрана слишком распространенная ключевая фраза, то потребуется много времени и сил, чтобы взобраться на вершину ранжированного списка результатов. Кроме того, привлеченный таким образом сетевой трафик будет плохо сфокусирован, т.е. процент целевых покупателей будет невелик. С другой стороны, если для ключевой фразы будет получено малое число результатов, то эффективность такой оптимизации также буде невысока.
Чтобы добиться компромисса в этом сложном вопросе, надо брать ключевую фразу, которая является оптимальной для тематики страницы и высоко конкурентной, и добавлять в нее описательные слова или, например, конкретные модели и торговые марки, т.е. конкретизировать представленную на странице информацию.
Часто многие сайты для привлечения большего числа посетителей используют для ключевых слов практически на всех страницах выражения типа “все модели”, “весь модельный ряд”, “огромный выбор” и т.д. Если на вашем сайте в самом деле представлены все модели некоторой торговой марки или же подавляющее большинство их, то лучшим вариантом будет оптимизация под такой запрос какой-то одной страницы, например с самой популярной моделью. При этом на этой странице обязательно должны быть ссылки на другие модели или на страницу с кратким представлением всех моделей в удобном для сравнения виде. Если в ключевой фразе перечисляются конкретные модели, то необходимо располагать их в порядке убывания популярности.
Очень часто при вводе поискового запроса пользователи не пишут прописные буквы в названиях компаний, торговых марок, городов и т.п. Т.к. некоторые системы поиска чувствительны к регистру символов, т.е. поиск по вариантам фразы с символами, преобразованными в нижний регистр, и с символами в верхнем регистре приводит к разным результатам. Поэтому, чтобы улучшить результаты поиска своего сайта, надо добавлять на страницы все варианты написания ключевой фразы. Если во фразе используются слова, которые по правилам языка пишутся с прописной буквы, то можно использовать ее версию со строчными буквами там, где она не будет видна для посетителей.
В зависимости от того, под какую систему поиска оптимизируется сайт, необходимо узнать поддерживается ли ей морфологический поиск, т.е. поиск по слову во всех его морфологических формах. Это значит, что поиск по фразе «оптовая покупка скидка» может быть интерпретирован, как “при оптовой покупке скидки” и т.д. Чтобы определить, выполняет ли данный поисковик морфологическую функцию, можно проработать поиск по различным версиям ключевой фразы и проанализировать результаты.
Необходимо не только постоянно проводить мониторинг частоты использования вашей ключевой фразы пользователями, но и отслеживать, как много других страниц также оптимизированы под нее. Т.е. надо постоянно следить за конкурирующими ресурсами, которые стоят первыми в рейтинге при запросе по данной тематике.
Таким образом, выбор наиболее эффективных ключевых фраз может буквально поставить на ноги ваш онлайновый бизнес, а неудачный, наоборот, разрушить его. Главное не забывать, что каждая страница оптимизируется под одну-две ключевые фразы, которые четко соответствуют ее тематике.
Поисковая оптимизация – одна из важнейших составляющих в продвижении сайта. И если вы вебмастер или блоггер, то вам в первую очередь нужно понимать основы SEO. Ниже приведены 10 простых правил по оптимизации, которые помогут вам подготовить ваш сайт к продвижению.
Правило 1: Не пытайтесь обмануть системы.
Если вы войдете в комнату, где будут одни ученые с докторскими степенями, думаете, вы сможете обмануть их? Нет. Так и Google имеет тысячи таких комнат с учеными, поэтому будьте уверены, что их обмануть вам не удастся. Избегайте любых советов, которые рассказывают, что вы сможете попасть в top5 за пару дней, при этом иметь великолепный сайт и уникальный контент.
Правило 2: Используйте ключевые слова.
Выберите несколько ключевых слов или фраз для вашего сайта. Используйте их, и слова связанные с ними в своих текстах, статьях. Повторять их постоянно – плохая идея (см. Правило 1).
Правило 3: Его величество «Контент».
Пользователей интересует содержание сайта, а не дизайнерские фишки. Если содержание сайта не уникально и не привлекает пользователей – не ждите их вообще.
Каждая страница вашего сайта должна строиться по схеме перевернутой пирамиды: начинаться с релевантного[1] заголовка H1, который обязательно содержит одно из ключевых слов; и первый абзац текста как краткое описание всей страницы.
Правило 4: Чистый код – правильный код.
Код вашего сайта должен быть читабелен для поисковых систем также как и для пользователей. Выделите основные блоки сайта: навигационное меню, заголовок, текст и т.д. Старайтесь использовать описательные названия классов и идентификаторов для тегов. Для списков используйте тег UL, для текста тег P, H1-H6 для заголовков, и STRONG для жирного текста (для ключевых слов и фраз). И конечно же, используйте верстку на DIV.
Правило 5: Самая важная страница – главная страница.
Как правило, в первую очередь нам необходимо, чтобы поисковые системы увидели главную страницу сайта. Поэтому ее содержание должно быть как можно более содержательным. Заголовки, текст и ссылки должны содержать самые важные ключевые слова, по которым пользователь обязательно будет ее искать.
Правило 6: Ссылки имеют значение.
Поисковые системы обращают особое внимание на ссылки и анкоры[2] ссылок. Старайтесь избегать таких ссылок как «Смотри здесь» или «Далее…». Лучше делать их неиндексируемыми. Анкор ссылки должен быть содержательным, т.е. краткий заголовок страницы на которую она ведет. Например: “Примеры и уроки для вебмастеров” или “Как сделать многоуровневое горизонтальное меню”. Не забывайте и об околоссылочном тексте.
Чем более релевантна ссылка, тем быстрее поисковая система найдет страницу с этой ссылкой. Не злоупотребляйте внешними ссылками[3], которые уведут пользователя на другой сайт. Если ваша страница ориентирована на дизайнерский минимализм, то ссылка на «Минимализм в дизайне» будет иметь место, а вот ссылка с картинки с кошкой будет бесполезной.
Правило 7: Заголовок заголовку рознь.
Каждая страница вашего сайта должна иметь свой уникальный заголовок – Title и краткое описание - Description. Достаточно всего 60 символов, но их значение будет огромным. Помните, что заголовок страницы – это то, что пользователь увидит в ответ на его поисковый запрос, поэтому по заголовку он должен понять найдет он ответ на вашей странице или нет.
Также не забывайте приписывать атрибут title у ссылок:
И атрибут Alt у изображений. Он также должен максимально кратко описывать то, что изображено на картинке:
Казалось бы мелочи, но для SEO это еще один важный способ оптимизации.
Правило 8: Лишним тегам – нет.
Давным-давно теги meta были секретом для SEO, но те дни прошли. Наиболее важным для поисковых систем и пользователей является тег description. Поисковые системы могут использовать его как подпись к ссылкам в результатах поиска. Поэтому убедитесь что вы дали грамотное описание каждой странице.
Правило 9: Карта сайта – лучший путеводитель.
Обязательно сделайте на вашем сайте карту сайта, которая будет содержать ссылки на все страницы сайта. Вы можете создать sitemap для Google с помощью генереаторов, например www.xml-sitemaps.com.
Правило 10: Дизайн – для людей.
Поисковые системы организованы так, чтобы пользователю было сразу понятно, что данный сайт - поисковик. Это значит, что и ваш сайт должен иметь дизайн, который будет говорить сам за себя, сразу давая понять какова тематика сайта. Поэтому чтобы сайт было легко найти, и он привлекал пользователей – сделайте его дизайн по максимуму приближенным к тематике сайта. Задача дизайнера – скорее решить проблему юзабилити, нежели нарисовать еще один шаблон для портфолио.
В этой статье мы поговорим о рекламе сайта. Статья состоит из двух частей, в первой я расскажу вам отдельно о рекламе домашних страничек, во второй мы поговорим подробнее и серьезнее о рекламе в интернете, как таковой. Надеюсь, вы не пропустите первую часть статьи, потому что, не смотря ни на что, она принципиально важна.
Реклама домашних страниц.
Реклама, как таковая.
1 - Первый этап. Каталоги.
2 - Второй этап. Обмен баннерами и ссылками с тематическими ресурсами.
3 - Третий этап. Добавление в поисковые системы.
4 - Четвертый этап. Баннерные системы.
5 - Пятый этап. Нетрадиционные способы.
6 - Шестой этап. Как не потерять вашего посетителя.
7 - Седьмой этап. Повторение этапов.
Сразу поясню, почему я хочу поговорить с вами о рекламе домашних страниц отдельно.
Давайте рассмотрим эволюцию пользователя в интернете: сначала он гость, посещающий чужие сайты, знакомящийся с новыми людьми, чтобы переписываться с ними по почте, общаться в чате или на форумах. Но наступает момент, когда так хочется обзавестись собственным домиком, чтобы показать свою состоятельность и полноправность в гигантской паутине.
И вот когда домик отстроен, первые гости переступили его порог, похвалили, возникает такое свербящее чувство, которое можно назвать желанием популярности, желанием привлечь в свой домик толпы и толпы гостей в абсолютно разных целях: чтобы увеличить количество виртуальных друзей, а может быть найти любовь, или просто приобрести популярность, или даже извлечь выгоду из своего труда, заработать денюжку.
Все это вполне справедливые желания, т.к. и в реальной жизни нам свойственно самоутверждаться, но Интернет - это не тень реальной жизни, это информационная сеть, а простые домашние странички (обо всем и ни о чем, а точнее о вас любимых), они становятся мусором, когда в поиске важной, нужной и полезной информации человек натыкается на них, а не на то, что ищет в действительности. Поэтому, прежде чем ударяться в рекламные акции всеми правдами и неправдами, стоит задуматься: а нужно ли это? а как сделать, чтобы моя страница не стала мусором, а помогла найти мне друзей? А заработать?
Итак, сразу скажу, что заработок в интернете на пустом месте, из ничего, благодаря странице с баннерами спонсоров – миф, поверьте мне, и лучше забудьте об этом, не тратьте зря ни свое, ни чужое время.
Другое дело желание общения, некой популярности. Реклама вашей страницы в данном случае будет бесполезна, это все равно, что дать объявление в газете: вот мой дом, я там живу. Ну, и что? Кто вы такой, чтобы мы заинтересовались и пришли в гости? Другое дело, когда вы идете в какое-нибудь общественное место, клуб, знакомитесь там с новыми людьми, и говорите им, давая свой адрес:
- Вот мой дом, я там живу.
- О! – скажут они, - мы обязательно придем, нам с тобой было интересно пообщаться, и мы хотим узнать о тебе побольше и пообщаться еще не раз.
Т.е. я веду к тому, что домашняя страница, это как ваша квартира, чем больше у вас друзей, тем чаще они приходят к вам в гости, они заинтересованы в вас, именно поэтому им интересна ваша страница. Итак, для того, чтобы ваша страница была популярной, вы сами должны быть популярными. Благо, в интернете для этого много способов. Есть чаты, сайты знакомств, конференции и сайты, где люди общаются по определенным интересам, игровые сайты. Посещайте их, общайтесь, если вы интересны, то, посмотрев вашу анкету на таком сайте, люди обязательно посетят, и не раз, вашу домашнюю страницу.
И если у вас на душе все равно свербит и хочется добавить свою домашнюю страницу в поисковые системы и каталоги, тогда будьте вежливы, добавляйте ее в категории для Домашних страниц, они везде есть специально для вас. Повторюсь, не надо мусорить, вы поступите очень не красиво, если из-за того, что на вашей странице вы рассказываете о своей игрушечной машине, вы начнете позиционировать вашу страницу, как замечательный сайт об автомобилях. Это не даст популярности вашему сайту, т.к. на самом деле это не сайт об автомобилях, а лишь ваша домашняя страница, это только вызывает раздражение и негативные эмоции у тех, кого вы обманули.
Реклама, как таковая.
Я рассказывал о том, как сделать домашнюю страницу популярной, и читал нотации вам не просто так. Самое главное понять, что вы хотите достичь рекламной кампанией, и нужно ли вам это на самом деле.
Почему надо к рекламе подходить серьезно? Почему слово раскрутка надо отмести, как не состоятельное? Почему вы должны подходить к рекламе цивилизованно, когда вы можете просто начать «крутить» свой сайт и можете получить в день до 1000 посетителей с нуля при помощи специальных программ?
Потому что раскрутка это всего лишь фикция. Это посетитель, которого не было, который не вернется, который не пойдет по вашему сайту дальше первой страницы. Это зря затраченные усилия и потраченное время.
Для нас самое главное найти своего посетителя и заинтересовать его в том, что мы хотим ему предложить.
Но давайте по порядку, прежде всего вам следует понять, что количество и постоянный приток посетителей на вашем сайте зависит не только от рекламы, а также от наличия интересной, определенной группе людей, информации, ради которой они будут посещать ваш ресурс. Так, например, некоторые крупные компании, создают тематические информационные порталы относительно области своей деятельности, чтобы таким образом привлечь не только посетителей на свой сайт, но и потенциальных клиентов. Т.е. первое, что мы должны сделать, это качественный и интересный ресурс, сами понимаете, жиденькие сайты с 2-мя-3-мя десятками страничек, с информацией ни о чем, не могут претендовать на звание качественного ресурса.
Также хочу заметить, если вы создаете сайт для коммерческой организации, то лучше всего этот процесс от начала до конца поручить специалистам: и разработку, и рекламу, потому что и то, и другое взаимосвязано. По сути, сайт – это что-то вроде вашей рекламной брошюры: во время рекламной кампании вы привлекаете к ней внимание, чтобы ее прочли, и если ваш сайт-брошюра не интересен и не заинтриговал человека, пришедшего по рекламному объявлению, то смысл рекламной компании сводится к нулю.
Итак, поскольку я считаю, что коммерческие организации могут потратиться на рекламу, и даже должны, а обычные информационные порталы и некоммерческие организации часто не имеют возможности позволить себе относительно дорогостоящую рекламу, поэтому моя статья скорее для владельцев ресурсов последнего типа, поэтому я буду вести речь о бесплатных, или не очень дорогих способах рекламы сайта.
Когда, мы имеем качественный ресурс, хорошо продуманный, выверенный, стоящий того, чтобы о нем узнали, не надо нестись сломя голову на сайты поисковых систем и каталогов, не торопитесь. Следует продумать, какая аудитория заинтересована в вашем ресурсе: возраст, пол, профессиональная занятость этой аудитории – например, грузчики они или учителя. После того, как вы определились какова ваша аудитория, надо понять, где ваша аудитория в интернете обитает: на какие сайты ходит, какие журналы читает, и т.д. И только после этого мы начинаем охоту, господа :) .
Первый этап. Каталоги.
Первым делом мы добавляем себя в каталоги. Да-да, именно в каталоги, а не в поисковые системы, чуть позже объясню почему. Для добавления в каталоги нам надо придумать рекламное не слишком длинное объявление, такое, которое по возможности выделит ваш сайт среди других, подобных вашему, и может заинтересовать вашего потенциального посетителя. Объявление должно быть написано без грамматических ошибок, проверьте себя, не поленитесь, прежде чем оставлять объявление в каталогах.
Какие каталоги нас интересуют? Желательно каталоги, которые собирают в себе сайты с тематикой, подобной нашей. Т.е. если наш сайт рассказывает о медицинских проблемах, то имеет смысл поместить его в каталог, который освящает медицинские ресурсы. От обычных каталогов мы тоже не отказываемся, если у них есть раздел для сайтов с нашей тематикой, если нет, то не имеет смысла пихать информацию о нашем ресурсе туда для количества, не тратьте время.
Весьма рекомендую вам сайт http://1ps.ru - лучшего ресурса в плане поиска каталогов и добавления себя в них вам не найти. Однако, не добавляйте свой сайт через него в поисковики, это лучше делать вручную, и не сразу.
Второй этап. Обмен баннерами и ссылками с тематическими ресурсами.
Когда мы добавляем наш сайт в каталоги, то стоит обратить там свое внимание на интересные и посещаемые ресурсы со сходной нашему ресурсу тематикой. Зачем? Потому что мы будем обмениваться с ними ссылками и баннерами (желательно маленькими баннерами, кнопками).
Выберите несколько наиболее интересных ресурсов, которые предлагают обмен ссылками и баннерами, и напишите их владельцам письма, в которых поинтересуйтесь, не захотят ли они обменяться с вами ссылками или баннерами. Письмо должно быть вежливым, содержать ссылку на ваш ресурс и информацию, где вы собираетесь разместить баннер/ссылку портала, с которым хотите обмениваться.
Письмо должно именно предлагать - наглые письма: мол, я разместил на вас ссылку, а вы теперь разместите на меня – нельзя писать ни в коем случае. Помните, владелец крупного ресурса, посещаемого и устоявшегося, делает вам одолжение, размещая баннер или ссылку на вас, а не вы ему.
Предложите разместить его ссылку на первой странице вашего сайта, при этом будьте готовы согласиться на то, что в ответ вашу ссылку повесят в разделе с не слишком большой посещаемостью, и уж, в любом случае, не на главной странице.
Зачем нам это нужно: потому что третьим этапом будет размещение в поисковых системах, от того, какие ресурсы по качеству и сколько ресурсов на вас ссылается, зависит ваша позиция в списке результатов, выдаваемых поисковой системой пользователю на какой-либо запрос. Поймите, когда отпадет надобность, и вы добьетесь нужных вам результатов и посещаемости, вы можете отказаться от обмена баннерами/ссылками с другим ресурсом, или же заключить новые условия обмена.
Кстати, на втором этапе ваши друзья и знакомые могут вам помочь, разместив на ваш портал ссылку у себя на сайтах.
Третий этап. Добавление в поисковые системы.
Вы должны понимать, что сразу ничего не делается, прежде чем все ваши действия принесут результаты, пройдет какое-то время. Не надо никуда торопиться, ваш ресурс некоммерческий, от того, что к вам сразу не будет притока посетителей, трагедии не случится. К тому же бесплатная реклама не может быть сопоставима по эффективности с той, в которую вы вложили деньги.
В поисковые системы мы добавляем информацию о нашем ресурсе через неделю-другую, после того, как мы разобрались с каталогами и обменом. Мы это делаем в надежде, что к тому времени, как мы будем добавлять о себе информацию в поисковики, они успеют проиндексировать (заметить), страницы других сайтов, где появилась информация о нас.
Для поисковых систем мы заготавливаем заранее ключевые слова - это слова, которые, как мы предполагаем, будет вводить для поиска человек, когда он ищет ресурсы, содержащие такую информацию, как на нашем сайте. Также для поисковых систем мы заготавливаем интересное описание, нашего ресурса.
На что стоит обратить внимание при составлении списка ключевых слов - ключевые слова, должны встречаться в обычном тексте на страницах нашего сайта. Так, если мы берем слово «медицина», как одно из ключевых, оно должно быть в тексте на первой странице нашего сайта, и не только на ней, т.к. поисковые системы смотрят, соответствуют ли заявленные ключевые слова тем, что содержатся в тексте ваших страниц. От этого тоже зависит ваша позиция в списке результатов, выдаваемых поисковой системой пользователю.
Более того, есть специальные META тэги, которые мы должны прописать в коде всех страниц нашего сайта, они содержат ключевые слова и описание вашего сайта. Содержимое мета-тэгов не видно посетителю вашей страницы, зато учитывается поисковыми системами.
Четвертый этап. Баннерные системы.
Участвовать в баннерных системах имеет смысл, только если они тематические – т.е. допустим, баннерная система, в которой участвуют только сайты с медицинской тематикой. В универсальных баннерных системах, не подчиненных единой тематике участвовать вам не имеет смысла. Это не эффективно, ведь вы сможете показывать в день столько баннеров, сколько было показано на страницах вашего сайта, т.е. мало, а если их при этом не видит ваш потенциальный посетитель, человек, который заинтересован в предлагаемой вами информации, то эффективность баннерной рекламы стремиться к нулю, незаинтересованный человек просто не перейдет по баннеру на ваш сайт.
Баннерные системы нас могут интересовать также в том случае, если вы все-таки решили немного потратиться на рекламу. В этом случае вы можете купить баннерные показы на каких-нибудь крупных сайтах, где обитает ваш потенциальный посетитель.
Пятый этап. Нетрадиционные способы.
Вы можете мне не поверить, но этот этап может быть самым эффективным, для повышения посещаемости вашего сайта.
Ваша задача придумать, как еще можно рекламировать свою страницу. К сожалению, общего рецепта тут быть не может. Но я расскажу, как я действовал в случае с Постройкой.ру, в свое время, чтобы вы поняли, что я имею ввиду.
Я сидел, думал, как же сделать сайт популярнее. И мне пришла в голову замечательная идея: у меня есть замечательный и уникальный учебник по html, если сделать оффлайн версию, положить в архив, тогда можно будет поместить мой учебник на сайты-сборники разных программ, ведь я ничего от этого не теряю. Конечно, прежде чем сделать это, я посмотрел, дают ли эти сайты такую возможность, оказалось, что на них имеются специальные разделы для обучающих программ и мой учебник подходит для размещения там. Решено, сделано. Я разместил учебник по всем крупным файловым архивам. В итоге, через какое-то время посещаемость моего сайта заметно возросла, потому что посетители, прочитав оффлайн версию уникального учебника приходили на сайт в поисках других интересных и полезных материалов, а также советов автора.
Конечно, этот способ подойдет не всем. Но вы можете написать несколько интересных статей, и поместить их на крупные порталы, если статьи будут интересные, то читатель зайдет на ваш сайт, ведь в статье всегда указываются при публикации данные об авторе.
Я полагаю, это далеко не единственные нетрадиционные способы, стоит только приложить чуточку выдумки, и вы найдете хороший способ для рекламы своего сайта. В любом случае, это не должен быть способ навязывания: некоторые несознательные граждане захламляют чужие форумы и гостевые следующим образом - “Здрасте, я Вася Пупкин, мне ваш сайт нравится. Посетите мой сайт.” - это неправильное позиционирование вас и вашего ресурса, так вы только выставляете себя в дурном свете.
Шестой этап. Как не потерять вашего посетителя.
Чтобы посетитель возвращался к вам вновь и вновь, нужно периодически добавлять на сайт новую информацию. Кроме того, нужно постоянно поддерживать с посетителем общение: установите форум или гостевую книгу, где посетители смогут задавать вам вопросы. Старайтесь каждый день просматривать форум, гостевую книгу, почту, и отвечать на вопросы ваших посетителей.
Вы также можете устраивать опросы, чтобы узнать мнение своего посетителя, что ему нужно, это создаст у него впечатление, что он принимает участие в развитии вашего ресурса, ему будет это приятно. Вы можете устраивать конкурсы с небольшими призами. Вы можете сделать новостную рассылку + рассылку с частью новых материалов, которые появляются на сайте. И много чего еще.
Не забывайте, главное, это заинтересованность вашего посетителя в том, что вы ему предлагаете, он нужен вам, а вы должны попытаться стать нужными ему. Когда вы нужны посетителю, когда у него остаются хорошие и теплые впечатления о вашем сайте, он начинает рекомендовать вас друзьям, знакомым. Он начинает сам упоминать о вас на форумах и чатах, где он общается. Он добавляет на вас ссылку на своей странице, чтобы поделиться с другими таким хорошим ресурсом, как ваш. А это и есть лучшая реклама, а это и есть признание того, что ваш ресурс действительно замечательный.
Седьмой этап. Повторение этапов.
Каждый день в интернете появляется много разных и новых ресурсов. В том числе и каталоги, и поисковые системы, и новые сайты, близкие по тематике вашему. Ваша задача следить за новыми ресурсами, добавлять свой сайт в новые каталоги и поисковые системы. Если вы будете заниматься рекламой периодически, то у вас больше шансов сделать свой сайт посещаемым, и привлечь больше новых посетителей.
Думать о продвижении сайта надо еще до его создания. Все начинается с постановки задач и опредления целей. Многие люди, которые собираются продвигать (рекламировать) свой сайт в Интернет, не знают зачем им это, нужен ли им сайт вообще, не знают как оптимизировать свое детище для того, чтобы было возможным осуществлять его продвижение, чтобы достичь поставленных целей и отдых под Киевом, каталог баз отдыха. Если вы относитесь к ним, то это статья для вас.
Сразу хочу уточнить, что в этой статье речь не идет о несерьезных ресурсах вроде домашних страниц. Свое мнение о том, стоит ли рекламировать домашную страницу, почему и как, я высказала в первой части вводной статьи к разделу Реклама. Настоятельно рекомендую всем владельцем домашних страниц перечитать первую часть вводной статьи раз 20-ть, а лучше сто, прежде чем пускаться во все тяжкие.
Теперь, когда я погрозил пальцем недобросовестным гражданам для очистки своей совести, перейдем непосредственно к делу.
Прежде, чем создавать сайт вы должны понять, нужен ли он вам вообще. Зачем, что, для чего.
К неверным мотивам создания сайта можно отнести следующие:
* У всех есть сайт. Чем я хуже?
* Я создам самый лучший ресурс, он поразит воображение всех нынеживущих в интернет, я буду популярным, ко мне придет много людей!
* У наших конкурентов есть сайт. Сваяем и мы что-нибудь по быстрому. Полагаю, прайс-листа и контактов хватит.
* Я сделаю себе сайт, раскручу его, и срублю много денег, ничего особо не делая…
Если, вас сподвигает на создание сайта что-то вроде того, что я только что перечислила - то вам сайт еще не нужен, если вы коммерческая организация. Почему? Потому что цель коммерческого сайта помочь вам завязать и упрочить отношения, которые помогут развитию вашего бизнеса. Подход, чтобы было - это не серьезный, не деловой подход, с таким долго не живут. Что же касается остальных, тщеславных граждан с домашними страничками - куда они идут я уже указывала в самом начале этой статьи. Никогда не забывайте, что интернет - прежде всего информационная сеть, человек сюда приходит за информацией, ему нужна интересная и качественная информация, так зачем же плодить мусор?
К правильным мотивам создания сайта можно отнести следующие:
* Привлечение новых посетилей (для комерческой организации: клиентов, потенциальных клиентов).
* Расширить свой бизнес, увеличить прибыль.
* Получить поддержку, склонить людей и общественное мнение к чему-либо.
* Найти единомышленников по какой-либо проблеме, поделиться инересной и нужной информацией с другими.
Только, когда у нас есть определенная цель, только тогда можно и нужно создавать ресурс, опираясь на нее. Когда есть цель - есть возможность правильно продумать и осуществить разработку ресурса. А при правильно разработанном ресурсе уже можно совершать успешные действия по его продвижению.
Итак, как же правильно осуществить разработку сайта, если мы хотим, чтобы было потом возможным продвигать его в сети:
1. Определите цели вашего сайта. Зачем вы его создаете? (об этом мы уже поговорили).
2. Определите вашу стратегию. Что вы хотите достичь? Как вы собираетесь добиться своих целей? Какие приемы вы будете использовать, чтобы показать себя, чтобы удержаться и развиваться, чтобы продвигать свой сайт? У вас есть конкуренты (фирмы-конкуренты, другие информационные сайты, сообщества). Вам надо исследовать, что они предлагают, какие методы используют для продвижения своего ресурса. На основе исследования определить, какие методы будете использовать вы для продвижения своего сайта. При составлении плана также нужно учесть, какие ресурсы вы имеете в наличии (люди, деньги, знания, время и т.д.), чтобы добиться своих целей.
3. Определите аудиторию вашего сайта. Для кого вы его создаете? Какова целевая аудитория вашего сайта (например, деловая современная женщина, с доходом средний и выше от 20 до 40 лет). В зависимости от того какова ваша аудитория вы решаете какие сервисы вы ей предложите, какие материалы разместите на сайте, каким будет языком вестись изложение материалов (согласитесь, язык научного сайта неприемлим для сайта с детской аудиторией, если детский ресурс будет написан на слишком непонятном его аудитории языке, то популярностью он пользоваться никогда не будет). Если у сайта широкая аудитория, то можно сделать несколько крупных разделов для каждой группы посетителей. Для сайтов, где аудитория говорит на разных языках делается несколько версий на разных языках, причем язык изложения может адаптироваться в зависимости от страны (допустим, что считается приличным в одной стране, может вызвать возмущение у жителей других стран, нужно обязательно учитывать национальные особенности, чтобы не потерять потом посетителя).
4. Доменое имя. То, каков адрес вашего сайта, решает многое. Согласитесь, что сайт с адресом http://firma.com или http://community.com внушает гораздо больше доверия и уважения, чем http://narod.ru/tut/tam/firma или http://freehosting.com/was/here/community, первые два доменных имени говорят о серьезности фирмы или организации, о том, что завтра она никуда не исчезнет, это важно, особенно если учесть, что есть злоумышленники, которые любят пользоваться доверием людей, и поэтому люди стали сейчас гораздо осторожнее и настороженнее относится к предлагаемым им услугам и информации.
Более того, адрес http://firma.com легче продвигать в поисковых системах и рейтингах. Кроме того, адрес http://firma.com, гораздо легче запомнить, чем http://narod.ru/tut/tam/firma. Старайтесь, чтобы в названии домена присуствовало название организации. Имя домена = имя фирмы - очень легко запоминается. Если у фирмы или организации сложное имя, то имя домена может символизировать область деятельности фирмы или организации. Допустим, комбинату по производству хлеба со сложным названием “Комбинат №4 по производству хлебо-булочных изделий “Серебрянный бор” никак не подобрать запоминаемое сокращение, чтобы его можно было использовать в качестве доменного имени, но зато можно зарегистрировать домен типа: http://hleb.ru или http://bulka.ru - запоминаемо и связано с деятельностью предприятия.
5. Презентабельность. Внешний вид вашего сайта не должен отталкивать. Наооборот, он обязан быть привлекательным. Помните - по одежке встречают. Первое впечатление - очень важно. Если оформление вашего сайта отталкивающее, то вы можете потерять посетителя, он уйдет, даже не попытавшись ознакомиться с представленной информацией.
6. Удобство. Вся информация на сайте должна быть организована так, чтобы ее было легко находить, чтобы было легко ориентироваться по сайту. Навигация должна быть простой и понятной. Желательно, чтобы до самого дальнего подраздела можно было дойти не более, чем в несколько кликов. Струтура сайта должна быть четкой и ясной посетителю.
7. Нужная информация. Какой бы ни был ваш сайт просто информационный, посвященный какой-либо проблеме, или коммерческий сайт, предназначенный продвигать вашу компанию посредством Интернет, самое главное - это содержимое сайта. Ваш посетитель приходит к вам за информацией, и поэтому, разрабатывая содержимое сайта, вы должны подумать, какую информацию хотела бы получить ваша аудитория, какую информацию они будут искать. Желательно, чтобы информация была уникальная. Только присуствие уникальной информации или сервисов на ресурсе может привлечь к вам посетителя, только наличие постоянно добавляемой и обновляемой уникальной информации может привлечь и убедить его зайти к вам на сайт еще раз, и не один раз. Именно поэтому, даже коммерческой организации не стоит делать сайт из серии “прайс-лист+контакты”, потому что такой сайт практически никому не будет интересен и не приведет к организации новых клиентов. Зато интересный портал, связанный с сферой деятельности фирмы, это то, что нужно. Он привлечет много посетителей, которые потом могут стать клиентами фирмы.
8. Интересные сервисы и предложения. Конечно, не только информацией единой жив сайт. Обязательно нужно учесть необходимость создания связи с посетителем, в этом вам помогут форум, или гостевая книга. Иногда необходимо напоминать о себе своим посетителям, для этого возможно стоит ввести рассылку новостей вашего сайта, чтобы каждый желающий мог на нее подписаться. Но это все стандартные, хотя и нужные ходы. Нужно еще что-то оригинальное и инетересное. Предложите поучавствовать посетителям в жизни сайта. Например, на популярных сайтах с кулинарными рецептами, вы можете найти не только миллион и один рецепт, а также прислать свой собственный, ваш рецепт могут оценить и обсудить другие посетители сайта. Кроме того, периодически устраиваются конкурсы на лучший рецепт, с призами, незайтейливыми, но приятными.
Однако, такое возможно не только для некоммерческого ресурса. Подобные ходы может взять себе на вооружение сайт какой-нибудь ресторанной сети, расчитанной на обывателя с средним доходом. Сборник рецептов, возможность посетителям его пополнять, обсуждать, учавствовать в конкурсах - все это не только не повредить коммерческому сайту, но и поможет в продвижении компании не только в сети интернет, Сходить на выходные с семьей в любимый ресторан, на сайте которого вечерами общаешься с подругой - думаю, это может стать традицией для многих женщин.
Итог:
Главная выгода, которую вам дает интернет - это непосредственное общение с вашим посетителем (потенциальным клиентом). Задача хорошего ресурса (как коммерческого, так и нет) быть ближе к посетителю, соотвествовать его нуждам. Вы должны думать о своей аудитории - это единственно правильный подход. Реклама в интернет не сводится к банальной баннерной рекламе, рассылке е-майл, продвижению сайта компании или организации в поисковиках, рейтингах, каталогах - это далеко не основные способы, эти способы как раз не так эффективны, как хотелось бы, хотя их все равно не стоит сбрасывать со счетов. Основное - это как раз создание неких взаимоотношений со своей аудиторией. Таким отношениям есть даже определенное название - PR - что означает Public Relations - связь с общественностью. Именно PR - есть самый эффективный способ продвижения чего-либо в Интернет, именно благодаря Public Relations вы сможете добиться своих целей и извлечь выгоду для своей организации или компании.
В этой статье я лишь затронула тему PR, и надеюсь, это было для вас интересным и познавательным. По традиции в правой колонке вы найдете ссылки по теме, и сможете ознакомиться с ней дальше сомостоятельно.
Для программирования расширенных хранимых процедур Microsoft предоставляет ODS (Open Data Service) API набор макросов и функций, используемых для построения серверных приложений позволяющих расширить функциональность MS SQL Server 2000.
Расширенные хранимые процедуры - это обычные функции написанные на С/C++ с применением ODS API и WIN32 API, оформленные в виде библиотеки динамической компоновки (dll) и призванные, как я уже говорил, расширять функциональность SQL сервера. ODS API предоставляет разработчику богатый набор функций позволяющих передавать данные клиенту, полученные от любых внешних источников данных (data source) в виде обычных наборов записей (record set). Так же, extended stored procedure может возвращать значения через переданный ей параметр (OUTPUT parametr).
Как работают расширенные хранимые процедуры.
* Когда клиентское приложение вызывает расширенную хранимую процедуру, запрос передаётся в TDS формате через сетевую библиотеку Net-Libraries и Open Data Service ядру MS SQL SERVER.
* SQL Sever находит dll библиотеку ассоциированную с именем расширенной хранимой процедуры и загружает её в свой контекст, если она не была загружена туда ранее, и вызывает расширенную хранимую процедуру, реализованную как функцию внутри dll.
* Расширенная хранимая процедура выполняет на сервере необходимые ей действия и передаёт набор результатов клиентскому приложению, используя сервис предоставляемый ODS API.
Особенности расширенных хранимых процедур.
* Расширенные хранимые процедуры - это функции выполняющиеся в адресном пространстве MS SQL Server и в контексте безопасности учётной записи под которой запущена служба MS SQL Server;
* После того, как dll библиотека с расширенными хранимыми процедурами была загружена в память, она остаётся там до тех пор, пока SQL Server не будет остановлен, или пока администратор не выгрузит её принудительно, используя команду :
DBCC DLL_name (FREE).
* Расширенная хранимая процедура запускается на выполнение так же, как и обычная хранимая процедура:
EXECUTE xp_extendedProcName @param1, @param2 OUTPUT
@param1 входной параметр
@param2 входной/выходной параметр
Внимание!
Так как расширенные хранимые процедуры выполняются в адресном пространстве процесса службы MS SQL Server, любые критические ошибки, возникающие в их работе, могут вывести из строя ядро сервера, поэтому рекомендуется тщательно протестировать Вашу DLL перед установкой на рабочий сервер.
Создание расширенных хранимых процедур.
Расширенная хранимая процедура эта функция имеющая следующий прототип:
Параметр pSrvProc указатель на SRVPROC структуру, которая является описателем (handle) каждого конкретного клиентского подключения. Поля этой структуры недокументированны и содеражат информацию, которую библиотека ODS использует для управления коммуникацией и данными между серверным приложением (Open Data Services server application) и клиентом. В любом случае, Вам не потребуется обращаться к этой структуре и тем более нельзя модифицоравать её. Этот параметр требуется указывать при вызове любой функции ODS API, поэтому в дальнейшем я небуду останавливаться на его описании.
Использование префикса xp_ необязательно, однако существует соглашение начинать имя расширенной хранимой процедуры именно так, чтобы подчеркнуть отличие от обычной хранимой процедуры, имена которых, как Вы знаете, принято начинать с префикса sp_.
Так же следует помнить, что имена расширенных хранимых процедур чувствительны к регистру. Не забывайте об этом, когда будете вызвать расширенную хранимую процедуру, иначе вместо ожидаемого результата, Вы получите сообщение об ошибке.
Если Вам необходимо написать код инициализации/деинициализации dll, используйте для этого стандартную функцию DllMain(). Если у Вас нет такой необходимости, и вы не хотите писать DLLMain(), то компилятор соберёт свою версию функции DLLMain(), которая ничего не делает, а просто возвращает TRUE. Все функции, вызываемые из dll (т.е. расширенные хранимые процедуры) должны быть объявлены, как экспортируемые. Если Вы пишете на MS Visual C++ используйте директиву __declspec(dllexport). Если Ваш компилятор не поддерживает эту директиву, опишите экспортируемую функцию в секции EXPORTS в DEF файле.
Итак, для создания проекта, нам понадобятся следующие файлы:
* Srv.h заголовочный файл, содержит описание функций и макросов ODS API;
* Opends60.lib файл импорта библиотеки Opends60.dll, которая и реализует весь сервис предоставляемый ODS API.
Microsoft настоятельно рекомендует, чтобы все DLL библиотеки реализующие расширенные хранимые процедуры экспортировали функцию:
Когда MS SQL Server загружает DLL c extended stored procedure, он первым делом вызывает эту функцию, чтобы получить информацию о версии используемой библиотеки.
Для написания своей первой extended stored procedure, Вам понадобится установить на свой компьютер:
- MS SQL Server 2000 любой редакции (у меня стоит Personal Edition). В процесе инсталляции обязательно выберите опцию source sample
- MS Visual C++ (я использовал версию 7.0 ), но точно знаю подойдёт и 6.0
Установка SQL Server -a нужна для тестирования и отладки Вашей DLL. Возможна и отладка по сети, но я этого никогда не делал, и поэтому установил всё на свой локальный диск. В поставку Microsoft Visual C++ 7.0 редакции Interprise Edition входит мастер Extended Stored Procedure DLL Wizard. В принципе, ничего сверх естественного он не делает, а только генерирует заготовку шаблон расширенной хранимой процедуры. Если Вам нравятся мастера, можете использовать его. Я же предпочитаю делать всё ручками, и поэтому не буду рассматривать этот случай.
Теперь к делу:
- Запустите Visual C++ и создайте новый проект - Win32 Dynamic Link Library.
- Включите в проект заголовочный файл - #include <srv.h>;
- Зайдите в меню Tools => Options и добавьте пути поиска include и library файлов. Если , при установке MS SQL Server, Вы ничего не меняли, то задайте:
- C:Program FilesMicrosoft SQL Server80ToolsDevToolsInclude для заголовочных файлов;
- C:Program FilesMicrosoft SQL Server80ToolsDevToolsLib для библиотечных файлов.
- Укажите имя библиотечного файла opends60.lib в опциях линкера.
На этом подготовительный этап закончен, можно приступать к написанию своей первой extended stored procedure.
Постановка задачи.
Прежде чем приступать к программированию, необходимо чётко представлять с чего начать, какой должен быть конечный результат, и каким способом его добиться. Итак, вот нам техническое задание:
Разработать расширенную хранимую процедуру для MS SQL Server 2000, которая получает полный список пользователей зарегистрированных в домене, и возвращает его клиенту в виде стандартного набора записей (record set). В качестве первого входного параметра функция получает имя сервера содержащего базу данных каталога (Active Directory), т.е имя контролера домена. Если этот параметр равен NULL, тогда необходимо передать клиенту список локальных групп. Второй параметр будет использоваться extended stored procedure для возварата значения результата успешной/неуспешной работы (OUTPUT параметр). Если, расширенная хранимая процедура выполнена успешно, тогда необходимо передать количество записей возвращённых в клиентский record set , если в процессе работы не удалось получить требуемую информацию, значение второго параметра необходимо установить в -1, как признак неуспешного завершения.
.
А вот шаблон расширенной хранимой процедуры, который нам предстоит наполнить содержанием:
Работа с входными параметрами
В этой главе я не хочу рассеивать Ваше внимание на посторонних вещах, а хочу сосредоточить его на работе с переданными в расширенную хранимую процедуру параметрами. Поэтуму мы несколько упростим наше техническое задание и разработаем тольку ту его часть, которая работает с входными параметрами. Но сначал не много теории
Первое действие, которое должна выполнить наша exteneded stored procedure , - получить параметры, которые были переданы ей при вызове. Следуя приведённому выше алгоритму нам необходимо выполнить следующие действия:
- Определить кол-во переданных параметров;
- Убедится, что переданные параметры имеют верный тип данных;
- Убедиться, что указанный OUTPUT параметр имеет достаточную длину, для сохранения в нём значения возвращаемого нашей extended stored procedure.
- Получить переданные параметры;
- Установить значения выходного параметра как результат успешного/неуспешного завершения работы extended stored procedure .
Теперь рассмотрим подробно каждый пункт:
Определение количества переданных в расширенную хранимую процедуру параметров
Для получения количества переданных параметров необходимо использовать функцию:
.
При успешном завершении функция возвращает количество переданных в расширенную хранимую процедуру параметров. Если extended stored procedure была вызвана без параметров - srv_rpcparams ввернёт -1. Параметры могут быть переданы по имени или по позиции (unnamed). В любом случае, нельзя смешивать эти два способа. Попытка передачи в функцию входных параметров по имени и по позиции одновременно - приведёт к возникновению ошибки, и srv_rpcparams вернёт 0 .
[pagebreak]
Определение типа данных и длины переданых параметров
Для получения информации о типе и длине переданных параметров Microsoft рекомендует использовать функцию srv_paramifo. Эта универсальная функция заменяет вызовы srv_paramtype, srv_paramlen, srv_parammaxlen, которые теперь считаются устаревшими. Вот её прототип:
.
.
.
.
.
.
.
.
.
.
pByte - указатель на переменную получающую информацию о типе входного параметра;
pbType задаёт порядковый номер параметра. Номер первого параметра начинается с 1.
pcbMaxLen - указатель на переменную, в которую функция заносит максимальное значение длины параметра. Это значение обусловлено конкретным типом данных переданного параметра, его мы и будем использовать, чтобы убедиться втом, что OUTPUT параметр имеет достаточную длину для сохранения передаваемых данных.
pcbActualLen указатель на реальную длину параметра переданного в расширенную хранимую процедуру при вызове. Если передаваемый параметр имеет нулевую длину, а флаг pfNull устанавлен в FALSE то (* pcbActualLen) ==0.
pbData - указатель на буфер, память для которого должна быть выделена перед вызовом srv_paraminfo. В этом буфере функция размещает полученные от extended stored procedure входные параметры. Размер буфера в байтах равен значению pcbMaxLen. Если этот параметр установлен в NULL, данные в буфер не записываются, но функция корректно возвращает значения *pbType, *pcbMaxLen, *pcbActualLen, *pfNull. Поэтому вызывать srv_paraminfo нужно дважды: сначала с pbData=NULL, потом, выделив необходимый размер памяти под буфер равный pcbActualLen, вызвать srv_paraminfo второй раз, передав в pbData указатель на выделенный блок памяти.
pfNull указатель на NULL-флаг. srv_paraminfo устанавливает его в TRUE, если значение входного параметра равно NULL.
Проверка, является ли второй параметр OUTPUT параметром.
Функция srv_paramstatus() предназначена для определения статуса переданного параметра:
.
.
.
.
.
n - номер параметра переданного в расширенную хранимую процедуру при вызове. Напомню: параметры всегда нумеруются с 1.
Для возврата значения, srv_paramstatus использует нулевой бит. Если он установлен в 1 переданный параметр является OUTPUT параметром, если в 0 обычным параметром, переданным по значению. Если, exteneded stored procedure была вызвана без параметров, функция вернёт -1.
Установка значения выходного параметра.
Выходному параметру, переданному в расширеную хранимую можно передать значение используя функцию srv_paramsetoutput. Эта новая функция заменяет вызов функции srv_paramset, которая теперь считается устаревашай, т.к. не поддерживает новые типы данных введённые в ODS API и данные нулевой длины.
.
.
.
.
.
.
.
.
n - порядковый номер параметра, которому будет присвоено новое значение. Это должен быть OUTPUT параметр.
pbData указатель на буфер с данными, которые будут посланы клиенту для установки значения выходного параметра.
cbLen длина буфера посылаемых данных. Если тип данных переданного OUTPUT параметра определяет данные постоянной длины и не разрешает хранение значения NULL (например SRVBIT или SRVINT1), то функция игнорирует параметр cbLen. Значение cbLen=0 указывает на данные нулевой длины, при этом парметр fNull должен быть установлен в FALSE.
fNull установите этот его в TRUE, если возвращаемому параметру необходимо присвоить значение NULL, при этом значение cbLen должно быть равно 0, иначе функция завершится с ошибкой. Во всех остальных случаях fNull=FALSE.
В случае успешного завершения функция возвращает SUCCEED. Если возвращаемое значение равно FAIL, значит вызов был неудачным. Всё просто и понятно
Теперь мы достаточно знаем, для того чтобы написать свою первую расширенную хранимую процедуру, которая будет возвращать значение через переданный ей параметр.Пусть, по сложившейся традиции, это будет строка Hello world! Отладочну версию примера можно скачать здесь.
. Не рассмотренными остались функции srv_sendmsg и srv_senddone. Функция srv_sendmsg используется для посылки сообщений клиенту. Вот её прототип:
msgtype определяет тип посылаемого клиенту сообщения. Константа SRV_MSG_INFO обозначает информационное сообщение, а SRV_MSG_ERROR сообщение об ошибке;
msgnum номер сообщения;
class - степень тяжести возникшей ошибки. Информационные сообщения имеют значение степени тяжести меньшее или равное 10;
state номер состояния ошибки для текущего сообщения. Этот параметр предоставляет информацию о контексте возникшей ошибки. Допустимые значения лежат в диапазоне от 0 до 127;
rpcname в настоящее время не используется;
rpcnamelen - в настоящее время не используется;
linenum здесь можно указать номер строки исходного кода. По этому значению, в последствие будет легко установить в каком месте возникла ошибка. Если Вы не хотите использовать эту возможность, тогда установите linenum в 0;
message указатель на строку посылаемую клиенту;
msglen определяет длину в байтах строки сообщения. Если это строка заканчивается нулевым символом, то значение этого параметра можно установить равным SRV_NULLTERM.
Возвращаемыме значения:
- в случае успеха SUCCEED
- при неудаче FAIL.
В процессе работы расширенная хранимая процедура должна регулярно сообщать клиентскому приложению свой статус, т.е. посылать сообщения о выполненных действиях. Для этого и предназначена функция srv_senddone:
status - статус флаг. Значение этого параметра можно задавать использую логические операторы AND и OR для комбинирования констант приведённых в таблице:
Status flag Описание
SRV_DONE_FINAL Текущий набор результатов является окончательным;
SRV_DONE_MORE Текущий набор результатов не является окончательным следует ожидать очердную порцию данных;
SRV_DONE_COUNT Параметр count содержит верное значение
SRV_DONE_ERROR Используется для уведомления о возникновении ошибок и немедленном завершении.
into зарезервирован, необходимо установить в 0.
count количество результирующих наборов данных посылаемых клиенту. Если флаг status установлен в SRV_DONE_COUNT, то count должен содержать правильное количество посылаемый клиенту наборв записей.
Возвращаемыме значения:
- в случае успеха SUCCEED
- при неудаче FAIL.
Установка расширенных хранимых процедур на MS SQL Server 2000
1.Скопируйте dll библиотеку с расширенной хранимой процедурой в каталог binn на машине с установленным MS SQL Server. У меня этот путь следующий: C:Program FilesMicrosoft SQL ServerMSSQLBinn;
2.Зарегистрирйте расширенную хранимую процедуру на серверt выполнив следующий скрипт:
Заключение
На этом первая часть моей статьи закончена. Теперь я уверен Вы готовы справиться с нашим техническим заданием на все 100%. В следующей статье Вы узнаете:
- Типы данных определённые в ODS API;
- Особенности отладки расширенных хранимых процдур;
- Как формировать recordset-ы и передавать их клиентскому приложению;
- Чстично мы рассмотрим функции Active Directory Network Manegment API необходимые для получения списка доменных пользователей;
- Создадим готовый проект (реализуем наше техническое задание)
Надеюсь - до скорой встречи!
Проблемы соединения волоконных световодов приобрели особую актуальность при разработке технологии их промышленного применения. Выбор способа сращивания зависит от условий применения волоконной оптики.
Очевидно, что значительные преимущества при использовании волоконно-оптических технологий в телекоммуникационной отрасли, связанные с улучшением целого ряда технико-экономических показателей (возрастанием скорости передачи информации, увеличением длины регенерационного участка, уменьшением массогабаритных характеристик кабелей, экономией цветных металлов и др.), предопределят в будущем широкое внедрение волоконной оптики при построении линий связи различных уровней. Однако необходимо было разработать методики сращивания волоконных световодов, обеспечивающие высокие качественные и вместе с тем достаточно технологичные и доступные показатели, чтобы сделать возможным применение этих световодов не только в стационарных, но и в полевых условиях.
Строительная длина волоконно-оптического кабеля на практике устанавливается, исходя из ряда факторов. Прокладка больших длин кабеля неудобна вследствие необходимости сматывания с барабана и манипуляций с кабелем как во время прокладки в полевых условиях (при пересечении других подземных коммуникаций), так и в городских условиях (при прокладке в кабельную канализацию). Прокладывая кабель с помощью кабелеукладочной техники, также возникают неудобства, связанные с манипуляциями большими длинами, если для погрузочно-разгрузочных работ приходится использовать специализированную технику. Особенно остро стоит проблема манипуляции строительными длинами с большой удельной массой при прокладке глубоководных морских кабелей и кабелей для прибрежной зоны. Из-за необходимости инсталляции кабелей максимально возможной длины для их транспортировки по суше используются спаренные железнодорожные платформы, на которых кабели выкладываются в форме "8", а не на кабельные барабаны. Таким образом кабель транспортируется по суше до погрузки на судно.
Для соединения оптических волокон разработаны два способа соединений: разъемные и неразъемные. Неразъемные соединения оптических волокон осуществляются методом сварки, методом склеивания, а также с помощью механических соединителей. Для создания разъемных соединений оптических волокон используются оптические коннекторы.
Соединения оптических волокон с помощью сварки
Соединение оптических волокон с помощью сварки является сегодня наиболее распространенным методом получения неразъемных соединений. Благодаря в достаточной мере совершенной технологии этот метод позволяет получать качественные соединения с низкими показателями вносимых потерь (порядка 0,1-0,15 дБ), что обуславливает его применение на линиях связи, где этот показатель входит в приоритетные - магистральные, зоновые и другие - высокоскоростные ВОЛС.
Сваривание оптических волокон предусматривает оплавление концов волоконных световодов путем помещения их в поле мощного источника тепловой энергии, как, например, поле электрического разряда, пламя газовой горелки, зона мощного лазерного излучения.
Каждый из перечисленных методов имеет свои достоинства и недостатки. Достоинством метода сварки с помощью лазера можно считать возможность получения чистых соединений из-за отсутствия в них сторонних примесей, и, как следствие, достаточно малых вносимых потерь (0,1 дБ и менее). Как правило, в качестве источника лазерного излучения высокой мощности (до 5 Вт) используются газовые лазеры на СО2.
К достоинствам метода сварки с помощью газовой горелки следует также отнести возможность получения соединений оптических волокон, отличающихся высокой прочностью мест сростков. В качестве источника пламени используют смесь пропана с кислородом или соединение кислорода, хлора и водорода. Этот метод распространен по большей части для сварки многомодовых оптических волокон.
Основным достоинством сварки в поле электрического разряда является быстрота и технологичность. Этот метод в настоящее время приобрел наибольшую популярность для сварки одномодовых световодов.
Аппараты для сварки оптических волокон можно классифицировать следующим образом: по способу юстировки свариваемых концов оптических волокон (в зависимости от геометрических размеров сердцевин или от потерь мощности светового сигнала, распространяющегося через место сварки); по способу проведения операций (ручные или автоматические); по типу устройства контроля (микроскоп, монитор на жидких кристаллах); по количеству оптических волокон, которые могут быть сварены одновременно (одно- и многоволоконные).
При сварке оптических волокон в поле электрического разряда можно выделить такие технологические этапы:
* подготовка торцевых поверхностей соединяемых оптических волокон;
* надевание защитной термоусаживаемой гильзы на одно из соединяемых волокон;
* установка подготовленных концов оптических волокон в направляющие системы сварочного аппарата;
* юстировка свариваемых оптических волокон;
* предварительное оплавление торцов оптических волокон (fire cleaning) с целью ликвидации микронеровностей, возникающих в
* процессе скалывания;
* непосредственное сваривание оптических волокон;
* предварительная оценка качества сварки;
* защита места сварки с помощью термоусаживаемой гильзы;
* окончательная оценка качества сварки с помощью рефлектометра.
Существует два способа юстировки. Первый базируется на выравнивании сердцевин свариваемых оптических волокон по их геометрическим размерам (Profile Alignment System PAS) с помощью боковой подсветки концов свариваемых волокон.
Второй способ основан на выравнивании сердцевин оптических волокон по принципу минимизации потерь тестового светового сигнала, распространяющегося через место сварки.
Что касается активной юстировки, то известно три метода.
Первый заключается в использовании оптического излучателя и приемника на противоположных концах оптических волокон, подлежащих сварке. Информация от приемника передается персоналу, производящему сварку.
Второй метод сводится к использованию оптического передатчика на дальнем конце и детектора в точке соединения. Тестовый оптический сигнал выводится из соединяемого оптического волокна на небольшом (примерно 0,5 м) расстоянии от места сварки на изгибе и детектируется приемником, оборудованным измерителем оптической мощности.
Третий метод реализует LID (Local Injection and Detection) - процедуру юстировки, ограниченную исключительно местом соединения. В основу этого метода положено введение тестового оптического сигнала в сердцевину одного из соединяемых оптических волокон и поиск его в сердцевине второго соединяемого волокна путем изгиба.
Метод LID является наиболее эффективным, поскольку, в отличие от метода PAS, качество сварного соединения в большей мере зависит от сварочного аппарата, а не от индивидуального мастерства персонала. В современных сварочных аппаратах для управления процессами юстировки и сварки используются микропроцессоры, с помощью которых возможна оптимизация процесса сварки для получения минимальных (менее 0,1 дБ) потерь в местах соединений оптических волокон.
В процессе оплавления оптические волокна подаются одновременно для предотвращения укорачивания одного из них в месте сварки. Операции оплавления и сваривания, как правило, выполняются автоматически. В современных автоматических сварочных аппаратах для снятия механического напряжения в точке соединения оптических волокон предусмотрен режим прогревания места стыка по окончании процесса сварки. Такой режим называется "режимом релаксации".
Цикл плавления (длительность подачи и сила тока как для предварительного оплавления, так и для сварки и релаксации) для оптических волокон различных производителей и типов различны.
Некоторые сварочные аппараты, кроме рассмотренных выше способов контроля качества места сварки, используют еще и тест на растяжение во избежание нарушения соединения во время манипуляций при выкладке сростков в кассету, а также в дальнейшем, в процессе эксплуатации. Соединенное оптическое волокно прочно закреплено в направляющих платформах (которые используются при юстировке). Под контролем микропроцессора по завершении этапа сварки эти направляющие платформы расходятся в противоположные стороны, образуя строго нормированное продольное усилие на растяжение, приложенное к месту стыка. Считается, что стык, прошедший такое тестирование, более надежен и выполнен более качественно. При невозможности получения стыка, способного пройти этот тест, но удовлетворяющего по параметрам передачи, эту опцию можно отключить.
Особо следует отметить сварку ленточных элементов (ленточных волоконно-оптических кабелей, отличающихся большим количеством оптических волокон). Эту операцию можно проводить, только применяя полностью автоматический сварочный аппарат, с помощью которого можно соединить до 12 оптических волокон приблизительно за 3 минуты, причем средний уровень потерь составит около 0,1-0,15 дБ. Однако для сваривания ленточных элементов необходим опытный, хорошо подготовленный персонал.
Во время сварки оптические волокна размещаются с соответствующим смещением от оси электродов, что обеспечивает равномерное нагревание. До начала процесса сваривания и по его завершении проверяется смещение оптических волокон, состояние торцевых поверхностей, а также деформация.
При сваривании ленточных элементов необходимо, кроме основных процессов, рассмотренных ранее, провести еще три технологические операции: устранить расхождения торцов соединяемых оптических волокон, плавление всех волокон выполнить одновременно с одинаковой температурой, в процессе предварительной оценки измерить уровень вносимых потерь рефлектометром. Если оказалось, что результаты не отвечают требованиям, процесс сварки повторяют.
Как показывает практика, предварительная оценка качества сварных соединений оптических волокон, базирующаяся на методе РАС, может содержать погрешность в диапазоне 5-1000%, поэтому окончательный вывод о качестве сварного соединения стоит делать после измерений рефлектометром.
По мере совершенствования качества сварочного оборудования и технологии сварки возрастают возможности получения сварных соединений оптических волокон высокого качества. Потери на сварных соединениях зависят от нескольких факторов: опыта персонала, геометрических погрешностей свариваемых оптических волокон, а также от материалов, из которых изготовлены волокна. Особенно часто проблемы возникают при сварке оптических волокон различных производителей. Дело в том, что оптические волокна различных производителей изготавливаются с использованием принципиально отличающихся друг от друга технологических процессов. В результате материал оптических волокон - кварцевое стекло - не является идентичным в волокнах различного происхождения, несмотря на то, что параметры оптических волокон, указанные в спецификациях фирм-производителей, отличаются незначительно.
Факторами, определяющими свойства стекла, являются технология изготовления и качество материалов. Многочисленные исследования показали, что тысячные доли процента примесей в кварцевом стекле оказывают большее влияние, чем добавки в десятки процентов тех же компонентов к многокомпонентным стеклам.
Для сварки наибольшее влияние имеют следующие характеристики: плотность, коэффициент теплового расширения, показатель преломления, вязкость и механические характеристики. Эти параметры определяют оптические потери в местах сращивания и должны приниматься во внимание при использовании оптических волокон, произведенных по различным технологиям, в пределах одного элементарного кабельного участка ВОЛС. Особое внимание следует уделять идентификации оптических волокон в кабеле по типу, производителю и технологии изготовления.
Более совершенные аппараты для сварки оптических волокон содержат программы, оптимизирующие процесс сварки для оптических волокон различных типов и различных производителей, однако на практике нередки ситуации, когда, используя стандартные программы, невозможно получить качественную сварку. В этих случаях необходимо самостоятельно корректировать параметры процесса (время и ток, подаваемый на электроды) для достижения оптимальных результатов.
[pagebreak]
Наиболее часто сварка оптических волокон различных производителей производится при оконцовке оптических волокон пигтейлами, а также при ремонтно-восстановительных работах, если эксплуатационный запас кабеля израсходован, и приобретение полностью идентичного кабеля невозможно (к примеру, по причине снятия с производства оптического волокна такого типа, который использовался первоначально) или экономически нецелесообразно.
В общем виде величина потерь в местах сварных соединений может быть представлена как суммарная величина: Dобщ = Dор + Dдм + Dую + Dнм + Dрпп, где: Dобщ - суммарная величина потерь в сварке; Dор - потери из-за осевого рассогласования модовых полей равного диаметра; Dдм - потери из-за разницы диаметров модовых полей; Dую - потери от погрешности угловой юстировки осей оптических волокон; Dнм - потери, обусловленные не-круглостью модовых полей; Dрпп - потери из-за разницы показателей преломления.
Изучение параметров и характеристик различных одномодовых оптических волокон показывает, что разброс величины диаметра модового поля для l = 1310.1330 нм или l = 1500...1550 нм может составлять от 10,5 до 21,7% (9,2 0,5 мкм). Такое рассогласование приводит к появлению потерь от 0,05 дБ до 0,25 дБ (с положительным знаком, когда излучение проходит из волокна с большим диаметром в волокно с меньшим диаметром, и отрицательным - в противоположном направлении). Эти потери будут иметь место, даже если аппарат расположит соосно два волокна с разными диаметрами сердцевин, у которых эксцентриситет пренебрежительно мал. Обычно разброс величины модового поля оптического волокна не превышает 14%, таким образом, величина этой составляющей - не более 0,1 дБ.
Составляющая Dую практически не компенсируется современным сварочным оборудованием. Установлено, что углы между осями сердцевин 0,5°; 1°; 1,5°; 2° вызывают приращение потерь соответственно в 0,08; 0,34; 0,77 и 1,5 дБ. Таким образом, благодаря надлежащей подготовке торцов соединяемых оптических волокон при скалывании можно уменьшить потери - необходимо обеспечить наименьший (не более 0,5°) угол между плоскостями торцов оптических волокон. В этом случае величина потерь не превысит 0,08 дБ.
Составляющая Dнм учитывает влияние некруглости модового поля. По приблизительным оценкам она равна 0,05 дБ.
При соединении сваркой оптических волокон, имеющих неконцентричность модового поля, часто возникает нарушение юстировки сердцевин вследствие действия сил поверхностного натяжения. Это нарушение можно минимизировать следующими способами:
* сокращение времени плавления за счет неполного сваривания оптических волокон или же сокращение длины свободного конца оптического волокна в сварочном устройстве, чтобы концы оптических волокон в процессе сварки могли перемещаться на очень малое расстояние;
* использование компенсационных программ, таких как управление смещением сердцевины с помощью метода умышленного смещения осей.
Такой режим получил название RTC (Real Time Control). В этом режиме после юстировки сердцевин свариваемых оптических волокон и проведения процедуры предварительного оплавления происходит компенсация поперечного смещения сердцевин в сторону, противоположную производной расхождения.
Сварка оптических волокон осуществляется посредством чередования коротких импульсов тока высокой интенсивности с импульсами тока низкой интенсивности (релаксационными импульсами). При этом после сваривания в электрическом поле импульса высокой интенсивности в поле релаксационного импульса происходит перемещение оптических волокон под действием поверхностного натяжения. Количество чередующихся импульсов зависит от смещения сердцевин оптических волокон, которое постоянно контролируется сварочным аппаратом; как правило, количество импульсов не превышает 2-3.
Весьма существенное влияние на общую величину потерь, если свариваются оптические волокна с разными показателями преломления (N) сердцевины, может оказать составляющая Dрпп. Эта составляющая учитывает потери мощности оптического сигнала в результате несоблюдения условия полного внутреннего отражения на месте стыка двух оптических волокон, у которых показатели преломления сердцевин имеют различия. В этом случае часть оптического сигнала проникает через оболочку волокна и рассеивается. Ситуация усугубляется многократным отражением луча от границы "сердцевина/оболочка", каждое из которых (отражений) служит источником потери мощности. На практике нередки случаи, когда даже многократные повторные сварки не позволяют добиться малой величины потерь.
Наибольший вклад в суммарную величину потерь вносят потери от погрешности угловой юстировки осей оптических волокон и потери из-за разницы показателей преломления.
Международная электротехническая комиссия предлагает в качестве типичной характеристики сварного соединения оптических волокон, полученного в полевых условиях, величину вносимых потерь, равную 0,2 дБ (IEC 1073-1). При современном развитии технологии сварки оптических волокон этот показатель вполне достижим даже тем персоналом, который не обладает значительным опытом в этой области.
Соединение оптических волокон методом склеивания
Практически одновременно с методом сварки был разработан метод склеивания оптических волокон. Для получения клеевых соединений используют совмещение и фиксацию оптических волокон: в капилляре, в трубке с прямоугольным сечением, с помощью V-образной канавки и с помощью трех стержней в качестве направляющих. Оптические волокна соединяются поодиночке.
Технология получения таких соединений состоит из следующих этапов:
* подготовка оптических волокон к соединению (очистка, снятие буферных покрытий, скалывание);
* ввод оптического волокна в капилляр;
* наполнение иммерсионной жидкостью, гелем или клеем;
* регулирование соединения, юстировка оптических волокон;
* нанесение адгезивного вещества;
* цементирование адгезивного вещества с помощью ультрафиолетового излучения.
Клей, используемый для оптических волокон, должен иметь коэффициент преломления, близкий к коэффициенту преломления волокон. Он должен обеспечивать фиксированное положение соединенных оптических волокон, защищать место сращивания от воздействий окружающей среды, гарантировать прочность сростка при воздействии нагрузок в осевом направлении. К достоинствам этого метода следует отнести оперативность и отсутствие деформации сердцевин соединяемых оптических волокон. Это способствует тому, что в области стыка - малые потери, обеспечиваются хорошие механические свойства и т.п. Однако ограниченный срок службы и нестабильность во времени, а также весьма высокая чувствительность к повышению температуры и воздействию влажности являются факторами, сдерживающими распространение этого метода получения неразъемных соединений. В настоящее время он уступил свои позиции методу соединения оптических волокон с помощью механических соединителей.
Механические соединители оптических волокон
Механические соединители оптических волокон разрабатывались как более дешевый и быстрый способ сращивания оптических волокон. Применение аппарата для сварки оптических волокон сопряжено с необходимостью соблюдения ряда условий: для работы используется помещение, параметры которого (температурный диапазон, влажность, давление, вибрации и проч.) соответствуют требованиям производителей сварочного оборудования; также необходима организация питания от сети переменного тока с достаточно жестко регламентированными параметрами. При стоимости комплекта оборудования для сварки оптических волокон, составляющей десятки тысяч долларов США, амортизационные отчисления, а также техническое обслуживание и ремонт являются довольно дорогостоящими.
Достаточно высокие требования предъявляются также к персоналу, производящему работы по сварке оптических волокон. Часто этими же лицами производится наладка и обслуживание аппаратов для сварки оптических волокон (очистка направляющих поверхностей и зажимов, замена электродов и проч.), для чего требуются специалисты с высоким уровнем квалификации.
Всех этих сложностей можно избежать, применяя механические соединители оптических волокон. Конструкция оптических соединителей относительно проста. Основными узлами являются направляющие для двух оптических волокон и устройство фиксации волокон. Внутреннее пространство заполняется тиксотропным гелем для защиты открытых участков оптических волокон от воздействия влаги. Одновременно гель обладает иммерсионными свойствами - его показатель преломления близок к показателю преломления сердцевины волокна.
Процедура монтажа оптических соединителей является частью процедуры монтажа промежуточного или оконечного устройства - кабельной муфты, бокса или стойки. Размеры и форма оптических соединителей позволяют устанавливать их в кассету муфты или бокса аналогично сросткам оптических волокон, полученных путем сварки.
Процедура монтажа включает в себя следующие технологические операции:
* разделка кабелей;
* очистка оптических волокон от гидрофобного геля (при его наличии);
* снятие буферных покрытий соединяемых оптических волокон на участках длиной, рекомендуемой производителями оптических соединителей конкретного типа;
* скалывание оптических волокон;
* проверка качества скола волокон;
* введение соединяемых волокон в отверстия с направляющими;
* позиционирование волокон в соединителе для достижения оптимальных параметров соединения;
* фиксация оптических волокон в соединителе;
* тестовые измерения соединения.
Особое место среди оптических механических соединителей занимает RMS (Rotary Mechanical Splice) как наиболее сложный среди аналогов. Процесс его монтажа наиболее трудоемок, однако он позволяет достичь наименьших потерь при соединении одномодовых волокон. В отличие от остальных соединителей, где величина потерь главным образом зависит от качества скола торцевых поверхностей оптических волокон, этот соединитель позволяет юстировать волокна простым вращением вокруг своей оси стеклянных втулок, удерживающих подготовленные оптические волокна, и добиваться наилучших результатов.
Следует отметить, что применение механических соединителей является наиболее быстрым способом соединения оптических волокон. При этом вносимое затухание практически не отличается от затухания, создаваемого сварным соединением. Достаточно устойчивое функционирование механических соединителей в процессе эксплуатации позволяет уже сегодня рекомендовать их для широкого внедрения на телекоммуникационных сетях с невысокими требованиями к качеству соединений, а также в случаях, когда использование аппарата для сварки оптических волокон технологически затруднено или вообще невозможно. В дальнейшем статистика технической эксплуатации, а также совершенствование материалов компонентов механических соединителей, вероятно, определит их более широкое применение для строительства телекоммуникационных волоконно-оптических линий различных уровней.
Обращает на себя внимание тот факт, что механические соединители оптических волокон условно допускают однократное использование, однако на практике встречаются ситуации их многократного применения. Производители гарантируют качество соединения оптических волокон при повторном монтаже соединителя не более 2-3 раз, однако при повторном наполнении внутреннего пространства иммерсионным гелем (в тех конструкциях, где это предусмотрено) такие соединители использовались многократно без ущерба для качества стыков. Некоторыми производителями механических соединителей разработаны механизмы фиксации, предусматривающие использование специального ключа для открытия фиксатора.
Сегодня использование механических соединителей наиболее удобно при проведении аварийного ремонта волоконно-оптическихлиний для технологической операции организации временной вставки.
Каждый системный администратор знает, насколько важно регулярно проводить резервное копирование компьютерных систем и данных, а также иметь возможность восстанавливать любую или все из них в случае сбоя системы, аппаратной ошибки, стихийного бедствия или при потере данных в иной ситуации
В течение долгого времени ежедневное резервное копирование, как правило, предусматривало запись копий файлов на магнитную ленту. Обычно это происходило ночью в рамках пакетного задания, когда нет текущей работы. Периодически, возможно, раз в неделю, делалась полная копия всех данных и систем.
В рамках методики, получившей название резервного копирования со сжатием, файлы, как правило, сокращались за счет сжатия. При другом подходе, так называемом зеркальном копировании, этап сжатия пропускался, и информация просто записывалась на другой диск, благодаря чему резервные копии файлов могли читать и использовать обычные системные инструментальные средства.
Но объем данных, используемых и хранящихся в организациях, быстро растет. Кроме того, необходимо, чтобы системы работали непрерывно в течение более длительных периодов времени (в том числе и круглосуточно).
Учитывая, что период, в течение которого можно выполнять резервное копирование (так называемое окно резервного копирования) постоянно сокращается и увеличивается срок, необходимый для его выполнения, ИТ-специалисты оказались в тупиковой ситуации. Нельзя гарантировать постоянную готовность системы, если нет актуальных резервных копий, но и прерывать работу системы, даже на короткий период для того, чтобы сделать эти копии, тоже нельзя.
С целью решения этой задачи было разработано множество стратегий. Во-первых, частичное резервное копирование. Такой подход предусматривает создание полных резервных копий через регулярные интервалы, и позволяет сэкономить время на сохранении только тех файлов, которые изменились, при условии, что копии неизменившихся файлов уже есть.
Для того чтобы определить, какие файлы были модифицированы, программы резервного копирования анализируют дату и время модификации всех файлов в системе. Если оказывается, что файл менялся после того, как была сделана полная резервная копия, он будет включен в состав следующей частичной копии. Для восстановления файлов по отдельности или всей системы в целом необходимо сначала восстановить последнюю полную резервную копию, а затем последующую частичную копию. Очевидно, что операция восстановления такого типа сложнее, чем восстановление с полной копии.
По мере увеличения числа и размера меняющихся файлов создание таких частичных копий может занять почти столько же времени, сколько и полной копии, которую значительно проще восстанавливать. Поэтому иногда делают резервные копии только тех файлов, которые были изменены после даты создания последней частичной копии.
Такая трехэтапная схема получила название инкрементального резервного копирования, и она действительно позволяет сократить объем данных, резервные копии которых необходимо сделать. Такой подход кажется разумным до тех пор, пока вам не пришлось что-нибудь восстанавливать с таких копий. Сначала необходимо восстановить последнюю полную копию (и пока все хорошо), затем — последнюю частичную копию и, наконец, каждую из последовательно сделанных инкрементальных копий, созданных после даты последнего частичного сохранения.
Рассмотрим следующий пример. Предположим, что полная копия была сделана в субботу, а сбой в системе возник в следующую пятницу, причем частичные копии в течение этого времени делались каждый вечер. После восстановления полной резервной копии необходимо восстановить в хронологическом порядке резервные копии, созданные в субботу, понедельник, вторник, среду, четверг и в пятницу.
Помимо времени, которое потребуют все эти операции, не стоит забывать и о том, сколько времени займет установка и снятие всех соответствующих лент. Автоматическое аппаратное обеспечение, в том числе и библиотеки лент, и автоматы смены дисков, в определенной степени облегчают этот процесс, но восстановление частичной копии — занятие нетривиальное, особенно если ваши системы достаточно большие и их полная резервная копия делается реже, чем раз в неделю.
Инкрементальные и частичные резервные копии можно сочетать таким образом, чтобы первая включала в себя все изменения, сделанные с момента последней полной или частичной копии. Такой подход требует еще более тщательного контроля и регистрации магнитных лент, но позволяет быстрее восстановить систему.
Еще один недостаток этих схем резервного копирования состоит в том, что они не подходят для транзакционных систем и систем, опирающихся на базы данных реального времени, в которых крайне важно делать резервную копию каждой транзакции, изменения файла и всех операций записи на диск или ввода/вывода. Пока наилучшим решением для таких систем является непрерывная защита данных (CDP). С помощью CDP, которое также называют непрерывным или зависимым от времени резервным копированием, на диск или в другое место копируется каждая версия данных, которую сохраняет пользователь. При таком подходе вы можете восстановить данные в любой заданный момент, в том числе самую последнюю перед сбоем запись на диск или операцию ввода/вывода.
У CDP по сравнению с записью на RAID, тиражированием и зеркалированием есть важная отличительная особенность. Последние защищают данные только от аппаратной ошибки за счет сохранения самой свежей копии информации. Непрерывная защита данных к тому же помогает уберечь их от искажений, поскольку в этом случае можно точно определить момент, когда данные были повреждены. Единственный вопрос — это уровень детализации. Какой именно объем данных необходимо сохранять для каждого вида приложений? Весь файл или только изменения? Все почтовые ящики или только личные сообщения электронной почты? Файлы и индексы базы данных или журналы регистрации транзакций? Большинство продуктов категории CDP сохраняют только изменившиеся байты или блоки дисковой памяти, а не весь файл. Изменился один байт из 10-гигабайтного файла, и CDP сделает резервную копию только этого байта или соответствующего блока. Традиционные частичные и инкрементальные резервные копии сохраняют только все файлы целиком. В силу этого, для CDP зачастую требуется меньше места на носителе с резервной копией.
Несколько иной подход, который не считается полным CDP, опирается на методологию мгновенных снимков, предполагая запись полных состояний системы через регулярные интервалы. Мгновенные снимки включают в себя ссылки на исходный том, которые должны оставаться неизменными.
Как правило, эти снимки создаются очень быстро и их можно использовать для восстановления или воссоздания состояний данных, имевшихся в системе в некий момент. Но мгновенные снимки — это не резервные копии, и их необходимо сохранять отдельно, если они будут применяться для восстановления дисков после сбоев или других физических повреждений.
Все стратегии резервного копирования имеют как свои достоинства (простоту, экономию времени, экономичность), так и вытекающие из них недостатки
Волоконная оптика дороже кабелей с медными жилами, но с каждым годом спрос на нее растет. Отчасти это происходит из-за того, что технология монтажа стала намного проще, а стоимость необходимого инструментария постоянно снижается. Без преувеличения можно сказать, что оптическое волокно получило массовое распространение в телекоммуникациях.
Одно из серьезных ограничений в использовании волоконно-оптических кабелей — необходимость особого, аккуратного отношения к их укладке, разделке, соединению и оконцовке, т. е. абсолютно ко всем элементам технического процесса монтажа кабельной линии. Ошибки обходятся весьма дорого — от замены испорченного соединителя до установки соединительной муфты на месте поврежденного кабеля. Тем не менее оптическое волокно активно вытесняет медь не только на магистральных участках сетей связи общего пользования, где почти все новые линии строятся на основе волоконно-оптических линий связи, но даже и на магистральных (вертикальных) участках СКС.
Некоторые особенности работы с волоконно-оптическими кабелями (ВОК) рассматривались в предыдущих номерах, в разделах, посвященных вопросам укладки кабеля. В основном они сводились к набору специальных приемов для захвата кабеля при втягивании в канал, чтобы обеспечить равномерность приложенного тягового усилия, ограничить его максимально допустимым уровнем, а также строго выдержать норму минимального радиуса изгиба. Для успешного выполнения этих задач создан целый набор монтажных приспособлений: кабельные чулки и захваты, электрические и гидравлические тяговые лебедки с электронным управлением и ограничителем усилия, а также защитные устройства, смазка и т. п. «мелочи». Теперь настал черед уделить внимание инструментарию для всех прочих операций.
Основные трудности, которые приходится преодолевать при резке волоконно-оптических кабелей, — броневой покров (стальная лента или стальная проволока) и внутренние силовые элементы (стальной трос). Поскольку оптическое волокно чувствительно к осевым и радиальным деформациям, то волоконно-оптические кабели имеют их в большем количестве, чем медножильные. Это касается не только кабелей для внешней прокладки, но и тех, что предназначены для укладки в зданиях. Правда, последние не всегда содержат силовой элемент из стали. Бронирование, если таковое имеется, осуществляется тонкой стальной или алюминиевой гофрированной фольгой. А так называемые мини-кабели, которые используются для изготовления коммутационных шнуров и выполнения горизонтальных участков СКС, представляют собой одиночное или двойное оптическое волокно в буферном покрытии с одним или двумя защитными слоями полимерной изоляции. Так или иначе, но для большинства волоконно-оптических кабелей недорогие кабелерезы для медных кабелей непригодны. Для них требуется более дорогой инструмент, лезвия которого рассчитаны на резку стали. Впрочем, такой же инструмент необходим и для резки бронированных медножильных.
Первые этапы разделки волоконно-оптических кабелей (удаление верхнего слоя защитных и броневых покровов) выполняются теми же инструментами, что и разделка медножильных кабелей. Никаких особенностей здесь нет — полимерная изоляция и фольга вскрываются резаками, а стальная проволока выкусывается бокорезами. Однако без применения нескольких специальных инструментов не обойтись. Во-первых, это ножницы с керамическими лезвиями или кусачки для удаления нитей из кевлара, которые часто применяются для упрочнения кабеля. Обычные ножницы эти тонкие, гибкие и прочные волокна не режут, а выдавливают или гнут. Во-вторых, это приспособление для снятия полимерной изоляции с мини-кабелей. При выполнении работы не универсальным, а специализированным инструментом риск повреждения оптического волокна существенно снижается, так как его рабочие поверхности имеют фиксированную настройку.
Стоит отметить, что важно хорошо знать конструкцию разделываемого кабеля, так как последний слой защитного покрытия кабеля или изоляцию модулей (групповых элементов, содержащих несколько волокон) нужно удалять с особенной аккуратностью. После удаления всех защитных слоев открывается доступ к одиночным оптическим волокнам в буферном покрытии. На этом сходство заканчивается, и далее работать с волоконно-оптическими кабелями можно только специальным инструментом.
Разделка кабеля может выполняться для оконцовки (монтажа разъемных соединителей) или сращивания (сварки или монтажа неразъемных соединителей).
Разъемные соединители монтируются на мини-кабели или на оптическое волокно в буферном покрытии; для оптического волокна их существует великое множество (ST, SC, SMA, FC, LC, FJ, MT и др.). Некоторые из них выпускаются еще и в нескольких разновидностях, предназначенных для оконцовки различного оптического волокна (многомодового, одномодового, разного диаметра, с различной толщиной оболочки) и отличающихся некоторыми деталями конструкции и технологии монтажа. Такое разнообразие не слишком осложняет работу монтажников. Грамотная техническая политика позволяет резко уменьшить число разновидностей кабелей и соединителей для волоконно-оптических линий связи. Иногда ограничения вытекают из особенностей применяемого оборудования, иногда — оформляются в виде внутреннего стандарта организации. Подобные ограничения и правила просто необходимы, если помнить, что существенная часть достаточно дорогого инструмента и приспособлений предназначена только для оптического волокна или соединителей определенного вида. А в силу высочайших требований к точности обработки и монтажа использование непредусмотренного технологией инструментария почти всегда заканчивается браком в работе. В значительной степени результат зависит и от качества расходных материалов: клеев, растворителей, безворсовых салфеток, шлифовальной и полировальной бумаги.
Итак, после разделки кабеля по шаблону до оптического волокна в буферном покрытии наступает наиболее ответственный момент. С помощью особого инструмента, рассчитанного на оптическое волокно определенного размера, с него удаляют буферное покрытие. Основная проблема — не повредить при этом само волокно, так как при небольшом задире или сколе всю работу придется выполнять еще раз. Поскольку внешне инструменты для этой операции выглядят абсолютно одинаково, производители используют для их маркировки различные цвета.
Затем производится сборка соединителя. Оптическое волокно продевается сквозь отверстие наконечника соединителя и фиксируется с помощью различных видов клея: термоклея (становится пластичным при нагреве), эпоксидного компаунда (полимеризуется благодаря реакции между двумя смешанными компонентами), универсального клея (твердеет после испарения растворителя) или клея с отвердением под воздействием ультрафиолета. Отверстие заполняется клеем с помощью шприца (исключение составляет термоклей, который наносится в процессе производства разъемов). Однокомпонентный клей поставляется уже расфасованным в шприцы, а двухкомпонентный — в отдельной таре. Полученная сборка нагревается в печке (для ускорения процесса отвердения эпоксидного компаунда или разогрева термоклея) или облучается ультрафиолетом.
После склеивания излишки оптического волокна удаляются, а торец сердечника шлифуется и полируется. Для удаления излишков на поверхности волокна резаком (скрайбером) наносится царапина. Резаки могут иметь различный профиль: лезвие (металл, карбид или керамика) либо конус (алмаз или корунд). После нанесения риски волокно отламывается.
Дальнейшая обработка торца выполняется на мате или стекле на нескольких листах наждачной бумаги с убывающим размером абразивного элемента (шлифовальная, полировальная, доводочная). Для фиксации сердечника строго перпендикулярно к поверхности наждака применяется оправка, в которую устанавливается обрабатываемый соединитель. При больших объемах эта операция может быть автоматизирована за счет использования шлифовальной машины.
Качество обработки проверяется с помощью микроскопа. Выпускаемые модели контрольных микроскопов отличаются степенью увеличения и конструкцией. Особенно удобен защитный фильтр для глаз — для блокирования излучения на случай, если оно окажется в подключенном волокне.
Все инструменты для работы с волоконно-оптическими кабелями можно приобрести по отдельности, но чаще всего они поставляются в специально составленных комплектах, куда входит не только инструмент, но и вся необходимая для проведения работ тара, дозаторы, распределители, расходные материалы и защитные средства. Для удобства хранения все это упаковано в органайзер (сумку или чемодан). Восполнение расходных материалов также осуществляется подобранными комплектами.
В зависимости от поставленных задач предлагается как скромный набор минимально необходимых для обработки одного типа оптического волокна средств, так и полный набор для работы с любым оптическим волокном. А вот комплектов, универсальных с точки зрения обрабатываемых разъемных соединителей, очень мало. Объясняется это просто — часть инструмента для их монтажа поставляется только производителями самих соединителей.
Несколько слов тем, кому придется выполнять работы с волоконно-оптическими кабелями на улице. Для защиты от пыли и осадков, а также создания необходимого микроклимата используются теплоизолированные палатки и боксы. Первые легко переносятся и собираются в любом месте; вторые устанавливаются на шасси автомобиля и прицепа.
Говорить о важности сетевых технологий на страницах сетевого издания немного странно, однако мы считаем, что даже среди сетевой публики, многие с трудом знакомы с важностью, особенно в современных условиях, объединения компьютеров в сеть. Статья повествует о важнейших элементах локальной сети, настройки под Windows XP и о наиболее часто задаваемых вопросах, связанных с построением, конфигурированием и администрированием локальных сетей.
Итак, напомним, что сети бывают локальные и глобальные. Локальные сети объединяют некоторое количество компьютеров в пределах одного или нескольких зданий. Такие сети иногда называют интранет. Глобальные сети подразумевают соединение различных локальных сетей в одну общую сеть, называемую Интернет.
Существует мнение, что если ты хоть раз поработал в составе сети, то работа без подключения к сети становиться болезненно тяжело. Да действительно, так, например наши компьютеры объединены в локальную сеть, подключенную с Интернет. Стоит произойти какой-нибудь неприятности с Интернетом, как работать становиться значительно тяжелее. Казалось бы, почему? Ведь по большому счету в сети мы видим просто чужие диски, иногда пользуемся вычислительными ресурсами удаленного процессора. Почему бы ни воспользоваться собственными дисками и мощностью собственного процессора. Все дело в информации. Ведь сегодня сеть это огромная база знаний, созданная усилиями каждого имеющего желание поделиться с другими своими знаниями и умениями. С одной стороны, это превращает сеть в некую «помойку» где из огромного объема информации приходится извлекать полезную информацию, с другой стороны нет ни одного другого электронного или любого off-line источника, способного дать ответ на абсолютно любой вопрос.
Сеть – развращает!
После длительной работы в сети иногда пользователь частично теряет возможность решать многие, простые вопросы обычными средствами. Так, например, поиск какой-либо информации без сети становиться просто невозможной. Единственным, доступным и действенным средством общения является e-mail или Интернет-пейджеры. С одной стороны «жители» сети являются достаточно сильными людьми, однако это касается только сети. В реальной ситуации, «сетевой житель» может быть достаточно слабым и беззащитным существом. Именно поэтому потеря доступа в сеть хотя бы на несколько дней, является достаточно тяжелой потерей для таких людей.
О чем эта статья?
Без сомнения, с точки зрения организации сети Windows XP самая простая операционная система от Microsoft. Точнее сказать, эта операционная система позволяет быстро и эффективно создавать небольшие сети для дома или небольшого офиса.
В этой статье мы расскажем о трех главных составляющих небольшой сети: совместное подключение к Интернет, совместное использование принтера, файлов и каталогов. В первую очередь мы нацеливаем эту статью на людей, только начинающих вникать во все тонкости «жизни» компьютера в сети. Однако и подготовленные пользователи смогут найти для себя не мало интересного.
Несмотря на наличие русской версии Windows XP, мы решили, что все примеры, приведенные в статье, будут для англоязычной версии Windows XP. Это значительно упростит создание сети для неопытных пользователей, использующих англоязычную версию.
Немного истории
Для того, что бы лучше понять превосходство сетевых решений в Windows XP давайте совершим краткий экскурс в историю развития операционных систем Windows. Для некоторых из Вас это отступление может быть раздражающим, однако нам было даже приятно вспомнить, чему мы радовались еще несколько лет назад. Давайте начнем с Windows 3.1.
Операционная система Windows 3.1 имела очень ограниченный инструментарий для организации даже самой простой сети и требовала использование программного обеспечения сторонних разработчиков. Возможно для операционной системы, выпущенной 10-12 лет назад, это было нормально. Специально для рабочих групп Microsoft выпустила Windows 3.11 for Workgroups, которая имела только протокол совместного использования файлов. Позднее в августе 1995 года была выпущена операционная система Windows 95. Несмотря на свою “глючность”, эта операционная система имела более продвинутые сетевые средства, однако по современным меркам все было очень сложно и недостаточно для требований современного пользователя. Через год была выпущена операционная система Windows NT 4.0, с дополнительными патчами и сервис паками. Windows NT 4.0 использовала интерфейс и принципы Windows 95. Главным отличием являлись наличие расширенных особенностей защиты, лучшие средства многозадачности, администрирование пользователей и больший упор на сетевую организацию для бизнес пользователей. Однако реализация сетевых особенностей оказалась еще сложнее, и недоступной для неподготовленного пользователя.
Через 2-3 года после Windows 95 были выпущены операционные системы Windows 98 и Millennium. Windows 98, за исключением NT, была первой настоящей 32-bit версией Windows с полностью 32-bit кодом. В то время как Windows 98 имела некоторые усовершенствование сетевого инструментария и возможностей, они все еще были похожи на Windows 95. Дополнительно Microsoft выпустила “Special Edition” Windows 98, известную как Windows 98 SE, в которой исправлены ошибки в сетевых протоколах. В феврале 2000 Microsoft выпустила Windows 2000. Эта система основана на ядре Windows NT и поэтому ее иногда называют Windows NT 5.0. Windows 2000 имеет очень продвинутые сетевые возможности, однако их реализация пока не проста, и напоминает Windows NT.
И наконец, сегодня мы стали свидетелями выпуска и развития операционной системы Windows XP. Обе версии (Professional и Home) являются очень красивым сочетанием сетевых возможностей NT, 2000 и простого и понятного пользовательского интерфейса.
Теперь, когда мы вспомнили, как развивались сетевые возможности операционной системы Windows, давайте переходить к нашей главной теме.
Физическая установка сети
Для упрощения, предположим, что мы используем в сети три компьютера – два “клиентских компьютера” и один «сервера». Для организации, даже такой маленькой сети нам понадобятся сетевые карты, которые устанавливаются в каждый компьютер, свич или хаб, а так же специальный сетевой кабель, называемый витая пара.
Выбор сетевой карты
В прошлом сетевая карта представляла собой отдельную ISA (для тех, кто не знает это такой старый стандарт слота расширения) или PCI плату. Причем их цена превышала 100$, что несколько ограничивало развития сетей в небольших организациях. Сегодня сетевая карта стала настолько доступной, что частенько ее интегрируют на системную плату. В случае, если Ваша плата не имеет интегрированного сетевого контроллера, то Вам придется воспользоваться внешней PCI платой. Карта должна соответствовать стандарту Realtek 10/100. Она стоит около 10$. Более дорогие карточки имеют множество дополнительных функций, обеспечивающих большую стабильность при передаче данных. Ниже на фотографии показан внешний вид типичной сетевой карты.
При выборе сетевой карты, необходимо обратить внимание на максимальную поддерживаемую скорость передачи 10/100. Это означает, что карта может передавать данные на скорости 10mbps и 100mbps в зависимости от сетевой архитектуры. Дополнительно необходимо, что бы карточка имела разъем RJ-45 (современный стандарт CAT5), поддерживающий скорость передачи 100mbps и обратно совместимый с 10mbps стандартом (именно такой разъем показан на фотографии). Самый последний стандарт “CAT6”, (пока находится в разработке) будет поддерживать скорости от 300mbps до 1gbps. Это означает, что Вы сможете копировать файлы в сети со скоростью 125 мегабайт в секунду. Это быстрее скорости современных жестких дисков. CAT5-E или категория 5 UTP Enhanced так же обратно совместима с 10, 100 и 1000Mbit Ethernet. Использование RJ-45 предпочтительнее, чем RJ-58, или больше известные как BNC. Этот разъем предназначен для подключения на более низких скоростях (ограничена 10mbps) коаксиальным кабелем.
Хаб против свича
Для управления всеми транзакциями (передача блоков информации) в сети используется устройство называемой хаб или свич. В чем отличие между этими двумя устройствами?. Во время передачи пакета данных хаб отправляет их сразу на все компьютеры, что значительно уменьшает пропускную способность канала. Свич, имеет встроенную память, в которой храниться информация о том, к какому порту подключен какой компьютер. Поэтому во время передачи пакета, он отправляется на определенный порт. Кроме того, свич позволяет использовать в сети контроллеры с разной скоростью передачи, при этом общая пропускная способность не будет опускаться до уровня контроллера с минимальной скоростью. Учитывая незначительное ценовое отличие мы настоятельно рекомендуем приобрести именно свич. На сегодняшний день впускаются свичи с 5, 8, 16, 24 или 32 портами. Цена устройства напрямую зависит от количества портов.
802.11a и 802.11b
Говоря об организации сети мы считаем необходимым затронуть вопрос беспроводных сетей, т.е. передающих информацию по радиоканалу. Такие сети становятся все популярнее, т.к. позволяют сделать размещение компьютеров более гибким, а пользователям использующим карманные компьютеры или ноутбуки, получить доступ к сети в любой точке офиса и даже за пределами. На сегодняшний день существует два стандарта 802.11a и 802.11b. Для реализации такого подключения необходимо использовать специальные хабы и сетевые карточки.
Как выбрать свич?
В принципе, любой. Например, мы используем 8-портовый свич от CNET, но другие брэнды, такие как Kingmax, Netgear, Dlink, 3COM так же имеют очень хорошее качество. В общем, в этом вопросе можно довериться компании, которая будет проводить у Вас сеть. Они обычно ставят то, что хорошо работает.
Рекомендации по конфигурированию сервера
Если Ваш сервер не планируется использовать для игр, нет необходимости использовать самый последний процессор Pentium 4 или Athlon XP с большим объемом оперативной памяти и емким жестким диском, а так же с самой последней графической картой GeForce 4. Главное, чего необходимо добиться, это стабильной круглосуточной работой. Так. Как сервер будет использовать Windows XP, он должен быть оснащен минимум 128MB RAM.
В идеале, Вы можете использовать процессор Pentium 2, III или Athlon 500MHz, при этом система будет достаточно хорошо работать в нашей среде.
Конфигурация сети в Windows XP
Установить сетевые параметры в Windows XP Вы можете несколькими способами. Во-первых, вручную. Этот метода предпочтительнее, т.к. позволяет контролировать все настройки. Во-вторых, для тех, кто ничего не понимает в сетевых терминах Microsoft включила мастер установки сети (Network Setup Wizard). Для запуска мастера, необходимо войти в “My Network Places” и нажать на “set up a home or small office network”. Нажмите Next, на втором экране будут описаны некоторые рекомендации по правильной установке. Фактически здесь Вы найдете полное руководство к действию. Нажимаем Next. Теперь для всех клиентских компьютеров Вы должны выбрать вторую опцию (The computer connects to the Internet through another computer on my network or through a residential gateway) и нажмите Next. На следующем экране Вы можете ввести или изменить имя компьютера. Теперь переходим к следующему окну, где мы сможем изменить название рабочей группе. Следующий экран резюмирует сделанные изменения и применяет их. На следующем экране Вам будет предложено создать диск установки сети. Так как мы делаем меленькую домашнюю сеть этот диск можно не создавать. Просто нажмите «Wizard and then Finish».
Мы просим извинить нас за нескончаемые переходы к следующему экрану, однако по другому описать действия мастера невозможно. В дальнейшем мы будем использовать первый, ручной режим.
[pagebreak]
Мастер сетевой идентификации
Теперь необходимо установить имя Вашего компьютера в рабочей группе, к которой он принадлежит. Для этого нажмите Start -> Settings -> Control Panel -> System -> и выберите закладку Computer Name. Сначала нажмите “Network ID”, что позволит активизировать мастер сетевой идентификации (Network Identification Wizard). На первом экране просто нажмите Next. На следующем экране нужно выбрать первую опцию (This computer is part of a business network, and I use it to connect to other computers at work), на следующем экране выберете вторую опцию (My company uses a network without a domain), Это приведет Вас к экрану показанном ниже...
Здесь Вы должны установить название рабочей группы. Эти действия Вы должны повторить на всех компьютерах Вашей сети.
Обращаем Ваше внимание, что некоторые broadband провайдеры используют свою собственную рабочую группу. В этом случае они должны Вас проинструктировать об использовании имени рабочей группы.
IP адресация
Прежде всего вы должны идентифицировать каждый компьютер в сети. Для этого служит так называемая IP (Internet Protocol) адресация. IP адрес – это уникальный номер Вашего компьютера в Вашей сети. IP адрес может быть “статическим” или “динамическим”. В своей внутренней сети Вы можете использовать IP адреса класса C, т.е. в диапазоне 192.168.0.1 до 192.168.0.254. Другими словами в одной рабочей группе может работать до 254 компьютеров. Обычно серверу назначают адрес 192.168.0.1. Когда Вы активизируете совместный доступ к сети (Internet Connection Sharing) по умолчанию Вашему серверу будет автоматически назначен этот адрес.
Конфигурация сервера
Примечание: Под XP и Windows NT для установки сетевых параметров Вы должны войти с правами администратора. OK – установив на все компьютеры сетевые карты, Вам необходимо назначить каждому компьютеру IP адрес. Для этого нажмите Start -> Settings -> Network Connections. Теперь кликните правой кнопкой мышки на “Local Area Connection” и выберите меню Properties. Затем укажите на протокол TCP/IP и нажмите Properties. Перед Вами откроется окно, позволяющее установить все необходимые сетевые параметры...
На скриншоте выше мы показываем настройку IP адреса для сервера. Пока этого достаточно. Ниже мы покажем, как конфигурировать клиентские компьютеры. Для того, что бы Вы лучше понять, как работает сервер в сети, мы приводим примерную схему подключения компьютеров рабочей группы к Интернет, через один компьютер.
Конфигурирование клиентских машин
Выше на скриншоте мы видим, что одному из клиентских компьютеров установлен IP адрес 192.168.0.5. Маска подсети устанавливается автоматически, по этому поводу Вам волноваться не стоит. Обратите внимание, что IP адрес должен быть уникальным, и не может повторяться внутри одной сети. В случае повторного использования IP адреса, Windows сообщит о возникновении проблемы с повторяющимся IP адресом. Ниже на рисунке, показано, что такое клиентский компьютер и его роль в сети.
Совместное использование Интернет
Как мы сказали в начале статьи, современная сеть должна решать три основные задачи: Совместный доступ к Интернет, совместное использование принтера и совместное использование файлов и папок. В принципе, все три задачи уже, так или иначе, решены в некоторых предыдущих версиях Windows. Однако в Windows XP они решены лучше и проще. Итак, в первую очередь давайте рассмотрим реализацию совместного доступа в Интернет. В нашем примере настройки клиентского компьютера мы устанавливаем обращение к серверу с IP адресом 192.168.0.1. Этот адрес указан как адрес шлюза, т.е. компьютера, через который все остальные будут обращаться в Интернет. Тот же адрес мы указываем в качестве первичного DNS (DNS – это сервис который позволяет по символьному имени узла, определить его физический IP адрес). Теперь, зайдите нажмите OK, что вернет Вас в первоначальное меню свойств сетевого соединения. Здесь откройте закладку Advanced и проверьте опцию Internet Connection Firewall. На клиентских машинах эта опция должна быть отключена.
Включение совместного доступа к Интернет
После завершения настройки всех клиентских машин, Вам необходимо активизировать доступ в Интернет на серверной машине. Для этого нужно войти в меню сетевых соединений (Start -> Settings -> Network Connections), выбрать иконку, через которую подключаетесь к провайдеру (по модему или быстрому каналу). В меню свойств учетной записи необходимо выбрать закладку Advanced, где Вы найдете все опции, необходимые для организации совместного доступа …
В первую очередь обратите внимание на включение Internet Connection Firewall для Internet соединения. Firewall – это система защиты, которая работает как защитный щит между внутренней сетью и внешним миром. Internet Connection Firewall (ICF) – это программный продукт, который используется для установки ограничений передачи информации от и к вашей рабочее группе. Мы рекомендуем разрешить эту опцию. В то время как мощность такого программного «щита» не может сравниваться с подобными аппаратными межсетевыми экранами, это сможет в некоторой степени защитить Ваши данные от различных сетевых неприятностей. Теперь обратите внимание на включении опции “Allow other network users to connect through this computer’s Internet connection”, которая позволит другим пользователям входить в Интернет через сервер. Если Вы хотите управлять различными установками учетных записей Интернет с других, клиентских компьютеров, включите опцию “Allow other network users to control or disable the shared Internet connection”. И последняя опция - “Establish a dial-up connection whenever a computer on my network attempts to access the Internet”. Ее включение позволит серверу в случае получения запроса к Интернет с любого клиентского компьютера автоматически установить соединение. Теперь нажмите OK для применения всех сделанных изменений. В принципе, Windows XP не требует перезагрузки при изменении сетевых настроек, однако мы настоятельно рекомендуем это сделать не только на сервере, но и на всех клиентских компьютерах. Теперь, Вы можете попробовать войти в Интернет с любого компьютера в Вашей сети, причем в случае с Windows XP Вы можете спокойно, без необходимости делать дополнительные настройки, использовать программы, подобные ICQ.
В случае если доступа к сети нет, попробуйте сначала проветрить правильность подключения всех кабелей, и включение концентратора или свича. Если все сделано правильно то при подключении сетевого кабеля к Вашей сетевой карте, на экране в tray области (рядом с часами, появиться сообщение о подключении сетевого кабеля на скорости 100 или 10Mb). В случае если этого не происходит, необходимо проверить включение опции отображения индикатора в сетевых настройках и проверить правильность и целостность кабеля. Далее попробуйте в окне DOS набрать команду ping 192.168.0.1, которая проверит соединение с серверной машиной. Если пинг не прошел, необходимо проверить работоспособность и настройку сетевых карт и свича. Кроме того, одной из причин имеющихся проблем может быть установка Windows XP поверх другой операционной системы имеющей настроенную сеть, либо компьютер использовал собственное подключение к Интернет. После неоднократной установки различных, предлагаемых на рынке, версий и вариаций Windows XP, мы пришли к выводу, что для полной работоспособности необходимо устанавливать новую ОС на чистый диск, или раздел.
Статус Интернет соединения
Теперь необходимо коснуться вопроса контроля состояние подключения к Интернет. Особенно это касается случая использования операционных систем отличных от Windows XP. Для доступа к этой опции нажмите Start -> Network Connections. Как Вы можете видеть Windows XP достаточно подробно показывает параметры соединения, такие как скорость соединения и трафик на Вашей клиентской машине. Кроме того, здесь Вы можете отключить Интернет соединение.
Совместное использование принтера
Теперь, когда Вы установили ICS, пришло время настроить принтер для совместного использования в рабочей группе. Эта возможность очень полезна для небольших компаний или отделов. Установив совместный доступ к одному или нескольким принтерам, Вы сможете значительно сэкономить не только на принтерах, но и на времени. Если на Вашем сервере еще не установлен принтер, сделать это можно с помощью меню Printers and Faxes, открыть которое можно так: Start -> Settings -> Printers and Faxes. Как только принтер будет установлен, кликните по его иконке правой клавишей мышки и выберете пункт Sharing...
В открывшемся окне просто нажмите “Share this printer” и наберите имя, под которым принтер будет виден в сети.
Совместное использование и доступ к файлам
И наконец, мы переходим к последнему наиболее частому использованию сети – совместному использования файлов и папок. Эта особенность позволит создавать в компании библиотеку документов, шаблонов и т.д. Открывать и ограничивать доступ к документам различных сотрудников. В общем, полностью организовать документооборот в компании. Честно сказать, с полным документооборотом мы преувеличили. На самом деле для этого необходимо использовать специальные продукты, способные индексировать и архивировать документы, осуществлять быстрый поиск и т.д. Однако Windows XP частично позволяет решить эти задачи, и позволяет сэкономить на приобретении программ третьи разработчиков.
Для того, что бы разрешить сетевой доступ к файлам и папкам нужно в My Computer выбрать диск, к которому нужно открыть доступ, и правой кнопкой войти в свойства диска, где выберите закладку Sharing как показано ниже...
В целом здесь все понятно, однако необходимо обратить внимание, на то, что в случае включения опции “Allow network users to change my files” Вы даете им полный доступ к своим файлам, т.е. не только редактирование, но и удаление. В случае совместной работы с Windows 2000 и NT с точки зрения защиты Вы можете отключить простой режим совместного использования файлов через меню View->Folder Options->[X]Use Simple File Sharing.
Добавление сетевых дисков
Для упрощения доступа к часто используемым сетевым дискам, ВЫ можете добавить их в свое окно My Computer и использовать как обычный диск на Вашем компьютере. Для этого Вам необходимо правой кнопкой мышки кликнуть на сетевое окружение, и в открывшемся контекстном меню выбрать “Map Network Drive...” .
Здесь выберите букву для нового диска, и укажите путь к нему. Если Вы не знаете точного пути, то можете воспользоваться кнопкой “Brouse…”.
Заключение
Конечно же эта статья не может претендовать на звание энциклопедии сетевых возможностей Windows, однако она позволила решить две важные задачи. Те кто достаточно хорошо разбирается в сетях, наверное смогли найти для себя некоторые дополнительные особенности, которые было просто лень искать самостоятельно без особой надобности. Те, кто вообще не разбирается в сетях, смогли понять, что для реализации достаточно эффективной сети вполне достаточно использовать Windows XP.
Однако, для реализации сети в Вашем офисе мы настоятельно рекомендуем обратиться к специалистам. Поверьте нашему опыту, что как только «технический специалист» Вашей компании начинает делать сеть, это становиться в непрекращающийся ремонт в квартире. Постоянно, что-то доделывается, возникают различные «подводные камни» и т.д. Лучше всего обратиться к сетевым специалистам. Причем совсем необязательно обращаться к большим сетевым интеграторам, привыкшим работать в масштабе большого предприятия, использующего несколько сотен компьютеров с различными серверами. Вполне достаточно обратиться к компаниям, имеющим опыт создания небольших сетей, имеющих монтажников, программистов, настройщиков и, что самое главное, службу сервиса. Такая группа специалистов кроме установки сети, подключения к Интернет, сможет решить проблему с установками сетевых версий программ (например, бухгалтерских, дизайнерских, инженерных продуктов). В конце концов, каждый должен заниматься своим делом.
Как правило, формулировка «фирменный стиль» вызывает недоумение или недопонимание: зачем это собственно нужно, и вообще, что это такое?
Само слово «стиль» определяется, как общность образной системы, средств художественной выразительности, творческих приемов, обусловленных единством идейно-художественного содержания. Соответственно, сочетание слов «фирменный» и «стиль» будет интерпретироваться как совокупность мероприятий и ряд приемов (графических, цветовых, языковых и т.д.), которые, с одной стороны, обеспечивают узнаваемость фирмы, ее изделий и воспринимаются наблюдателем (не только потенциальным покупателем), а с другой стороны, противопоставляют фирму и ее изделия конкурентным товарам.
Исходя из этого определения, специалисты понимают, что фирменный стиль не является абстрактным понятием, напротив, он может стать важным конкурентным преимуществом и существенно повысить прибыль компании.
Компоненты фирменного стиля:
1. Логотип - это специально разработанная, стилизованная сокращенная форма названия фирмы, часто в оригинальном начертании. Примерами удачных логотипов могут являться логотипы таких компаний, как «Мегафон», «Самсунг», «Найк».
2. Фирменные цвета (цветовая гамма). Очень важно подобрать два или три основных цвета, которые бы постоянно использовались в деятельности компании. Примерами могут служить такие компании, как «М-видео», «Техносила», «Dixis», «Куда.ру»
3. Фирменный шрифт. Шрифты различаются характером рисунка, наклоном, насыщенностью, размером. Шрифт прорабатывается индивидуально, также как и логотип. Наличие фирменного шрифта выгодно отличит вашу компанию от других, но не является обязательным компонентом фирменного стиля.
4. Фирменная визитка. Это неотъемлемый атрибут современного делового общения. Первое представление, как правило, начинается с обмена визитными карточками. Особое значение они имеют при общении с иностранными парнерами, людьми, не говорящими на вашем родном языке. На деловой визитной карточке должны быть четко обозначены ваши фамилия и имя (отчество), название вашей фирмы или организации и ваша должность, полный почтовый адрес и другие сведения. Визитка по своей сути является мини представительством вас и вашей компании, поэтому она должна отражать фирменный стиль компании.
5. Бланк – это лист бумаги с напечатанным названием учреждения, фирмы или с частично напечатанным текстом, предназначенный для составления документа по определенной форме. Так как письма и другие документы, как правило, предназначены второй стороне, то бланк неприменно должен отражать специфику вашей компании, а именно фирменный стиль.
В компоненты фирменного стиля также можно включить слоган и наличие какого-либо, специально разработанного запоминающегося персонажа для компании.
Слоган – это рекламный лозунг, девиз, направленный на создание имиджа фирмы или на рекламу товара; заголовок рекламного послания, отличающийся от обычного заголовка повышенной эмоциональностью и сильным подтекстом, призывающим к немедленному действию — вступлению в контакт с производителем товара или покупке товара.
По нашему мнению, очень удачными слоганами являются девизы таких компаний, как Комбелга – «Связь в удовольствие», Iru – «закажи друга», Nokia – «connecting people».
Удачными персонажами являются персонаж Масяни студии мульт.ру, Рональд Макдональд компании Макдоналдс, персонажи рекламы конфет M&Ms, персонаж рекламной компании пива «Пит» - Иван Таранов.
Компания также может иметь свои конверты, календари, буклеты, сувенирную продукцию, папки, упаковку, прайс-листы, плакаты и пакеты. Наличие такой продукции определяется финансовыми возможностями компании, а также необходимостью компании в этой продукции. В любом случае, эти изделия окажут позитивное влияние на мнение окружающих. Единственное, что должно объединять эти изделия - это наличие единого стиля, иначе смысла в них не будет.
Цель фирменного стиля – обеспечение запоминаемости вашей компании потребителями, потенциальными клиентами и партнерами и предоставление конкурентного преимущества.
Отдельно стоит сказать о веб-сайте. На основании того, что сайт является вашим представительством в сети интернет, он должен максимально соответствовать вашей компании, содержать логотип, придерживаться цветовой палитры и иметь всю остальную атрибутику фирменного стиля. Лучше не допускать принципиального отличия стиля сайта от общей политики компании.
Рекомендуется разрабатывать фирменный стиль в одной компании на основании нескольких объективных факторов: во-первых, комплексные работы всегда обходятся дешевле, нежели чем делать все по отдельности. Во-вторых, когда одна компания полностью ведет проект по созданию фирменного стиля, она максимально и точно отражает его на всей продукции. Если же создание фирменного стиля происходит в разных компаниях, то это может привести к тому, что Ваш фирменный стиль на разной продукции будет отражен по-разному. В-третьих, это просто экономия вашего времени и лучший контроль над этапами работ.
Фирменный стиль, по рекомендациям специалистов, лучше всего разрабатывать один раз и на всю жизнь. На основании этого очень ответственно и серьезно отнеситесь к его разработке, не пускайте на самотек, от этого зависит ваша конкурентная способность и запоминаемость вашей компании клиентами и партнерами.