Поиск по шаблону является настолько обычным занятием в разработке программного обеспечения, что для облегчения этой задачи была создана специальная технология — регулярные выражения. Узнайте, как можно использовать ее при написании кода, прочитав эту статью.
Все устройства получают входную информацию, выполняют какие-либо операции и выдают результат. Например, телефон во время разговора преобразует звуковую энергию в электрический сигнал и обратно. Двигатель потребляет топливо (пар, расщепление атомных ядер, бензин, мышечные усилия) и преобразует его в энергию. Блендер поглощает ром, лед, лайм и кюрасао и взбалтывает их в коктейль Mai Tai. (Или, если вам хочется чего-то изысканного, сделайте Bellini из шампанского и грушевого сока. Блендер – замечательное универсальное устройство.)
Так как программное обеспечение преобразует данные, то каждое приложение фактически является устройством (хоть и виртуальным, так как у него нет физических составляющих). Например, компилятор в качестве входной информации получает исходную программу и преобразует ее в двоичный исполняемый код. Программа прогнозирования погоды генерирует предсказания на основе результатов прошлых (исторических) замеров, а графический редактор обрабатывает пикселы, применяя правила к отдельным пикселам или их группам, чтобы, например, сделать изображение более четким или изменить его стиль.
Так же, как и любое другое устройство, программное обеспечение предназначено для работы с определенным исходным материалом, например, набором чисел, данными XML-схемы или протоколом. Если программе задать некорректную входную информацию — неподходящую по форме или типу, то существует большая вероятность того, что результат будет непредсказуемым и, возможно, даже катастрофическим. Как говорится: "Мусор заложишь - мусор получишь".
На самом деле для решения всех нетривиальных задач необходимо отделять правильные данные от некорректных и отклонять некорректные данные во избежание ошибок в результатах. Это, конечно же, актуально и для Web-приложений, написанных на языке PHP. Неважно, получены ли входные данные из формы для ввода с клавиатуры или в результате выполнения программного запроса Asynchronous JavaScript + XML (Ajax), прежде чем начать какие-либо вычисления, программа должна проверить входную информацию. Возможно, что числовые значения должны находиться в пределах определенного диапазона чисел или представлять собой только целые числа. Возможно, значение должно соответствовать определенному формату, например, почтового индекса. Например, почтовый индекс в США представляет собой пять цифр плюс дополнительный префикс "Plus 4", состоящий из дефиса и 4 дополнительных цифр. Возможно, другие строки также должны состоять из определенного количества символов, например, две буквы для указания аббревиатуры штата США. Строковые данные доставляют особенно много проблем: PHP-приложение должно быть начеку по отношению к злонамеренным программам-агентам, вложенным в SQL-запросы, код JavaScript или любой другой код, которые способны изменить поведение приложения или обойти защиту.
Однако каким образом программа может определить, являются ли входные данные числом или соответствуют ли определенным требованиям, например, к почтовому индексу? На самом деле для реализации проверки путем сопоставления с шаблоном необходим небольшой парсер, создающий конечный автомат, считывающий входные данные, обрабатывающий маркеры, отслеживающий состояние и выдающий результаты. Однако создание и обслуживание даже самого простого парсера может оказаться непростым делом.
К счастью, анализ на основе сопоставления с шаблоном настолько широко распространен в компьютерных технологиях, что с течением времени (примерно с момента появления UNIX®) были разработаны специальные технологии и, конечно же, механизмы обработки, чтобы облегчить рутинную работу. Регулярное выражение (regex) описывает шаблоны посредством лаконичных и удобочитаемых обозначений. Получив регулярное выражение и данные, механизм regex сообщает, совпадают ли эти данные с шаблоном, и если совпадение было обнаружено, что именно совпало.
Вот небольшой пример использования регулярного выражения, взятый из UNIX-утилиты, работающей в режиме командной строки, которая ищет заданный шаблон в содержимом одного или нескольких текстовых файлов UNIX. Команда grep -i -E '^Bat' ищет последовательность символов beginning-of-line (начало строки), обозначаемое "крышкой", [^]), за которым следуют буквы b, a, и t верхнего или нижнего регистра (ключ -i указывает на то, что при сопоставлении с шаблоном регистр не учитывается, таким образом, например, B и b - тождественны). Следовательно, для файла heroes.txt:
Листинг 1. heroes.txt
Вышеупомянутая команда grep выдаст два совпадения:
Batman
Batgirl
Регулярные выражения
PHP предлагает два программных интерфейса регулярных выражений: один -- для интерфейса переносимых операционных систем (POSIX), а второй - для регулярных выражений, совместимых с языком Perl (PCRE). В общем и целом второй интерфейс является более предпочтительным, так как PCRE сам по себе мощнее, чем POSIX, и предоставляет все операторы, используемые в языке Perl. Более подробная информация по обращению к regex-функциям POSIX представлена в документации по языку PHP (см. раздел Ресурсы). В данной статье мы сосредоточим свое внимание на свойствах PCRE.
Регулярные выражения PHP PCRE содержат операторы, позволяющие путем сопоставления находить конкретные символы или другие операторы, определенные местоположения, например, начало и конец строки, начало или конец слова. Регулярные выражения также позволяют описывать альтернативы, которые можно задать альтернативы типа "или"-"или"; повторения фиксированной, изменяемой или неопределенной длины; наборы символов (например, "любая буква от a до m"); и классы, или типы символов (печатаемые символы, знаки препинания). Специальные операторы также разрешают использовать группировку — возможность применить оператор к целой группе других операторов.
В таблице 1 показаны некоторые типичные операторы регулярных выражений. Для создания сложных выражений можно последовательно объединять элементарные операторы из таблицы 1 (и другие).
Таблица 1. Типичные операторы регулярных выражений
Оператор Значение
. (точка) Любой одиночный символ
^ (крышка) Пустая последовательность в начале строки или цепочки
$ (знак доллара) Пустая последовательность в конце строки
A Буква A верхнего регистра
a Буква a нижнего регистра
\d Любая цифра
\D Любой нецифровой символ
\w Любая буква или цифра; синоним - [:alnum:]
[A-E] Любая заглавная буква из A, B, C, D или E
[^A-E] Любой символ, за исключением заглавных букв A, B, C, D или E
X? Найти совпадение по отсутствию или наличию одной заглавной буквы X
X* Ни одной или любое количество заглавных букв X
X+ Одна или несколько заглавных букв X
X{n} Ровно n заглавных букв X
X{n,m} Не менее n и не более m заглавных букв X; если опустить m, то выражение будет искать не менее n заглавных букв X
(abc|def)+ По меньшей мере одно вхождение последовательности abc и def
В следующем примере показано типичное использование регулярного выражения. Например, для web-сайта необходимо, чтобы каждый пользователь регистрировался. Имя пользователя должно начинаться с буквы и содержать от 3 до 10 буквенно-цифровых символов. Для проверки имени пользователя на соответствие ограничениям при отправке данных в приложение можно использовать следующее регулярное выражение: ^[A-Za-z][A-Za-z0-9_]{2,9}$.
Знак "крышка" соответствует началу строки. Первый набор [A-Za-z] соответствует любой букве. Второй набор [A-Za-z0-9_]{2,9} соответствует последовательности, содержащей от 2 до 9 букв, цифр или символов подчеркивания. Знак доллара ($) соответствует концу строки.
На первый взгляд, знак доллара может показаться лишним, однако его использование важно. Если его пропустить, то условиям данного регулярного выражения будет отвечать любая строка, которая начинается с буквы, содержит от 2 до 9 буквенно-цифровых символов и любое количество других символов. Иными словами, если бы не было знака доллара как привязки к концу строки, то подошла бы недопустимо длинная строка с подходящим началом, например, "martin1234-cruft" .
Программирование на языке PHP и регулярные выражения
В PHP есть функции для поиска совпадений в тексте, замены каждого совпадения на другой текст (похоже на операцию "найти и заменить") и поиска совпадений среди элементов списка. Вот эти функции:
Чтобы показать, как работают эти функции, давайте создадим небольшое PHP-приложение, которое будет просматривать список слов на соответствие определенному шаблону. Слова и регулярные выражения будут вводиться из обычной web-формы, а результаты отображаться в браузере посредством функции simple print_r(). Эта программка пригодится, если возникнет желание проверить или отладить регулярное выражение.
PHP-код показан в листинге 2. Все входные данные берутся из обычной HTML-формы. (Для краткости эту форму и PHP-код, отслеживающий ошибки, опустим.)
Листинг 2. Сравнение текста с шаблоном
Вначале с помощью функции preg_split() строка из слов, разделенных запятыми, преобразуется в отдельные элементы. Данная функция разбивает строку в тех местах, которые соответствуют условиям регулярного выражения. В данном случае регулярное выражение представляет собой просто "," , (запятая - разделитель списка слов, указанных через запятую). Слэш в начале и в конце просто показывает начало и конец regex.
Третий и четвертый аргументы функции preg_split() необязательны, но полезны. Добавьте в третий аргумент число n целого типа, если необходимо вернуть только первые n совпадений, или -1, если необходимо вернуть все совпадения. Если в качестве четвертого аргумента задать идентификатор PREG_SPLIT_NO_EMPTY, то функция preg_split() не будет возвращать пустые результаты.
Затем каждый элемент списка слов, разделенных запятыми, корректируется (убираются начальные и конечные пробелы) с помощью функции trim() и сравнивается с заданным регулярным выражением. Функция preg_grep() существенно упрощает процесс обработки списка: просто укажите в качестве первого аргумента шаблон, а в качестве второго - массив слов для сравнения. Функция возвращает массив совпадений.
Например, если в качестве шаблона задать регулярное выражение ^[A-Za-z][A-Za-z0-9_]{2,9}$ и список слов разной длины, то можно получить результат, показанный в листинге 3.
Листинг 3. Результат работы простого регулярного выражения
Кстати, с помощью дополнительного маркера PREG_GREP_INVERT можно инвертировать операцию preg_grep() и найти элементы, которые не совпадают с шаблоном (аналогично оператору grep -v в командной строке). Заменяя 22 строку на $matches = preg_grep( "/${_REQUEST[ 'regex' ]}/", $words, PREG_GREP_INVERT ) и используя входные данные из листинга 3, мы получим Array ( [1] => 1happy [2] => hermanmunster ).
Разбор строк
Функции preg_split() и preg_grep() очень удобны. Первая из них может разбирать строку на подстроки, если подстроки разделяются определенным шаблоном. Функция preg_grep() позволяет быстро отфильтровать список.
Но что произойдет, если строку нужно разобрать на составные части, используя одно или несколько сложных правил? Например, в США номера телефонов обычно выглядят следующим образом: "(305) 555-1212," "305-555-1212," или "305.555.1212." Если убрать пунктуацию, то количество символов сократится до 10 цифр, что легко можно определить с помощью регулярного выражения \d{10}. Однако код и префикс (каждый из которых состоит из трех цифр) телефонного номера США не могут начинаться с нуля или единицы (так как нуль и единица используются как префиксы для междугородных звонков). Вместо того чтобы разбивать числовую последовательность на отдельные цифры и создавать сложный код, для верификации можно использовать регулярное выражение.
Фрагмент кода позволяющий решить эту задачу, показан в листинге 4.
Листинг 4. Проверка американского телефонного номера
Давайте пройдем по этому коду:
* Как показано в таблице 1, в регулярных выражениях используется ограниченный набор специальных символов, например, квадратные скобки ([ ]) для наименования последовательности. Если надо найти такой символ в тексте, необходимо "выделить" специальный символ в регулярном выражении, поставив перед ним обратный слэш (\). Когда символ выделен, можно задать его посик, как и любого другого символа. Если нужно найти символ точки, например, в полном составном имени хоста, то напишите \.. При желании строку можно подать в функцию preg_quote() которая выполняет автоматическую изоляцию всех специальных символов регулярных выражений, как показано в строке 1. Если поставить echo() $punctuation после первой строки, то вы должны увидеть \(\)\.-.
* В строке 2 из телефонного номера убираются все знаки пунктуации. Функция preg_replace() заменяет все символы из $punctuation — операторы из набора [ ] - пустой строкой, эффективно устраняя такие символы. Возвращаемая новая строка присваивается переменной $number.
* В строке 4 определен шаблон верифицируемого телефонного номера США.
* Строка 5 реализует сопоставление, сравнивая телефонный номер, который теперь состоит только из цифр, с шаблоном. Функция preg_match() возвращает 1, если есть совпадение. Если совпадения нет, функция preg_match() возвращает нулевое значение. Если во время обработки возникла ошибка, то функция возвращает значение False (ложно). Таким образом, чтобы проверить удачное завершение, необходимо посмотреть, было ли возвращено значение 1. В противном случае проверьте итоговое значение функции preg_last_error() (если используется PHP версии 5.2.0 или выше). Если оно не равно нулю, то, возможно, был превышен лимит вычислений, например, разрешенная глубина рекурсии регулярного выражения. Обсуждение констант и ограничений, применяемых в регулярных выражениях PHP, представлено на странице, посвященной функциям регулярных выражений PCRE (см. раздел Ресурсы).
Извлечение данных
Во многих случаях необходимо только получить ответ на вопрос: "Соответствуют ли данные шаблону?" – например, при проверке данных. Однако чаще регулярные выражения используются для подтверждения соответствия и получения информации о совпадении.
Вернемся к примеру с телефонным номером. Пусть при соответствии шаблону нам необходимо сохранить код, префикс и номер линии в отдельных полях базы данных. Регулярные выражения могут запоминать совпадающие с шаблоном данные с помощью оператора capture. Оператор capture обозначается круглыми скобками и может использоваться в любой части регулярного выражения. Операции capture можно делать вложенными для поиска подсегментов в извлеченных сегментах данных. Например, чтобы из 10-значного номера телефона извлечь код города, префикс и номер линии, можно использовать следующую строку:
/([2-9][0-9]{2})([2-9][0-9]{2})([0-9]{4})/
Если входные данные соответствуют шаблону, первые три цифры захватываются первой парой круглых скобок, следующие три цифры - второй парой, а последние 4 цифры - последним оператором. Модификация вызова функции preg_match() возвращает извлеченные данные.
Листинг 5. Возврат извлеченных данных функцией preg_match()
Если в качестве третьего аргумента функции preg_match() указать переменную, например, в нашем коде, $matches, то в качестве ее значения будет выступать список извлеченных результатов. Нулевой элемент списка (с индексом 0) - это все совпадение целиком; первый элемент - совпадение, относящееся к первой паре круглых скобок, и так далее.
Вложенные операторы capture извлекают сегменты и подсегменты фактически любой глубины. Сложность с вложенными операторами capture состоит в том, чтобы определить, в какой части массива соответствий находится каждое соответствие, например, $matches. Действует следующее правило: подсчитайте порядковый номер открывающей скобки в регулярном выражении — этот номер и будет индексом нужного совпадения в массиве соответствий.
В листинге 6 показан пример (немного надуманный) извлечения частей городского адреса.
Листинг 6. Код для извлечения городского адреса
Опять все совпадение целиком хранится по индексу 0. А где хранится номер улицы? Если считать слева направо, номер улицы проверяется \d+. Это вторая открывающая круглая скобка слева, следовательно, значением $matches[2] будет 123. В $matches[4] оказывается название города, а в $matches[6] - почтовый индекс.
Продвинутые технологии
Обработка текста – широко распространенная задача, и PHP предоставляет ряд функций, упрощающих выполнение большого числа операций. Обратите внимание на следующее:
* Функция preg_replace() может работать как с одной строкой, так и с массивом строк. Если вызвать preg_replace() для массива строк, замена будет выполнена во всех элементах массива. В этом случае код preg_replace() возвращает массив измененных строк.
* Как и во всех остальных реализациях PCRE, здесь для осуществления замены можно прибегать к сравнению с вложенным шаблоном. Для наглядности давайте рассмотрим проблему стандартизации формата телефонного номера. Заменим все знаки пунктуации точками. Наше решение показано в листинге 7.
Листинг 7. Замена знаков пунктуации точками
Сопоставление с шаблоном и, в случае совпадения, перевод в стандартный телефонный номер выполняется за один шаг.
Для отправки электронного письма, без использования почтового клиента, мы будем использовать компонент TNSMTP, который находится на вкладке FastNet.
Компонент TNSMTP позволяет отправлять электронную почту через почтовый сервер или выполнять другие команды, описанные в стандарте RFC 821. Данный компонент работает по протоколу SMTP (Simple Mail Transfer Protocol). По стандарту RFC 821 протокол SMTP использует порт 25. При подключении к почтовому серверу необходимо знать учетную запись (login) своего почтового ящика. Чаще всего, имя пользователя - это начальная часть вашего почтового адреса – до символа «@». Так же для подключения к SMTP серверу необходимо знать его адрес. Адрес своего почтового сервера указывается при создании на нем почтового ящика. Стоит заметить, что адрес почтового ящика и адрес сервера – это совершенно разные вещи.
Создадим небольшой пример. Добавим на форму стандартную кнопку и компонент TNSMTP.
Собственно, Вы можете и не добавлять на форму данный компонент, а просто прописать его в строках Uses. Такой вариант очень полезен, если Вы пишете программу в «консольном» режиме.
Код:
Но этого мы делать не будем. В обработчик кнопки поместим код расположенный ниже.
Код:
Для корректной работы компонента необходимо заполнить свойства Host и Port. Для того чтобы подключиться к серверу, необходимо вызывать метод Connect, а для отключения - Disconnect. Главное свойство компонента TNSMTP - PostMessage. Это свойство содержит в себе информацию об отправляемом письме: ToAddress (адрес получателя), FromAddress (адрес отправителя), Body (текст письма), Subject (тема письма) и FromName (имя отправителя). После отправки письма необходимо отключиться от сервера, используя метод Disconnect.
Главное о чем стоит упомянуть это, что ваш хранитель экрана будет работать в фоновом режиме и он не должен мешать работе других запущенных программ. Поэтому сам хранитель должен быть как можно меньшего объема. Для уменьшения объема файла в описанной ниже программе не используется визуальные компоненты Delphi, включение хотя бы одного из них приведет к увеличению размера файла свыше 200кб, а так, описанная ниже программа, имеет размер всего 20кб!!!
Технически, хранитель экрана является нормальным EXE файлом (с расширением .SCR), который управляется через командные параметры строки. Например, если пользователь хочет изменить параметры вашего хранителя, Windows выполняет его с параметром "-c" в командной строке. Поэтому начать создание вашего хранителя экрана следует с создания примерно следующей функции:
Поскольку нам нужно создавать небольшое окно предварительного просмотра и полноэкранное окно, их лучше объединить используя единственный класс окна. Следуя правилам хорошего тона, нам также нужно использовать многочисленные нити. Дело в том, что, во-первых, хранитель не должен переставать работать даже если что-то "тяжелое" случилось, и во-вторых, нам не нужно использовать таймер.
Процедура для запуска хранителя на полном экране - приблизительно такова:
Во-первых, мы проинициализировали некоторые глобальные переменные (описанные далее), затем прячем курсор мыши и создаем окно хранителя экрана. Имейте в виду, что важно уведомлять Windows, что это - хранителя экрана через SystemParametersInfo (это выводит из строя Ctrl-Alt-Del чтобы нельзя было вернуться в Windows не введя пароль). Создание окна хранителя:
Теперь окна созданы используя вызовы API. Я удалил проверку ошибки, но обычно все проходит хорошо, особенно в этом типе приложения.
Теперь Вы можете погадать, как мы получим handle родительского окна предварительного просмотра ? В действительности, это совсем просто: Windows просто передает handle в командной строке, когда это нужно. Таким образом:
Как Вы видите, window handle является вторым параметром (после "-p").
Чтобы "выполнять" хранителя экрана - нам нужна нить. Это создается с вышеуказанным CreateThread. Процедура нити выглядит примерно так:
Нить просто заставляет обновляться изображения в нашем окне, спит на некоторое время, и обновляет изображения снова. А Windows будет посылать сообщение WM_PAINT на наше окно (не в нить !). Для того, чтобы оперировать этим сообщением, нам нужна процедура:
Если мышь перемещается, кнопка нажала, мы спрашиваем у пользователя пароль:
Это также демонстрирует использование registry на уровне API. Также имейте в виду как мы динамически загружаем функции пароля, используюя LoadLibrary. Запомните тип функции?
TVSSFunc ОПРЕДЕЛЕН как:
Теперь почти все готово, кроме диалога конфигурации. Это запросто:
Трудная часть -это создать диалоговый сценарий (запомните: мы не используем здесь Delphi формы!). Я сделал это, используя 16-битовую Resource Workshop (остался еще от Turbo Pascal для Windows). Я сохранил файл как сценарий (текст), и скомпилированный это с BRCC32:
Почти также легко сделать диалоговое меню:
После того, как пользователь выбрал некоторые установочные параметры, нам нужно сохранить их.
Загружаем параметры так:
Легко? Нам также нужно позволить пользователю, установить пароль. Я честно не знаю почему это оставлено разработчику приложений ! Тем не менее:
Мы динамически загружаем (недокументированную) библиотеку MPR.DLL, которая имеет функцию, чтобы установить пароль хранителя экрана, так что нам не нужно беспокоиться об этом.
TPCPAFund ОПРЕДЕЛЕН как:
(Не спрашивайте меня что за параметры B и C ! :-)
Теперь единственная вещь, которую нам нужно рассмотреть, - самая странная часть: создание графики. Я не великий ГУРУ графики, так что Вы не увидите затеняющие многоугольники, вращающиеся в реальном времени. Я только сделал некоторые ящики.
И последнее - глобальные переменные:
Затем исходная программа проекта (.dpr). Красива, а!?
Ох, чуть не забыл! Если, Вы используете SysUtils в вашем проекте (например фуекцию StrToInt) вы получите EXE-файл больше чем обещанный в 20k. :) Если Вы хотите все же иметь20k, надо как-то обойтись без SysUtils, например самому написать собственную StrToInt процедуру.
Если все же очень трудно обойтись без использования Delphi-форм, то можно поступить как в случае с вводом пароля: форму изменения параметров хранителя сохранить в виде DLL и динамически ее загружать при необходимости. Т.о. будет маленький и шустрый файл самого хранителя экрана и довеска DLL для конфигурирования и прочего (там объем и скорость уже не критичны).
Каждый абонент (узел) локальной сети должен иметь свой уникальный адрес (идентификатор или MAC-адрес), для того чтобы ему можно было адресовать пакеты. Существуют две основные системы присвоения адресов абонентам сети (точнее, сетевым адаптерам этих абонентов).
Первая система сводится к тому, что при установке сети каждому абоненту пользователь присваивает индивидуальный адрес по порядку, к примеру, от 0 до 30 или от 0 до 254. Присваивание адресов производится программно или с помощью переключателей на плате адаптера. При этом требуемое количество разрядов адреса определяется из неравенства:
2n > Nmax
где n – количество разрядов адреса, а Nmax – максимально возможное количество абонентов в сети. Например, восемь разрядов адреса достаточно для сети из 255 абонентов. Один адрес (обычно 1111....11) отводится для широковещательной передачи, то есть он используется для пакетов, адресованных всем абонентам одновременно.
Именно такой подход применен в известной сети Arcnet. Достоинства данного подхода – малый объем служебной информации в пакете, а также простота аппаратуры адаптера, распознающей адрес пакета. Недостаток – трудоемкость задания адресов и возможность ошибки (например, двум абонентам сети может быть присвоен один и тот же адрес). Контроль уникальности сетевых адресов всех абонентов возлагается на администратора сети.
Второй подход к адресации был разработан международной организацией IEEE, занимающейся стандартизацией сетей. Именно он используется в большинстве сетей и рекомендован для новых разработок. Идея этого подхода состоит в том, чтобы присваивать уникальный сетевой адрес каждому адаптеру сети еще на этапе его изготовления. Если количество возможных адресов будет достаточно большим, то можно быть уверенным, что в любой сети по всему миру никогда не будет абонентов с одинаковыми адресами. Поэтому был выбран 48-битный формат адреса, что соответствует примерно 280 триллионам различных адресов. Понятно, что столько сетевых адаптеров никогда не будет выпущено.
С тем чтобы распределить возможные диапазоны адресов между многочисленными изготовителями сетевых адаптеров, была предложена следующая структура адреса (рис. 4.7):
* Младшие 24 разряда кода адреса называются OUA (Organizationally Unique Address) – организационно уникальный адрес. Именно их присваивает каждый из зарегистрированных производителей сетевых адаптеров. Всего возможно свыше 16 миллионов комбинаций, то есть каждый изготовитель может выпустить 16 миллионов сетевых адаптеров.
* Следующие 22 разряда кода называются OUI (Organizationally Unique Identifier) – организационно уникальный идентификатор. IEEE присваивает один или несколько OUI каждому производителю сетевых адаптеров. Это позволяет исключить совпадения адресов адаптеров от разных производителей. Всего возможно свыше 4 миллионов разных OUI, это означает, что теоретически может быть зарегистрировано 4 миллиона производителей. Вместе OUA и OUI называются UAA (Universally Administered Address) – универсально управляемый адрес или IEEE-адрес.
* Два старших разряда адреса управляющие, они определяют тип адреса, способ интерпретации остальных 46 разрядов. Старший бит I/G (Individual/Group) указывает на тип адреса. Если он установлен в 0, то индивидуальный, если в 1, то групповой (многопунктовый или функциональный). Пакеты с групповым адресом получат все имеющие этот групповой адрес сетевые адаптеры. Причем групповой адрес определяется 46 младшими разрядами. Второй управляющий бит U/L (Universal/Local) называется флажком универсального/местного управления и определяет, как был присвоен адрес данному сетевому адаптеру. Обычно он установлен в 0. Установка бита U/L в 1 означает, что адрес задан не производителем сетевого адаптера, а организацией, использующей данную сеть. Это случается довольно редко.
Структура 48-битного стандартного MAC-адреса
Рис. 4.7. Структура 48-битного стандартного MAC-адреса
Для широковещательной передачи (то есть передачи всем абонентам сети одновременно) применяется специально выделенный сетевой адрес, все 48 битов которого установлены в единицу. Его принимают все абоненты сети независимо от их индивидуальных и групповых адресов.
Данной системы адресов придерживаются такие популярные сети, как Ethernet, Fast Ethernet, Token-Ring, FDDI, 100VG-AnyLAN. Ее недостатки – высокая сложность аппаратуры сетевых адаптеров, а также большая доля служебной информации в передаваемом пакете (адреса источника и приемника вместе требуют уже 96 битов пакета или 12 байт).
Во многих сетевых адаптерах предусмотрен так называемый циркулярный режим. В этом режиме адаптер принимает все пакеты, приходящие к нему, независимо от значения поля адреса приемника. Такой режим используется, например, для проведения диагностики сети, измерения ее производительности, контроля ошибок передачи. При этом один компьютер принимает и контролирует все пакеты, проходящие по сети, но сам ничего не передает. В данном режиме работают сетевые адаптеры мостов и коммутаторы, которые должны обрабатывать перед ретрансляцией все пакеты, приходящие к ним.
Прародителем сети интернет была сеть ARPANET. Первоначально её разработка финансировалась Управлением перспективного планирования (Advanced Research Projects Agency, или ARPA). Проект стартовал осенью 1968 года и уже в сентябре 1969 года в опытную эксплуатацию был запущен первый участок сети ARPANET.
Сеть ARPANET долгое время являлась тестовым полигоном для исследования сетей с коммутацией пакетов. Однако кроме исследовательских, ARPANET служила и чисто практическим целям. Ученые нескольких университетов, а также сотрудники некоторых военных и государственных исследовательских институтов регулярно её использовали для обмена файлами и сообщениями электронной почты, а так же для работы на удалённых компьютерах. В 1975 году управление сетью было выведено из под контроля ARPA и поручено управлению связи Министерства обороны США. Для военных данная сеть представляла большой интерес, так как позволяла сохранять её работоспособность даже при уничтожении её части, например, при ядерном ударе.
В 1983 году Министерство обороны разделило ARPANET на две связанные сети. При этом за сетью ARPANET были сохранены её исследовательские функции, а для военных целей была сформирована новая сеть, которую назвали MILNET. Физически сеть ARPANET состояла приблизительно из 50 миникомпьютеров типа С30 и С300, выпущенных фирмой BBN Corporation. Они назывались узлами коммутации пакетов и были разбросаны по территории материковой части США и Западной Европы. Сеть MILNET состояла приблизительно из 160 узлов, причём 34 из них были расположены в Европе, а 18 в Тихом Океане и в Азиатско-Тихоокеанском регионе. Сами узлы коммутации пакетов нельзя было использовать для решения вычислительных задач общего плана.
Понимая, что в ближайшем будущем очень важным моментом в научных исследованиях будет процесс обмена данными, Национальный научный фонд (NFS) в 1987 году основал отделение сетевых и коммуникацинных исследований и инфраструктуры. В его задачи входило обеспеченье современными сетевыми коммуникационными средствами учёных и инженеров США. И хотя отделение фонда NFS финансировало основные исследовательские программы в области сетевых коммуникаций, сферой его основных интересов было расширение Internet.
Сеть NSFNET строилась в несколько этапов и быстро преобретала популярность не только в научно-исследовательских кругах, но и в коммерческой среде. К 1991 году фонд NFS и другие государственные учреждения США поняли, что масштабы Internet вышли далеко за отведённые её на этапе разработки рамки университетской и научной сети. К Internet стало подключаться множество организаций, разбросанных по всему Земному шару. Трафик в магистральном канале NSFNET вырос почти до миллиарда пакетов в день, и его пропускной способности 1.5 Мбит/с на отдельных участках стало уже не хватать. Поэтому правительство США начало проводить политику приватизации и коммерческого использования Internet. Фонд NFS принял решение предать магистральную сеть на попечение закрытой акционерной компании и оплачивать доступ к ней для государственных научных и исследовательских организаций.
Семейство TCP/IP
Познакомившись с историей, давайте подробнее рассмотрим, что собой представляют протоколы TCP/IP. TCP/IP - это семейство сетевых протоколов, ориентированных на совместную работу. В состав семейства входит несколько компонентов:
IP (Internet Protocol - межсетевой протокол) - обеспечивает транспортировку пакетов данных с одного компьютера на другой;
ICMP (Internet Control Message Protocol - протокол управляющих сообщений в сети Internet) - отвечает за различные виды низкоуровневой поддержки протокола IP, включая сообщения об ошибках, вспомогательные маршрутизирующие запросы и подтверждения о получении сообщений;
ARP (Address Resolution Protocol - протокол преобразования адресов) - выполняет трансляцию IP-адресов в аппаратные MAC-адреса;
UDP (User Datagram Protocol - протокол передачи дейтаграмм пользователя) и TCP (Transmission Control Protocol - протокол управления передачей) - обеспечивают доставку данных конкретным приложениям на указанном компьютере. Протокол UDP реализует передачу отдельных сообщений без подтверждения доставки, тогда как TCP гарантирует надёжный полнодуплексный канал связи между процессами на двух разных компьютерах с возможностью управления потоком и контроля ошибок.
Протокол представляет собой набор правил, использующихся для при обмене данными между двумя компьютерами. В нём оговариваются формат блоков сообщений, описывается реакция компьютера на получение определённого типа сообщения и указываются способы обработки ошибок и других необычных ситуаций. И что самое важное, благодаря протоколам, мы можем описать процесс обмена данными между компьютерами, не привязываясь к какой-то определённой комьютерной платформе или сетевому оборудованию конкретного производителя.
Сокрытие низкоуровневых особенностей процесса передачи данных способствует повышению производительности труда разработчиков. Во-первых, поскольку программистам приходится иметь дело с протоколами, относящимися к достаточно высокому уровню абстракции, им не нужно держать в голове (и даже изучать!) технические подробности испольуемого аппаратного обеспечения. Во-вторых, поскольку программы разрабатываются на основе модели, относящейся к высокому уровню абстракции, который не зависит от конкретной архитектуры компьютера или типа сетевого оборудования, в них не нужно вносить никаких изменений при переходе на другой тип оборудования или изменений конфигурации сети.
Замечание Говорить о том, что ARP входит в состав семейства протоколов TCP/IP не совсем корректно. Однако это неотъемлемая часть стека протоколов в сетях Ethernet. Для того чтобы отправить данные по сети, IP-адрес хоста должен быть преобразован в физический адрес машины получателя (уникальный адрес сетевой платы). Протокол ARP как раз и предназначен для такой цели.
Самым фундаментальным протоколом Интернета является протокол IP (от англ. Internet Protocol), обеспечивающий передачу данных между двумя удаленными компьютерами. Протокол IP является достаточно простым, и обеспечивает адресацию в сети. В ранних сетях адреса в сети были уникальные целые цифры, сейчас сеть построена по иерархическому принципу.
Стек протоколов TCP/IP имеет четыре основных уровня, поэтому часто говорят, что TCP/IP — это четырехуровневый стек протоколов. Внизу стека расположен интерфейсный уровень, посредством которого происходит связь с аппаратурой. За ним следует уровень IP, поверх которого построены транспортные протоколы TCP и UDP. На вершине стека находится уровень приложений, таких как ftp, telnet и т. д. Как мы уже говорили, IP — это простой протокол, не требующий установления соединения. При отсылке пакета данных, IP, как и все протоколы без соединения, послав пакет, тут же "забывает" о нем. При приеме пакетов с верхних уровней стека, этот протокол обертывает их в IP-пакет и передает необходимому аппаратному обеспечению для отправки в сеть. Однако именно в такой простоте и заключается основное достоинство протокола IP. Дело в том, что поскольку IP является простым протоколом, он никак не связан со структурой физической среды, по которым передаются данные. Для протокола IP главное, что эта физическая среда в принципе способна к передаче пакетов. Поэтому IP работает как в локальных, так и в глобальных сетях, как в синхронном, так и в асинхронном режиме передачи данных, как в обычных линиях связи, так и беспроводных и т. д. А поскольку протокол IP является фундаментом четырехуровнего сте-ка протоколов, то все семейство протоколов TCP/IP также может функционировать в любой сети с любым режимом передачи пакетов.
На сетевом уровне в семействе протоколов TCP/IP предусмотрено два обширных класса служб, которые используются во всех приложениях.
Служба доставки пакетов, не требующая установки соединения.
Надёжная потоковая транспортная служба.
Различие между службами, требующими установления надёжного соединения и службами, не требующими этого, является одним из самых основных вопросов сетевого программирования. Первое, на что следует обратить внимание, это то, что когда мы говорим об установлении соединения, то имеется в виду не соединение между компьютерами посредством физического носителя, а о способе передачи данных по этому носителю. Основное различие состоит в том, что службы, в которых устанавливается надёжное соединение, сохраняют информацию о состоянии и таким образом отслеживают информацию о передаваемых пакетах. В службах же, не требующих надёжного соединения, пакеты передаются независимо друг от друга.
Данные передаются по сети в форме пакетов, имеющих максимальный размер, определяемый ограничениями канального уровня. Каждый пакет состоит из заголовка и полезного содержимого (сообщения). Заголовок включает сведения о том, откуда прибыл пакет и куда он направляется. Заголовок, кроме того, может содержать контрольную сумму, информацию, характерную для конкретного протокола, и другие инструкции, касающиеся обработки пакета. Полезное содержимое – это данные, подлежащие пересылке.
Имя базового блока передачи данных зависит от уровня протокола. На канальном уровне это кадр или фрейм, в протоколе IP – пакет, а в протоколе TCP – сегмент. Когда пакет передаётся вниз по стеку протоколов, готовясь к отправке, каждый протокол добавляет в него свой собственный заголовок. Законченный пакет одного протокола становится полезным содержимым пакета, генерируемого следующим протоколом.
Определение
Пакеты, которые посылаются протоколом, не требующим соединения, называются дейтаграммами.
Каждая дейтаграмма является уникальной в том смысле, что никак не зависит от других. Как правило, при работе с протоколами без установления соединения, диалог между клиентом и сервером предельно прост: клиент посылает одиночный запрос, а сервер на него отвечает. При этом каждый новый запрос — это новая транзакция, т. е. инициируемые клиентом запросы никак не связаны друг с другом с точки зрения протокола. Протоколы без установления соединения ненадежны в том смысле, что нет никаких гарантий, что отправленный пакет будет доставлен по месту назначения.
Протоколами, требующие установления логического соединения, сохраняют информацию о состоянии, что позволяет обеспечивать надежную доставку пересылаемых данных. Когда говорится о сохранении состояния, имеется ввиду то, что между отправителем и получателем происходит обмен информацией о ходе выполнения передачи данных. К примеру, отправитель, посылая данные, сохраняет информацию о том, какие данные он послал. После этого в течении определенного времени он ожидает информацию от получателя о доставке этих данных, и, если такая информация не поступает, данные пересылаются повторно.
Работа протокола с установлением соединения включает в себя три основные фазы:
установление соединения;
обмен данными;
разрыв соединения.
Передача всех данных при работе с таким протоколом, в отличие от протокола без установления соединения, происходит за одну транзакцию, т. е. в фазе обмена данными не происходит обмена адресами между отправителем и получателем, поскольку эта информация передается на этапе установки соединения. Возвращаясь к телефонной аналогии, можно сказать, что нам в этом случае нет необходимости для того, чтобы сказать собеседнику очередное слово, вновь набирать его номер и устанавливать соединение. Заметим, что приводимая аналогия имеет одну неточность. Дело в том, что при телефонном разговоре все же устанавливается физическое соединение. Когда же мы говорим о соединении с точки зрения протоколов, то это соединение, скорее, умозрительное. К примеру, если вдруг при телефонном разговоре, неожиданно сломается телефонный аппарат вашего собеседника, вы тут же узнаете об этом, поскольку разговор незамедлительно прервется. А вот если происходит обмен данными между двумя хостами и один из них вдруг аварийно остановится, то для его "хоста-собеседника" соединение по прежнему будет существовать, поскольку для него не произошло ничего такого, что сделало бы недействительной хранящуюся у него информацию о состоянии.
В этом смысле работу с протоколом, требующим установления логического соединения можно сравнить с телефонным разговором. Когда мы звоним по телефону, мы сначала набираем номер (установление соединения), затем разговариваем (обмен данными) и по окончании разговора вешаем трубки (разрыв соединения).
Протокол без установления соединения обычно сравниваю с почтовой открыткой. Каждая открытка представляет собой самостоятельную единицу (пакет информации или дейтаграмму), которая обрабатывается в почтовом отделении независимо от других открыток. При этом на почте не отслеживается состояние переписки между двумя респондентами и, как правило, нет никакой гарантии, что ваша открытка попадет к адресату. Если на открытке указан неправильный адрес, она никогда не дойдет до получателя, и не возвратиться обратно к отправителю. А если вы захотите отправить вашему собеседнику новую порцию информации, то это уже будет другая транзакция, поскольку нужно будет писать новую открытку, указывать на ней адрес и т. д.
Как видим, у протоколов без установления соединения существует много недостатков и может возникнуть вопрос о надобности таких протоколов. Однако, использование проколов без установления логического соединения все-таки оправдано. Как правило, при помощи таких протоколов организуется связь одного хоста со многими другими, в то время как при использовании протоколов с установлением соединения связь организуется между парой хостов (по одному соединению на каждую пару). Важный момент заключается в том, что протоколы без установления логического соединения являются фундаментом, на котором строятся более сложные протоколы. К примеру, протокол TCP построен на базе протокола IP.
Протоколы транспортного уровня
Протоколами транспортного уровня в четырехуровневом стеке протоколов являются протоколы TCP и UDP.
Давайте рассмотрим, каким образом функционирует протокол TCP. Дело в том, что поскольку TCP-пакеты, иначе называемые сегментами, посылаются при помощи протокола IP, у TCP нет никакой информации о состоянии этих пакетов. Поэтому для того, чтобы хранить информацию о состоянии, TCP к базовому протоколу IP добавляет три параметра.
Во-первых, добавляется сегмент контрольной суммы содержащихся в пакете данных, что позволяет убедиться в том, что в принципе все данные дошли до получателя и не повредились во время транспортировки.
Во-вторых, к каждому передаваемому байту приписывается порядковый номер, что необходимо для определения того, совпадает ли порядок прибытия данных с порядком их отправки. И даже в том случае, если данные пришли не в том порядке, в котором были отправлены, наличие порядковых номеров позволит получателю правильно составить из этих данных исходное сообщение.
В-третьих, базовый протокол IP дополняется также механизмами подтверждения получения данных и повторной отправки, на тот случай, если данные не были доставлены.
Если с первыми двумя параметрами все более-менее понятно, то механизм подтверждения/повторной отправки достаточно сложен и его мы рассмотрим подробнее в другой раз.
При разработке больших приложений, оперирующих большими объемами информации на первое место при отладке встает проблема обнаружения неправильного распределения памяти. Суть проблемы состоит в том, что если мы выделили участок памяти, а затем освободили не весь выделенный объем, то образуются блоки памяти, которые помечены как занятые, но на самом деле они не используются. При длительной работе программы такие блоки могут накапливаться, приводя к значительному расходу памяти.
Для обнаружения подобных ошибок создано специализированное программное обеспечение (типа BoundsChecker от Numega), однако чаще бывает удобнее встроить механизм обнаружения утечки в свои проекты. Поэтому метод должен быть простым, и в то же время как можно более универсальным. Кроме того, не хотелось бы переписывать годами накопленные мегабайты кода, написанного и отлаженного задолго до того, как вам пришло в голову оградить себя от ошибок. Так что к списку требований добавляется стандартизация, т.е. нужно каким-то образом встроить защиту от ошибок в стандартный код.
Предлагаемое решение основывается на перегрузке стандартных операторов распределения памяти new и delete. Причем перегружать мы будем глобальные операторы new|delete, т.к. переписать эти операторы для каждого разработанного ранее класса было бы очень трудоемким процессом. Т.о. после перегрузки нам нужно будет только отследить распределение памяти и, соответственно, освобождение ее в момент завершения программы. Все несоответствия - ошибка.
Реализация
Проект написан на Visual C++, но переписать его на любой другой диалект С++ не будет слишком сложной задачей. Во-первых, нужно переопределить стандартные операторы new и delete так, чтобы это работало во всех проектах. Поэтому в stdafx.h добавляем следующий фрагмент:
Как видите, переопределение операторов происходит в блоке #ifdef/#endif. Это ограждает наш код от влияния на релиз компилируемой программы. Вы, наверное, заметили, что теперь оператор new имеет три параметра вместо одного. Два дополнительных параметра содержат имя файла и номер строки, в которой выделяется память. Это удобно для обнаружения конкретного места, где происходит ошибка. Однако код наших проектов по-прежнему ссылается на оператор new, принимающий один параметр. Для исправления этого несоответствия нужно добавиить следующий фрагмент
Теперь все наши операторы new будут вызываться с тремя параметрами, причем недостающие параметры подставит препроцессор. Конечно, пустые переопределенные функции ни в чем нам не помогут, так что давайте добавим в них какой-нибудь код:
Для полноты картины нужно переопределить операторы new[] и delete[], однако никаких существенных отличий здесь нет - творите!
Последний штрих - пишем функции AddTrack() и RemoveTrack(). Для создания списка используемых блоков памяти будем использовать стандартные средства STL:
Перед самым завершением программы наш список allocList содержит ссылки на блоки памяти, котороые не были освобождены. Все, что нужно сделать - вывести эту информацию куда-нибудь. В нашем проекте мы выведем список неосвобожденных участков памяти в окно вывода отладочных сообщений Visual C++:
Надеюсь, этот проект сделает ваши баг-листы короче, а программы устойчивее. Удачи!
Потоки всегда создаются в контексте какого-либо процесса, и вся их жизнь проходит только в его границах. На практике это означает, что потоки исполняют код и манипулируют данными в адресном пространстве процесса. Если два или более потока выполняются внутри одного процесса, они делят одно адресное пространство.
Любой поток (thread) состоит из двух компонентов:
объекта ядра, через который ОС управляет потоком. Там же хранится статистическая информация о потоке.
Стека потока, который содержит параметры всех функций и локальные переменные, необходимые потоку для выполнения кода.
Потоки могут выполнять один и тот же код, манипулировать одними и теми же данными, а также совместно использовать описатели объектов ядра, поскольку таблица описателей создается не в отдельных потоках, а в процессах.
Потоки используют намного меньше ресурсов системы, чем процессы, поэтому все задачи, требующие параллельного выполнения нескольких подзадач, стоит решать по возможности с помощью потоков, не прибегая к созданию нескольких процессов.
Обычная структура многопоточного приложения рассчитана на одновременное исполнение нескольких подзадач. Однако стоит помнить, что, создавая многопоточное приложение, нам придется заботиться о сохранности и ликвидности, общих для всех потоков, данных.
Создание потока.
Первичный поток, который присутствует в программе, начинает свое выполнение с главной функции потока типа WinMain.
Для создания вторичного потока необходимо создать и для него входную функцию, которая выглядит примерно так:
Имя у функции вторичного потока, в отличии от первичного, может быть любым однако, при наличии нескольких разных потоков, назвать функции необходимо по-разному, иначе система создаст разные реализации одной и той же функции.
Когда поток закончит свое исполнение, он вернет управление системе, память, отведенная под его стек, будет освобождена, а счетчик пользователей его объекта ядра "поток" уменьшится на 1. Когда счетчик обнулится, этот объект ядра будет разрушен.
Для создания своего потока необходимо использовать функцию CreateThread:
При каждом вызове этой функции система создает объект ядра (поток). Это не сам поток, а компактная структура данных, которая используется операционной системой для управления потоком и хранит статистическую информацию о потоке.
Система выделяет память под стек потока из адресного пространства процесса. Новый поток выполняется в контексте того же процесса, что и родительский поток. Поэтому он получает доступ ко всем описателям объектов ядра, всей памяти и стекам всех потоков в процессе. За счет этого потоки в рамках одного процесса могут легко взаимодействовать друг с другом.
CreateThread - это Windows-функция, создающая поток. Если вы пишете код на С/С++ не вызывайте ее. Вместо нее Вы должны использовать _beginthreadex из библиотеки Visual C++. Почему это так важно в наших следующих выпусках.
Параметры функции CreateThread.
LpThreadAttributes - является указателем на структуру LPSECURITY_ATTRIBUTES. Для присвоения атрибутов защиты по умолчанию, передавайте в этом параметре NULL.
DwStackSize - параметр определяет размер стека, выделяемый для потока из общего адресного пространства процесса. При передаче 0 - размер устанавливается в значение по умолчанию.
LpStartAddress - указатель на адрес входной функции потока.
LpParameter - параметр, который будет передан внутрь функции потока.
DwCreationFlags - принимает одно из двух значений: 0 - исполнение начинается немедленно, или CREATE_SUSPENDED - исполнение приостанавливается до последующих указаний.
LpThreadId - Адрес переменной типа DWORD в который функция возвращает идентификатор, приписанный системой новому потоку.
Завершение потока
Поток можно завершит четырьмя способами:
функция потока возвращает управление (рекомендуемо);
поток самоуничтожается вызовом функции ExitThread;
другой поток процесса вызывает функцию TerminateThread;
завершается процесс, содержащий данный поток.
Все способы , за исключением рекомендуемого, являются нежелательными и должны использоваться только в форс-мажорных обстоятельствах.
Функция потока, возвращая управление, гарантирует корректную очистку всех ресурсов, принадлежащих данному потоку. При этом:
любые С++ объекты, созданные данным потоком, уничтожаются соответствующими деструкторами;
система корректно освобождает память, которую занимал стек потока;
система устанавливает код завершения данного потока. Его функция и возвращает;
счетчик пользователей данного объекта ядра (поток) уменьшается на 1.
При желании немедленно завершить поток изнутри используют функцию ExitThread(DWORD dwExitCode).
При этом освобождаются все ресурсы ОС, выделенные данному потоку, но С С++ ресурсы (например, объекты классов С++) не очищаются. Именно поэтому не рекомендовано завершать поток, используя эту функцию.
Если же вы ее использовали, то кодом возврата потока будет тот параметр, который вы передадите в данную функцию.
Как и для CreateThread для библиотеки Visual C++ существует ее аналог _endthreadex, который и стоит использовать. Об причинах в следующем выпуске.
Если появилась необходимость уничтожить поток снаружи, то это моет сделать функция TeminateThread.
Эта функция уменьшит счетчик пользователей объекта ядра (поток) на 1, однако при этом не разрушит и не очистит стек потока. Стек будет существовать, пока не завершится процесс, которому принадлежит поток. При задачах, постоянно создающих и уничтожающих потоки, это приводит к потере памяти внутри процесса.
При завершении процесса происходит следующее.
Завершение потока происходит принудительно. Деструкторы объектов не вызываются, и т.д. и т.д.
При завершении потока по такой причине, связанный с ним объект ядра (поток) не освобождается до тех пор, пока не будут закрыты все внешние ссылки на этот объект.
21 – ФТП пртокол, может использоваться если открыт анонимный доступ или стоит кривая версия софта (WU 2.6.0 (1) War FTPd и тд)
23 – Телнет протокол. Используеться для входа в систему с удалённого компьютера. Так же может показать версию ОС.
25 – Протокол для отправки почты, может использоваться в основном когда стоит кривая версия sendmail (самое распространённое) так же имеют место команды EXPN и VRFY которые могут дать взломщику некторую дополнительную информацию.
53 – Показывает установлен ли DNS. Может использоваться для так называемого DNS Spoofing. Т.е. подменой объекта ДНС.
79 – Это Finger. При должном везении и ошибках в программном обеспечении можно получить список всех пользователей залогиненых в систему.
80 – WWW Сервер. показывает присутствует ли WWW сервер на машине. Использовать можно для проверки на ЦГИ скрипты, так же показывает версию и название программного обеспечения установленного на машине.
110 – POP протокол для просмотра почтовых сообщений. Может использоваться при кривой версии ПО как например всем известный QPOP.
111 – Sun RPC. Может использоваться при наличии ответа на команду rpcinfo -d |grep bind - ypbind tcp и тд.
119 – NNTP. Проткол для чтения и отправки новостей в новостные группы, используеться так же при наличии ошибок в ПО
139 – NETBIOS. Пртокол для работы с локальной сетью. Может использовать для сканирования на расшаренные ресурсы и получение информации о сети.
443 – HTTPS, SSL. Тоже самое что и HTTP но использует безопасный протокол.
513 – rlogin. Если у хоста есть запись в файле .rlogin то вы коннектитесь на удалённый хост без использования логина и пароля.
Описание всех портов
1=TCP-MUX - TCP Port Service Multiplexer
2=COMPRESSNET - Management Utility
3=COMPRESSNET - Compression Process
5=RJE - Remote Job Entry
7=ECHO - Echo
9=DISCARD - Discard
11=SYSSTAT - System Status
13=DAYTIME - Daytime
15=NETSTAT - Network Status
17=QOTD - Quote of the Day
18=MSP - Message Send Protocol
19=CHARGEN - Character Generator
20=FTP-DATA - File Transfer Protocol [Default Data]
21=FTP - File Transfer Protocol [Control]
22=SSH - SSH (Secure Shell) Remote Login Protocol
23=TELNET - Telnet
24=PMS - Private Mail System
25=SMTP - Simple Mail Transfer Protocol
27=NSW-FE - NSW User System FE
29=MSG-ICP - Messege ICP
31=MSG-AUTH - Messege Authentication
33=DSP - Display Support Protocol
35=PPS - Private Printer Server
37=TIME - Time
38=RAP - Route Access Protocol
39=RLP - Resource Location Protocol
41=GRAPHICS - Graphics
42=NAMESERVER - Host Name Server
43=WHOIS - Who Is
44=MPM-FLAGS - MPM FLAGS Protocol
45=MPM - Message Processing Module [recv]
46=MPM-SND - MPM [default send]
47=NI-FTP - NI FTP (File Transfer Protocol)
48=AUDITD - Digital Audit Daemon
49=BBN-LOGIN - Login Host Protocol (TACACS)
50=RE-MAIL-CK - Remote Mail Checking Protocol
51=LA-MAINT - IMP Logical Address Maintenance
52=XNS-TIME - XNS Time Protocol
53=DOMAIN - Domain Name Server
54=XNS-CH - XNS Clearinghouse
55=ISI-GL - ISI Graphics Language
56=XNS-AUTH - XNS Authentication
57=MTP - Private terminal access
58=XNS-MAIL - XNS Mail
59=PFS - Private File System
60=Unassigned
61=NI-MAIL - NI MAIL
62=ACAS - ACA Services
63=WHOIS++ - whois++
64=COVIA - Communications Integrator (CI)
65=TACACS-DS - TACACS-Database Service
66=SQL*NET - Oracle SQL*NET
67=BOOTPS - Bootstrap Protocol Server
68=BOOTPC - Bootstrap Protocol Client
69=TFTP - Trivial File Transfer Protocol
70=GOPHER - Gopher
71=NETRJS-1 - Remote Job Service
72=NETRJS-2 - Remote Job Service
73=NETRJS-3 - Remote Job Service
74=NETRJS-4 - Remote Job Service
75=PDOS - Private dial out service
76=DEOS - Distributed External Object Store
77=RJE - Private RJE (Remote Job Entry) service
78=VETTCP - vettcp
79=FINGER - Finger
80=WWW-HTTP - World Wide Web HTTP (Hyper Text Transfer Protocol)
81=HOSTS2-NS - HOSTS2 Name Server
82=XFER - XFER Utility
83=MIT-ML-DEV - MIT ML Device
84=CTF - Common Trace Facility
85=MIT-ML-DEV - MIT ML Device
86=MFCOBOL - Micro Focus Cobol
87=LINK - Private terminal link
88=KERBEROS - Kerberos
89=SU-MIT-TG - SU/MIT Telnet Gateway
90=DNSIX - DNSIX Securit Attribute Token Map
91=MIT-DOV - MIT Dover Spooler
92=NPP - Network Printing Protocol
93=DCP - Device Control Protocol
94=OBJCALL - Tivoli Object Dispatcher
95=SUPDUP - SUPDUP
96=DIXIE - DIXIE Protocol Specification
97=SWIFT-RVF - Swift Remote Virtural File Protocol
98=TACNEWS - TAC News
99=METAGRAM - Metagram Relay
100=NEWACCT - [unauthorized use]
101=HOSTNAMES - NIC Host Name Server
102=ISO-TSAP - ISO-TSAP Class 0
103=X400 - x400
104=X400-SND - x400-snd
105=CSNET-NS - Mailbox Name Nameserver
106=3COM-TSMUX - 3COM-TSMUX
107=RTELNET - Remote Telnet Service
108=SNAGAS - SNA Gateway Access Server
109=POP - Post Office Protocol - Version 2
110=POP3 - Post Office Protocol - Version 3
111=SUNRPC - SUN Remote Procedure Call
112=MCIDAS - McIDAS Data Transmission Protocol
113=IDENT - Authentication Service
114=AUDIONEWS - Audio News Multicast
115=SFTP - Simple File Transfer Protocol
116=ANSANOTIFY - ANSA REX Notify
117=UUCP-PATH - UUCP Path Service
118=SQLSERV - SQL Services
119=NNTP - Network News Transfer Protocol
120=CFDPTKT - CFDPTKT
121=ERPC - Encore Expedited Remote Pro.Call
122=SMAKYNET - SMAKYNET
123=NTP - Network Time Protocol
124=ANSATRADER - ANSA REX Trader
125=LOCUS-MAP - Locus PC-Interface Net Map Ser
126=UNITARY - Unisys Unitary Login
127=LOCUS-CON - Locus PC-Interface Conn Server
128=GSS-XLICEN - GSS X License Verification
129=PWDGEN - Password Generator Protocol
130=CISCO-FNA - cisco FNATIVE
131=CISCO-TNA - cisco TNATIVE
132=CISCO-SYS - cisco SYSMAINT
133=STATSRV - Statistics Service
134=INGRES-NET - INGRES-NET Service
135=RPC-LOCATOR - RPC (Remote Procedure Call) Location Service
136=PROFILE - PROFILE Naming System
137=NETBIOS-NS - NETBIOS Name Service
138=NETBIOS-DGM - NETBIOS Datagram Service
139=NETBIOS-SSN - NETBIOS Session Service
140=EMFIS-DATA - EMFIS Data Service
141=EMFIS-CNTL - EMFIS Control Service
142=BL-IDM - Britton-Lee IDM
143=IMAP - Interim Mail Access Protocol v2
144=NEWS - NewS
145=UAAC - UAAC Protocol
146=ISO-TP0 - ISO-IP0
147=ISO-IP - ISO-IP
148=CRONUS - CRONUS-SUPPORT
149=AED-512 - AED 512 Emulation Service
150=SQL-NET - SQL-NET
151=HEMS - HEMS
152=BFTP - Background File Transfer Program
153=SGMP - SGMP
154=NETSC-PROD - NETSC
155=NETSC-DEV - NETSC
156=SQLSRV - SQL Service
157=KNET-CMP - KNET/VM Command/Message Protocol
158=PCMAIL-SRV - PCMail Server
159=NSS-ROUTING - NSS-Routing
160=SGMP-TRAPS - SGMP-TRAPS
161=SNMP - SNMP (Simple Network Management Protocol)
162=SNMPTRAP - SNMPTRAP (Simple Network Management Protocol)
163=CMIP-MAN - CMIP/TCP Manager
164=CMIP-AGENT - CMIP/TCP Agent
165=XNS-COURIER - Xerox
166=S-NET - Sirius Systems
167=NAMP - NAMP
168=RSVD - RSVD
169=SEND - SEND
170=PRINT-SRV - Network PostScript
171=MULTIPLEX - Network Innovations Multiplex
172=CL/1 - Network Innovations CL/1
173=XYPLEX-MUX - Xyplex
174=MAILQ - MAILQ
175=VMNET - VMNET
176=GENRAD-MUX - GENRAD-MUX
177=XDMCP - X Display Manager Control Protocol
178=NEXTSTEP - NextStep Window Server
179=BGP - Border Gateway Protocol
180=RIS - Intergraph
181=UNIFY - Unify
182=AUDIT - Unisys Audit SITP
183=OCBINDER - OCBinder
184=OCSERVER - OCServer
185=REMOTE-KIS - Remote-KIS
186=KIS - KIS Protocol
187=ACI - Application Communication Interface
188=MUMPS - Plus Five's MUMPS
189=QFT - Queued File Transport
190=GACP - Gateway Access Control Protocol
191=PROSPERO - Prospero Directory Service
192=OSU-NMS - OSU Network Monitoring System
193=SRMP - Spider Remote Monitoring Protocol
194=IRC - Internet Relay Chat Protocol
195=DN6-NLM-AUD - DNSIX Network Level Module Audit
196=DN6-SMM-RED - DNSIX Session Mgt Module Audit Redir
197=DLS - Directory Location Service
198=DLS-MON - Directory Location Service Monitor
199=SMUX - SMUX
200=SRC - IBM System Resource Controller
201=AT-RTMP - AppleTalk Routing Maintenance
202=AT-NBP - AppleTalk Name Binding
203=AT-3 - AppleTalk Unused
204=AT-ECHO - AppleTalk Echo
205=AT-5 - AppleTalk Unused
206=AT-ZIS - AppleTalk Zone Information
207=AT-7 - AppleTalk Unused
208=AT-8 - AppleTalk Unused
209=QMTP - The Quick Mail Transfer Protocol
210=Z39.50 - ANSI Z39.50
211=914C/G - Texas Instruments 914C/G Terminal
212=ANET - ATEXSSTR
213=IPX - IPX
214=VMPWSCS - VM PWSCS
215=SOFTPC - Insignia Solutions
216=CAILIC - Computer Associates Int'l License Server
217=DBASE - dBASE Unix
218=MPP - Netix Message Posting Protocol
219=UARPS - Unisys ARPs
220=IMAP3 - Interactive Mail Access Protocol v3
221=FLN-SPX - Berkeley rlogind with SPX auth
222=RSH-SPX - Berkeley rshd with SPX auth
223=CDC - Certificate Distribution Center
242=DIRECT -
243=SUR-MEAS - Survey Measurement
244=DAYNA -
245=LINK - LINK
246=DSP3270 - Display Systems Protocol
247=SUBNTBCST_TFTP -
248=BHFHS -
256=RAP -
257=SET - Secure Electronic Transaction
258=YAK-CHAT - Yak Winsock Personal Chat
259=ESRO-GEN - Efficient Short Remote Operations
260=OPENPORT -
261=NSIIOPS - IIOP Name Service Over TLS/SSL
262=ARCISDMS -
263=HDAP -
264=BGMP -
280=HTTP-MGMT -
281=PERSONAL-LINK -
282=CABLEPORT-AX - Cable Port A/X
308=NOVASTORBAKCUP - Novastor Backup
309=ENTRUSTTIME -
310=BHMDS -
311=ASIP-WEBADMIN - Appleshare IP Webadmin
312=VSLMP -
313=MAGENTA-LOGIC -
314=OPALIS-ROBOT -
315=DPSI -
316=DECAUTH -
317=ZANNET -
321=PIP -
344=PDAP - Prospero Data Access Protocol
345=PAWSERV - Perf Analysis Workbench
346=ZSERV - Zebra server
347=FATSERV - Fatmen Server
348=CSI-SGWP - Cabletron Management Protocol
349=MFTP -
350=MATIP-TYPE-A - MATIP Type A
351=MATIP-TYPE-B - MATIP Type B or bhoetty
352=DTAG-STE-SB - DTAG, or bhoedap4
353=NDSAUTH -
354=BH611 -
355=DATEX-ASN -
356=CLOANTO-NET-1 - Cloanto Net 1
357=BHEVENT -
358=SHRINKWRAP -
359=TENEBRIS_NTS - Tenebris Network Trace Service
360=SCOI2ODIALOG -
361=SEMANTIX -
362=SRSSEND - SRS Send
363=RSVP_TUNNEL -
364=AURORA-CMGR -
365=DTK - Deception Tool Kit
366=ODMR -
367=MORTGAGEWARE -
368=QBIKGDP -
369=RPC2PORTMAP -
370=CODAAUTH2 -
371=CLEARCASE - Clearcase
372=ULISTSERV - Unix Listserv
373=LEGENT-1 - Legent Corporation
374=LEGENT-2 - Legent Corporation
375=HASSLE - Hassle
376=NIP - Amiga Envoy Network Inquiry Proto
377=TNETOS - NEC Corporation
378=DSETOS - NEC Corporation
379=IS99C - TIA/EIA/IS-99 modem client
380=IS99S - TIA/EIA/IS-99 modem server
381=HP-COLLECTOR - HP Performance Data Collector
382=HP-MANAGED-NODE - HP Performance Data Managed Node
383=HP-ALARM-MGR - HP Performance Data Alarm Manager
384=ARNS - A Remote Network Server System
385=IBM-APP - IBM Application 386=ASA - ASA Message Router Object Def.
387=AURP - Appletalk Update-Based Routing Pro.
388=UNIDATA-LDM - Unidata LDM Version 4
389=LDAP - Lightweight Directory Access Protocol
390=UIS - UIS
391=SYNOTICS-RELAY - SynOptics SNMP Relay Port
392=SYNOTICS-BROKER - SynOptics Port Broker Port
393=DIS - Data Interpretation System
394=EMBL-NDT - EMBL Nucleic Data Transfer
395=NETCP - NETscout Control Protocol
396=NETWARE-IP - Novell Netware over IP
397=MPTN - Multi Protocol Trans. Net.
398=KRYPTOLAN - Kryptolan
399=ISO-TSAP-C2 - ISO Transport Class 2 Non-Control over TCP
400=WORK-SOL - Workstation Solutions
401=UPS - Uninterruptible Power Supply
402=GENIE - Genie Protocol
403=DECAP - decap
404=NCED - nced
405=NCLD - ncld
406=IMSP - Interactive Mail Support Protocol
407=TIMBUKTU - Timbuktu
408=PRM-SM - Prospero Resource Manager Sys. Man.
409=PRM-NM - Prospero Resource Manager Node Man.
410=DECLADEBUG - DECLadebug Remote Debug Protocol
411=RMT - Remote MT Protocol
412=SYNOPTICS-TRAP - Trap Convention Port
413=SMSP - SMSP
414=INFOSEEK - InfoSeek
415=BNET - BNet
416=SILVERPLATTER - Silverplatter
417=ONMUX - Onmux
418=HYPER-G - Hyper-G
419=ARIEL1 - Ariel
420=SMPTE - SMPTE
421=ARIEL2 - Ariel
422=ARIEL3 - Ariel
423=OPC-JOB-START - IBM Operations Planning and Control Start
424=OPC-JOB-TRACK - IBM Operations Planning and Control Track
425=ICAD-EL - ICAD
426=SMARTSDP - smartsdp
427=SVRLOC - Server Location
428=OCS_CMU - OCS_CMU
429=OCS_AMU - OCS_AMU
430=UTMPSD - UTMPSD
431=UTMPCD - UTMPCD
432=IASD - IASD
433=NNSP - NNSP
434=MOBILEIP-AGENT - MobileIP-Agent
435=MOBILIP-MN - MobilIP-MN
436=DNA-CML - DNA-CML
437=COMSCM - comscm
438=DSFGW - dsfgw
439=DASP - dasp
440=SGCP - sgcp
441=DECVMS-SYSMGT - decvms-sysmgt
442=CVC_HOSTD - cvc_hostd
443=HTTPS - HTTPS (Hyper Text Transfer Protocol Secure) - SSL (Secure
Socket Layer)
444=SNPP - Simple Network Paging Protocol
445=MICROSOFT-DS - Microsoft-DS
446=DDM-RDB - DDM-RDB
447=DDM-DFM - DDM-RFM
448=DDM-BYTE - DDM-BYTE
449=AS-SERVERMAP - AS Server Mapper
450=TSERVER - TServer
451=SFS-SMP-NET - Cray Network Semaphore server
452=SFS-CONFIG - Cray SFS config server
453=CREATIVESERVER - CreativeServer
454=CONTENTSERVER - ContentServer
455=CREATIVEPARTNR - CreativePartnr
456=MACON-TCP - macon-tcp
457=SCOHELP - scohelp
458=APPLEQTC - Apple Quick Time
459=AMPR-RCMD - ampr-rcmd
460=SKRONK - skronk
461=DATASURFSRV - DataRampSrv
462=DATASURFSRVSEC - DataRampSrvSec
463=ALPES - alpes
464=KPASSWD - kpasswd
465=SSMTP - ssmtp
466=DIGITAL-VRC - digital-vrc
467=MYLEX-MAPD - mylex-mapd
468=PHOTURIS - proturis
469=RCP - Radio Control Protocol
470=SCX-PROXY - scx-proxy
471=MONDEX - Mondex
472=LJK-LOGIN - ljk-login
473=HYBRID-POP - hybrid-pop
474=TN-TL-W1 - tn-tl-w1
475=TCPNETHASPSRV - tcpnethaspsrv
476=TN-TL-FD1 - tn-tl-fd1
477=SS7NS - ss7ns
478=SPSC - spsc
479=IAFSERVER - iafserver
480=IAFDBASE - iafdbase
481=PH - Ph service
482=BGS-NSI - bgs-nsi
483=ULPNET - ulpnet
484=INTEGRA-SME - Integra Software Management Environment
485=POWERBURST - Air Soft Power Burst
486=AVIAN - avian
487=SAFT - saft
488=GSS-HTTP - gss-http
489=NEST-PROTOCOL - nest-protocol
490=MICOM-PFS - micom-pfs
491=GO-LOGIN - go-login
492=TICF-1 - Transport Independent Convergence for FNA
493=TICF-2 - Transport Independent Convergence for FNA
494=POV-RAY - POV-Ray
495=INTECOURIER -
496=PIM-RP-DISC -
497=DANTZ -
498=SIAM -
499=ISO-ILL - ISO ILL Protocol
500=ISAKMP -
501=STMF -
502=ASA-APPL-PROTO -
503=INTRINSA -
504=CITADEL -
505=MAILBOX-LM -
506=OHIMSRV -
507=CRS -
GPRS (General Packet Radio Service) - это новая перспективная технология, стандартизация которой началась в 1993 году в European Telecommunication Standards Institute (http://www.etsi.org/), позволяющая работать в сети Internet, используя обычный мобильный телефон. С помощью GPRS, пользователи могут работать со своей электронной почтой, с обычными Web-серверами (а не со специальными WAP-версиями) и т.д. Основное достоинство GPRS-сетей состоит в том, что пользователь оплачивает только объем передаваемой/получаемой информации, а не время нахождения в сети.
До разработки технологии GPRS (http://www.gsmworld.com/technology/gprs/index.shtml), абонент оплачивал все время соединения независимо от того, использовал он установленный канал передачи данных. Иными словами, ресурсы сети задействованы только во время непосредственной передачи данных от телефона. Во время пауз (например, просмотр полученной электронной почты) ресурсы сети предоставляются в распоряжение других абонентов. Кроме того, технология GPRS является промежуточным этапом при переходе от сетей 2 поколения (GSM) к 3-му (UMTS). В GPRS максимально возможная скорость передачи данных составляет 171,2 Кбит/с - это почти в 12 раз быстрее работы передачи данных в обычных сетях GSM (9,6 Кбит/с). Однако на данный момент скорости не так высоки - обычно 30-40 Кбит/с. В настоящее время три крупнейших сотовых сети России (МТС, БиЛайн, Мегафон) предлагают своим абонентам услуги GPRS. Потенциальное число абонентов технологии GPRS в России - 17,8 миллионов человек, именно такое количество абонентов сотовой связи насчитывалось в России к концу 2002 года. Реальное же число желающих воспользоваться преимуществами этой технологии пока не так велико. В частности, к началу декабря 2002 года в БиЛайне, пионере GPRS в России, насчитывалось всего 25000 абонентов.
Архитектура GPRS
Если не вдаваться в глубокие технические подробности, то технология работы GPRS выглядит следующим образом. Архитектура GPRS расширяет стандартные компоненты GSM новыми или обновленными элементами. В целом, таких элементов всего 4, из которых только 2 не были известны в технологии GSM.
Мобильная станция
MS (mobile station) - это мобильная станция, в качестве которой может выступать переносной или карманный компьютер, мобильный телефон или иное устройство, поддерживающее технологию GPRS. Функционально данный элемент состоит из 2-х компонентов, которые могут быть выполнены как в виде единого устройства (например, мобильный телефон Sony Ericsson T68i), так и в виде самостоятельных устройств:
терминальное оборудование (terminal equipment, TE), например, переносной компьютер;
мобильный терминал (mobile terminal, MT), например, модем.
В зависимости от типа оборудования и возможностей сети данная станция может работать в одном из 3-х режимов работы:
Класс A - позволяет мобильной станции в одно и то же время передавать как данные, так и голос, т.е. одновременно работать в GSM- и GPRS-сетях.
Класс B - позволяет мобильной станции передавать и данные и голос, но в разные моменты времени, т.е. не одновременно.
Класс C - позволяет мобильной станции работать только в режиме GPRS.
При подключении к сети GPRS, мобильная станция (а точнее элемент TE) получает IP-адрес, который не меняется до момента отключения мобильного терминала (MT); больше того, мобильная станция может даже и не "подозревать" о том, что она является мобильной. Мобильная станция устанавливает соединение с узлом обслуживания абонентов GPRS, описываемым далее.
Базовая станция
BSS (base station system) - это базовая станция, которая принимает радиосигнал от мобильной станции и, в зависимости от того, что передается (голос или данные), транслирует трафик:
на центр коммутации (mobile switching center, MSC), являющийся стандартным элементом сети GSM, или на узел SGSN, отвечающий за обработку входящих/исходящих данных GPRS.
Узел обслуживания абонентов GPRS
Обслуживающий узел (serving GPRS support node, SGSN) является основным компонентом GPRS-сети. Он транслирует IP-пакеты, посылаемые/получаемые мобильной станцией. По своей сути, это такой же центр коммутации, как и MSC в GSM, но в отличие от последнего, он коммутирует пакеты, а не каналы. Как правило, такой узел построен на базе ОС Unix и имеет свой IP-адрес. С точки зрения безопасности, на SGSN возложены функции:
Проверки разрешений абонентов на пользование запрашиваемых услуг (аутентификация). Механизм аутентификации GPRS совпадает с аналогичным механизмом в GSM.
Мониторинг активных абонентов.
Регистрация новых абонентов.
Шифрование данных. Алгоритм шифрования в технологии GPRS (GEA1, GEA2, GEA3) отличаются от алгоритмов шифрования в GSM (A5/1, A5/2, A5/3), но разработаны на их основе.
Узел маршрутизации GPRS
Узел маршрутизации (gateway GPRS support node, GGSN), также является важнейшим элементом технологии GPRS и отвечает за прием/передачу данных из внешних сетей, например, Internet или GPRS-сети другого оператора связи. С точки зрения внешней сети GGSN - это обычный маршрутизатор (как и SGSN, построенный на базе Unix), который принимает данные для всех подписчиков услуг GPRS. Помимо маршрутизации, GGSN отвечает за выдачу IP-адресов и тарификацию услуг.
Другие элементы GPRS-сети
Home Location Register (HLR) - это реестр собственных абонентов сети, которая хранит информацию о каждом человеке, оплатившем услуги оператора GPRS именно данной сети. В частности, HLR хранит информацию о дополнительных услугах, параметрах аутентификации, IP-адресе и т.д. Обмен данной информацией происходит между HLR и SGSN.
Visitor Location Register (VLR) - это реестр перемещений, которая хранит информацию о каждой мобильной станции, находящейся в данный момент в зоне действия SGSN. В VLR хранится та же информация об абоненте, что и в HLR, но только до тех пор, пока абонент не покинет географическую зону, обслуживаемую этим реестром перемещений.
Equipment Identity Register (EIR) - это реестр идентификационных данных оборудования, который содержит информацию, позволяющую блокировать вызовы от украденных, мошеннических или иных неавторизованных устройств.
Механизмы безопасности GPRS
Если посмотреть внимание на рис.1, то можно выделить следующие фрагменты GPRS-сети, на безопасность которых необходимо обратить соответствующее внимание:
безопасность мобильной станции
безопасность соединения между мобильной станцией и узлом обслуживания SGSN
безопасность данных в процессе их передачи по сети GPRS
безопасность данных в процессе их передачи между различными операторами GPRS-услуг
безопасность данных в процессе их передачи в сети открытого доступа, например, Internet.
Безопасность мобильной станции
Наибольший интерес вызывает безопасность мобильного телефона, который в терминах GPRS является мобильной станцией. Его безопасность складывается из двух составляющих:
SIM-карта
сам телефон
SIM-карта (Subscriber Identity Module) - это модуль идентификации абонента. В SIM-карте содержится информация о сервисах, предоставляемых абоненту, независимая от типа используемого мобильного оборудования. Эта карта может вставляться в любой другой GSM терминал, при этом абонент получает возможность использовать этот терминал для получения всех сервисов системы, на которые он подписан. С точки зрения безопасности SIM-карта отвечает за идентификацию абонента и аутентификацию мобильного телефона в GPRS-сети. Она содержит идентификатор IMSI, индивидуальный ключ аутентификации абонента длиной 128 бит Ki, алгоритм генерации ключей шифрования A8 и алгоритм аутентификации A3 и разумеется PIN-код для доступа к функциям карты. Алгоритм A5 наряду с IMEI включен в состав программного обеспечения телефона и обеспечивает его защиту. Каждый абонент в GPRS-сети имеет уникальный международный идентификатор мобильного абонента (IMSI, International Mobile Subscriber Identity), хранимый в SIM-карте. IMSI состоит из 3 элементов:
трехразрядный код страны (для России - 250)
двухразрядный код сети (для МТС - 01, для Билайн - 99, для СМАРТС - 07 и т.д.)
десятиразрядный код абонента (Mobile Subscriber Identity Number, MSIN).
[pagebreak]
Алгоритм A8 отвечает за генерацию ключей шифрования, который, используя случайное число, передаваемое на мобильный терминал в момент соединения с сетью, и ключ Ki генерит 64-битный ключ шифрования трафика. Так как индивидуальный ключ Ki имеется не только у абонента, но и хранится в реестрах HLR и VLR, то и абонент и оборудование сети создают одинаковый ключ шифрования, который и используется для защиты передаваемых данных.
Алгоритм A3, отвечающий за аутентификацию абонента, похож на алгоритм A8 и также использует случайное число, получаемое в момент подключения к сети и индивидуальный ключ абонента. Для доступа к функциям SIM-карты необходимо использовать специальный персональный код (другими словами, пароль) PIN (Personal Identification Number), после 3-х неправильных попыток ввода которого, SIM-карта блокируется.
Безопасность самого телефона, как уже было сказано выше, обеспечивается двумя механизмами:
алгоритмом шифрования A5, который обеспечивает защиту данных, циркулируемых между мобильной станцией и узлом SGSN.
Уникальным 14-тиразрядным международным идентификатором аппаратуры мобильной связи (International Mobile Equipment Identity, IMEI), который однозначно идентифицирует телефон. Узнать этот номер очень просто - достаточно набрать на телефоне комбинацию *#06#. Если высвеченное число не совпадает с тем, что указано на задней крышке телефона, то вероятнее всего вы пользуетесь взломанным аппаратом. Именно эти номера хранятся в реестре EIR. Данный реестр ведет три типа списков IMEI:
"белый" список, содержащий идентификаторы всех разрешенных аппаратов.
"серый" список, содержащий идентификаторы всех незапрещенных аппаратов, но используемых для различных целей, например, тестирования и т.п.
"черный" список, содержащий идентификаторы всех запрещенных аппаратов. Как заявил в одном из интервью вице-президент МТС (http://www.mts.ru/press/speech9.html) Михаил Сусов "Сейчас между операторами (в России - А.Л.) проводятся переговоры о создании единого "черного списка" краденых телефонов".
Надо понимать, что идентификаторы IMEI и IMSI - независимы между собой. Более того - они решают различные задачи: IMEI идентифицирует мобильный терминал, а IMSI - абонента.
Безопасность соединения мобильной станции с узлом SGSN
В процессе подключения мобильной станции, описываемом далее, между ней и узлом SGSN происходит выбор версии используемого в дальнейшем алгоритма шифрования GPRS-A5. В 3-м квартале 2002 года началось внедрение третьей версии этого алгоритма (A5/3), которая может использоваться не только в GSM-, но и в GPRS-, HSCSD- и EDGE-сетях. Данный алгоритм разработан на базе алгоритма "Казуми" (Kasumi), в свою очередь разработанного на базе алгоритма MISTY компании Мицубиси. Как утверждается в пресс-релизе Ассоциации GSM (http://www.gsmworld.com/news/press_2002/press_15.shtml), A5/3 обеспечивает на сегодняшний день практически 100-процентную защиту передаваемых данных. Однако не стоить безоглядно верить этому утверждению. Аналогичные заявления делались и для предыдущих версий алгоритма A5, история которого начинается с 1987 года, однако они были успешно взломаны.
В сетях GPRS используются алгоритмы семейства A5 - GEA1 и GEA2, а после разработки A5/3 - начинается внедрение созданного на его базе алгоритма GEA3.
Безопасность данных в процессе их передачи по сети GPRS
Все данные между узлами поддержки (SGSN и GGSN) передаются с помощью специального протокола GTP (GPRS Tunneling Protocol), который инкапсулирует в себя любые пользовательские протоколы, например, HTTP, Telnet, FTP и т.д. По умолчанию GTP-трафик не шифруется. Кроме того, опорная сеть строится на базе частных IP-адресов, описанных в RFC 1918 (http://www.ietf.org/rfc/rfc1918.txt), что обеспечивает невозможность прямого доступа к сетевому оборудованию из внешних сетей.
Безопасность в процессе взаимодействия с различными операторами GPRS-услуг
Безопасность возлагается на устройства, называемые пограничными шлюзами (border gateway, BG), которые очень похожи на обычные межсетевые экраны, защищающие корпоративные сети от посягательств злоумышленников. В частности, этот шлюз защищает оператора от атак, связанных с подменой адреса (IP Spoofing).
Настройка такого шлюза включает в себя создание правил, разрешающих входящий/исходящий пользовательский трафик, данные биллинговой системы, аутентификацию роуминговых абонентов и т.п. Дополнительно на пограничный шлюз может быть установлено программное обеспечение, организующее VPN между различными GPRS-операторами.
Помимо встроенных в пограничный шлюз защитных механизмов, существует возможность использования продуктов третьих фирм. Первым таким решением стал межсетевой экран Firewall-1 GX компании CheckPoint Software (http://www.checkpoint.com/products/solutions/firewall-1gx.html), который, будучи установлен на пограничном шлюзе или узле GGSN повышает защищенность сети GPRS-оператора от возможных несанкционированных действий.
Безопасность в процессе взаимодействия с Internet
Основные механизмы безопасности реализованы на узле GGSN, в состав которого входит межсетевой экран, который определяет тип входящего и исходящего GPRS-трафика. Задача межсетевого экрана, входящего в состав GGSN, защитить мобильную станцию от атак внешних (из Internet) хакеров. Защита от атак с других мобильных станций возлагается на узел SGSN. Для предотвращения доступа к сетевому оборудованию опорной сети от внешних злоумышленников используется трансляция адресов (network address translation). Все остальные механизмы защиты могут быть взяты из классической практики обеспечения информационной безопасности Internet-сетей и устройств, например, аутентификация при помощи серверов RADIUS или защита трафика с помощью IPSec.
Процедура подключения мобильной станции
Упрощенно процесс подключения абонента, желающего воспользоваться услугами GPRS, выглядит следующим образом: Мобильная станция посылает запрос (Attach Request) на получение доступа к сети, который содержит ряд параметров, в т.ч. и IMSI.
Узел SGSN, получив такой запрос, проверяет наличие аутентифицирующей данного абонента информации в своей базе. Если такая информация отсутствует, то SGSN посылает запрос в реестр HLR, который возвращает т.н. аутентификационный триплет, содержащий:
Случайное число, используемое в алгоритмах A3 и A8 для выработки ключа шифрования и аутентификации абонента.
32-хразрядный ключ аутентификации абонента, который вырабатывается на основе индивидуального ключа, хранящегося как на мобильной станции, так и в реестре HLR.
Ключ шифрования данных, получаемый также на базе индивидуального ключа абонента.
Полученное случайное число передается на мобильную станцию, которая на его основе вырабатывает ключ шифрования и ключ аутентификации. Т.к. индивидуальные ключи, хранящиеся в реестре HLR и на мобильной станции совпадают, то и ключи шифрования и аутентификации также должны совпадать, что и является фактом правомочности запроса данным абонентом оплаченных GPRS-услуг.
После идентификации абонента осуществляется идентификация оборудования, которое посылает на SGSN идентификатор IMEI. Узел SGSN в свою очередь проводит проверку данного оборудования по реестру EIR.
После аутентификации абонента и оборудования происходит процедура определения местоположения абонента (с использованием реестров HLR и VLR), после чего происходит завершение процедуры подключения мобильной станции к сети GPRS. В том случае, если мобильная станция не смогла пройти аутентификацию, то SGSN посылает на нее сообщение Attach Reject.
Заключение
В заключение хочу добавить, что, при создании технологии GPRS (как и при создании многих современных сетевых технологий) вопросам безопасности внимания уделялось недостаточно. Многие аспекты не описаны и отданы на откуп операторам, которые далеко не всегда уделяет безопасности первостепенное внимание, что приводит к печальным последствиям. Специалистами найдено уже немало недостатков технологии GPRS, но это уже тема другой статьи
Модель безопасности Windows XP Professional основана на понятиях аутентификации и авторизации. При аутентификации проверяются идентификационные данные пользователя, а при авторизации - наличие у него прав доступа к ресурсам компьютера или сети. В Windows XP Professional также имеются технологии шифрования, которые защищают конфиденциальные данные на диске и в сетях: например, EFS (Encrypting File System), технология открытого ключа.
Аутентификация
Регистрируясь на компьютере для получения доступа к ресурсам локального компьютера или сети, пользователь должен ввести свое имя и пароль. В Windows XP Professional возможна единая регистрация для доступа ко всем сетевым ресурсам. Таким образом, пользователь может войти в систему с клиентского компьютера по единому паролю или смарт-карте и получить доступ к другим компьютерам домена без повторного ввода идентификационных данных. Главный протокол безопасности в доменах Windows 2000 - Kerberos версии 5. Для аутентификации на серверах под управлением Windows NT 4.0 и доступа к ресурсам доменов Windows NT клиенты Windows XP Professional используют протокол NTLM. Компьютеры с Windows XP Professional, не принадлежащие к домену, также применяют для аутентификации протокол NTLM. Используя Windows XP Professional в сети с активным каталогом (Active Directory), можно управлять безопасностью регистрации с помощью параметров политики групп, например, ограничивать доступ к компьютерам и принудительно завершать сеансы работы пользователей спустя заданное время. Можно применять предварительно сконфигурированные шаблоны безопасности, соответствующие требованиям к безопасности данной рабочей станции или сети. Шаблоны представляют собой файлы с предварительно сконфигурированными параметрами безопасности, которые можно применять на локальном компьютере или импортировать в групповые политики активного каталога. Эти шаблоны используются в неизменном виде или настраиваются для определенных нужд.
Авторизация
Авторизация позволяет контролировать доступ пользователей к ресурсам. Применение списков управления доступом (access control list, ACL) и прав доступа NTFS гарантирует, что пользователь получит доступ только к нужным ему ресурсам, например, к файлам, дискам (в том числе сетевым), принтерам и приложениям. С помощью групп безопасности, прав пользователей и прав доступа можно одновременно управлять безопасностью как на уровне ресурсов, так и на уровне файлов, папок и прав отдельных пользователей.
Группы безопасности
Группы безопасности упрощают управление доступом к ресурсам. Можно приписывать пользователей к группам безопасности, а затем предоставлять этим группам права доступа. Можно добавлять пользователей к группам безопасности и удалять их оттуда в соответствии с потребностями этих пользователей. Оснастка MMC Computer Management позволяет создавать учетные записи пользователей и помещать их в локальные группы безопасности. Можно предоставлять пользователям права доступа к файлам и папкам и определять действия, которые пользователи могут выполнять над ними. Можно разрешить и наследование прав доступа. При этом права доступа, определенные для каталога, применяются ко всем его подкаталогам и находящимся в них файлам. Среди групп безопасности, локальных для домена и компьютера, имеется ряд предварительно сконфигурированных групп, в которые можно включать пользователей.
Администраторы (Administrators) обладают полным контролем над локальным компьютером и правами на совершение любых действий. При установке Windows XP Professional для этой группы создается и назначается встроенная учетная запись Администратор (Administrator). Когда компьютер присоединяется к домену, по умолчанию к группе Администраторы добавляется группа Администраторы домена (Domain Administrators).
Опытные пользователи (Power Users) обладают правами на чтение и запись файлов не только в личных папках, но и за их пределами. Они могут устанавливать приложения и выполнять многие административные действия. У членов этой группы такой же уровень прав доступа, что и у групп Пользователи (Users) и Опытные пользователи (Power Users) в Windows NT 4.0.
Пользователи (Users) в отношении большей части системы имеют только право на чтение. У них есть право на чтение и запись только файлов их личных папок. Пользователи не могут читать данные других пользователей (если они не находятся в общей папке), устанавливать приложения, требующие модификации системных каталогов или реестра, и выполнять административные действия. Права пользователей в Windows XP Professional более ограниченны по сравнению с Windows NT 4.0.
Гости (Guests) могут регистрироваться по встроенной учетной записи Guest и выполнять ограниченный набор действий, в том числе выключать компьютер. Пользователи, не имеющие учетной записи на этом компьютере, или пользователи, чьи учетные записи отключены (но не удалены), могут зарегистрироваться на компьютере по учетной записи Guest. Можно устанавливать права доступа для этой учетной записи, которая по умолчанию входит во встроенную группу Guests. По умолчанию учетная запись Guest отключена. Можно сконфигурировать списки управления доступом (ACL) для групп ресурсов или групп безопасности и по мере необходимости добавлять/удалять из них пользователей или ресурсы, что облегчает управление правами доступа и их аудит. Это также позволяет реже изменять ACL. Можно предоставить пользователям права на доступ к файлам и папкам и указать действия, которые можно выполнять с ними. Можно также разрешить наследование прав доступа; при этом права доступа к некоторой папке применяются и к ее подкаталогам и находящимся в них файлам. При работе с Windows XP Professional в составе рабочей группы или в изолированном режиме вам предоставляются права администратора, и у вас есть все права по отношению ко всем функциям безопасности ОС. Если компьютер под управлением Windows XP Professional включен в сеть, параметры безопасности определяет сетевой администратор.
Политика групп
Параметры политики групп позволяют назначать ресурсам права доступа, а также предоставлять права доступа пользователям. Это нужно для того, чтобы требовать запуска определенных приложений только в заданном контексте безопасности (тем самым снижая риск воздействия на компьютер нежелательных приложений, например, вирусов) и конфигурировать различные права доступа для множества клиентских компьютеров. Можно сконфигурировать права доступа на эталонном компьютере, который будет использован как базовый образ для установки на другие рабочие станции, гарантируя, таким образом, стандартизованное управление безопасностью даже в отсутствие Active Directory. Функции аудита позволяют обнаруживать попытки отключить или обойти защиту ресурсов. Можно задействовать предварительно сконфигурированные шаблоны безопасности, соответствующие требованиям безопасности для данной рабочей станции или сети. Шаблоны безопасности - это файлы с предварительно установленными параметрами безопасности, которые применяют к локальному компьютеру или импортируют в групповые политики активного каталога (Active Directory). Шаблоны безопасности используются в неизменном виде или настраиваются в соответствии с определенными задачами.
Шифрование
EFS (Encrypting File System) позволяет зашифровать данные на жестком диске. Риск кражи портативных компьютеров особенно велик, а с помощью EFS можно усилить безопасность путем шифрования данных на жестких дисках портативных компьютеров компании. Эта предосторожность защищает информацию и идентификационные данные от несанкционированного доступа.
2. Корпоративная безопасность
Windows XP Professional поддерживает ряд функций защиты избранных файлов, приложений и других ресурсов. В их числе списки управления доступом (ACL), группы безопасности и групповая политика, а также средства конфигурирования и управления этими функциями. В совокупности они обеспечивают мощную, но гибкую инфраструктуру управления доступом в корпоративных сетях. Windows XP поддерживает тысячи относящихся к безопасности параметров конфигурации, которые можно применять и по отдельности. В Windows XP также есть предопределенные шаблоны безопасности, обычно используемые без изменений или как основа для особой настройки конфигурации безопасности. Эти шаблоны безопасности применяются при: создании ресурса, такого как общая папка или файл; при этом вы вправе воспользоваться заданными по умолчанию ACL или настроить их в соответствии со своими потребностями; распределении пользователей по стандартным группам безопасности, таким как Users, Power Users и Administrators, и принятии заданных по умолчанию параметров ACL; использовании предоставляемых ОС шаблонов групповой политики - Basic (основной), Compatible (совместимый), Secure (безопасный) или Highly Secure (высокобезопасный). Каждая из особенностей системы безопасности Windows XP - списки ACL, группы безопасности и групповая политика - имеет параметры по умолчанию, которые разрешается изменять в соответствии с требованиями организации. Предприятия также вправе применять соответствующие средства для реализации и настройки управления доступом. Многие из этих средств, такие как оснастки Microsoft Management Console, представляют собой компоненты Windows XP Professional, другие поставляются в составе комплекта ресурсов Windows XP Professional Resource Kit.
3. Управляемый доступ к сети
Windows XP содержит встроенную подсистему безопасности для предотвращения вторжений. Ее работа базируется на ограничении прав любого, кто пытается получить доступ к компьютеру из сети до привилегий гостевой учетной записи. Взломщикам или вообще не удастся получить доступ к компьютеру и перебором паролей получить дополнительные привилегии, или они получат только ограниченный гостевой доступ.
Управление сетевой проверкой подлинности
Все большее число систем под управлением Windows XP Professional подключается к Интернету напрямую, а не через домены. Поэтому продуманная система управления доступом (в том числе устойчивыми паролями и разрешениями, сопоставленными учетными записями) важна как никогда ранее. Для обеспечения безопасности следует избегать анонимных параметров управления доступом, обычно связанных с открытыми средами, подобными Интернету. Вот почему в Windows XP Professional по умолчанию все пользователи, вошедшие по сети, работают под учетной записью Guest. Это исключает для злоумышленника возможность войти в систему через Интернет под локальной учетной записью Администратор (Administrator), у которой нет пароля.
4. Упрощенное совместное использование ресурсов
Модель совместного использования и безопасности для локальных учетных записей позволяет выбрать модель безопасности на основе применения исключительно гостевой учетной записи (Guest) либо классическую (Classic) модель безопасности. В гостевой модели при любых попытках войти в систему локального компьютера через сеть применяется только гостевая учетная запись. В классической модели пользователи при доступе через сеть входят в систему локального компьютера под своими учетными записями. На компьютерах в составе домена эта политика не применяется, а по умолчанию используется гостевая учетная запись. Если гостевая учетная запись существует и ей назначен пустой пароль, сетевые пользователи смогут войти в систему и получить доступ к любому ресурсу, разрешенному для доступа учетной записи Guest. При включенной политике "force network logons using local accounts to authenticate as Guest" локальные учетные записи должны аутентифицироваться как учетная запись Guest при доступе через сеть. Эта политика служит для ограничения разрешений локальной учетной записи, обращающейся к системным ресурсам на другом сетевом компьютере. Кроме того, на компьютерах, поддерживающих модель упрощенной защиты общих ресурсов, диалоговое окно Security Properties заменено упрощенным диалоговым окном Shared Documents Properties.
5. Ограничение на учетные записи с пустыми паролями
Для безопасности пользователей, не защитивших свою учетную запись паролем, в Windows XP Professional такие учетные записи разрешено применять только для входа в систему компьютера с его консоли. По умолчанию учетные записи с пустыми паролями запрещено применять для входа в систему удаленно по сети и вообще для любых других действий по входу в систему, кроме как с физической консоли компьютера. Например, нельзя задействовать службу вторичного входа в систему (RunAs - запуск от имени) для запуска программ под учетной записью с пустым паролем локального пользователя. Назначение пароля локальной учетной записи устраняет указанное ограничение на вход через сеть, а также предоставляет ей доступ по сети к любым ресурсам, на которые у нее есть права. Если ваш компьютер не расположен в физически защищенном помещении, рекомендуется назначать пароли всем локальным учетным записям пользователей. Несоблюдение этого требования ведет к тому, что любой пользователь, получивший физический доступ к компьютеру, может войти в систему под учетной записью без пароля. Это особенно важно для переносных компьютеров, на которых следует предусмотреть устойчивые пароли для всех локальных учетных записей пользователей. Указанное ограничение не относится к доменным учетным записям, а также к локальной гостевой учетной записи. Если учетная запись Guest с пустым паролем существует, под ней можно войти в систему и обратиться к любому ресурсу, разрешенному ей для доступа. Если требуется отключить ограничение на вход через сеть без пароля, надо соответствующим образом настроить локальную политику безопасности (Local Security Policy).
Шифрованная файловая система
Дополнительные функции шифрованной файловой системы (Encrypting File System, EFS) существенно обогатили Windows XP Professional, обеспечив дополнительную гибкость для корпоративных пользователей при развертывании решений безопасности, основанных на шифровании файлов с данными. Любой злоумышленник, имеющий физический доступ к компьютеру, может загрузить на нем другую ОС, обойти защиту основной ОС и получить доступ к конфиденциальным данным. Шифрование конфиденциальных файлов средствами EFS обеспечивает дополнительную защиту. Данные зашифрованного файла останутся недоступными, даже если атакующий получит полный доступ к среде хранения данных компьютера. Только полномочные пользователи и назначенные агенты восстановления данных в состоянии расшифровывать файлы. Пользователи с другими учетными записями, обладающие разрешениями для файла - даже разрешением на передачу прав владения (Take Ownership), не в состоянии открыть его. Администратору доступ к содержимому файла также закрыт, если только он не назначен агентом восстановления данных. При попытке несанкционированного доступа к зашифрованному файлу система откажет в доступе.
Архитектура EFS
EFS базируется на технологии шифровании с открытым ключом и использует архитектуру CryptoAPI. Стандартная (по умолчанию) конфигурация EFS не требует никакого административного вмешательства: вы вправе выполнять шифрование файлов сразу же после установки системы. EFS автоматически создает пару ключей шифрования и сертификат пользователя, если они не были созданы ранее. В качестве алгоритма шифрования EFS использует DESX (Expanded Data Encryption Standard) или 3DES (Triple-DES). Поставщики услуг криптографии поддерживают два алгоритма: RSA Base и RSA Enhanced - для создания сертификатов EFS и для шифрования симметричных ключей шифрования. Если зашифровать папку, все файлы и подпапки в ней шифруются автоматически. Рекомендуется шифрование именно на уровне папок, чтобы в процессе работы не появлялись незашифрованные временные файлы.
[pagebreak]
EFS и NTFS
Шифрованная файловая система (EFS) защищает конфиденциальные данные в файлах на томах NTFS. EFS - основная технология шифрования и расшифровки файлов на томах NTFS. Открывать файл и работать с ним может только пользователь, его зашифровавший. Это чрезвычайно важно для пользователей переносных компьютеров: даже если взломщик получит доступ к потерянному или украденному компьютеру, он не сможет открыть зашифрованные файлы. В Windows XP шифрованная файловая система также поддерживает автономные файлы и папки (Offline Files and Folders). Зашифрованный файл останется недоступным для просмотра в исходном виде, даже если атакующий обойдет системную защиту, например, загрузив другую ОС. EFS обеспечивает устойчивое шифрование по стандартным алгоритмам и тесно интегрирована с NTFS. EFS в Windows XP Professional предоставляет новые возможности совместного использования зашифрованных файлов или отключения агентов восстановления данных, а также облегчает управление посредством групповой политики и служебных программ командной строки.
Как работает EFS
EFS позволяет сохранить конфиденциальность информации на компьютере в условиях, когда люди, имеющие физический доступ к компьютеру, могут преднамеренно или неумышленно скомпрометировать ее. EFS чрезвычайно удобна для обеспечения конфиденциальности данных на мобильных компьютерах или на компьютерах, на которых работают несколько пользователей, т. е. таких системах, которые могут подвергаться атакам, предусматривающим обход ограничений списков ACL. В совместно используемой системе атакующий обычно получает несанкционированный доступ, загружая другую ОС. Злоумышленник также может захватить компьютер, вынуть жесткий диск, поместить его на другой компьютер и получить доступ к файлам. Однако если у него нет ключа расшифровки, зашифрованный средствами EFS файл будет выглядеть как бессмысленный набор символов. Поскольку EFS тесно интегрирована с NTFS, шифрование и расшифровка выполняются незаметно ("прозрачно") для пользователя. При открытии файла EFS автоматически расшифровывает его по мере чтения данных с диска, а при записи - шифрует данные при записи на диск. Работая с зашифрованным файлом, вы можете даже не догадываться, что он зашифрован (при условии, что у вас есть соответствующие права). В стандартной конфигурации EFS позволяет зашифровать файл прямо из Проводника Windows без какого-либо вмешательства администратора. С точки зрения пользователя шифрование файла или папки - это просто назначение ему определенного атрибута.
Конфигурирование EFS
По умолчанию система поддерживает работу EFS. Разрешается шифровать файлы, для которых имеется разрешение на изменение. Поскольку в EFS для шифрования файлов применяется открытый ключ, нужно создать пару ключей открытый/закрытый и сертификат с открытым ключом шифрования. В EFS разрешены сертификаты, подписанные самим владельцем, поэтому вмешательство администратора для нормальной работы не требуется. Если применение EFS не соответствует требованиям организации или если есть файлы, которые нельзя шифровать, существует много способов отключить EFS или нужным образом конфигурировать ее. Для работы с EFS всем пользователям требуются сертификаты EFS. Если в организации нет инфраструктуры открытого ключа (Public Key Infrastructure, PKI), применяются подписанные самим владельцем сертификаты, которые автоматически создаются ОС. При наличии центров сертификации сертификаты EFS обычно выпускают именно они. Если вы используете EFS, обязательно предусмотрите план восстановления данных при сбое системы.
Что разрешается шифровать
На томах NTFS атрибут шифрования разрешается назначать отдельным файлам и папкам с файлами (или подпапками). Хотя папку с атрибутом шифрования и называют "зашифрованной", сама по себе она не шифруется, и для установки атрибута пары ключей не требуется. При установленном атрибуте шифрования папки EFS автоматически шифрует: все новые файлы, создаваемые в папке; все незашифрованные файлы, скопированные или перемещенные в папку; все вложенные файлы и подпапки (по особому требованию); автономные файлы.
Шифрование базы данных автономных файлов
В Windows XP можно шифровать базу данных автономных файлов для локальной защиты кэшируемых документов от воровства компьютера, а также обеспечения дополнительной безопасности локально кэшируемых данных. В Windows 2000 этой функции не было - она предусматривает шифрование кэшируемых файлов. Например, вы вправе активно использовать автономные файлы, при этом конфиденциальность данных обеспечивается автоматически. Как администратор отдела технической поддержки вы можете задействовать эту возможность, чтобы обезопасить все локально кэшируемые документы. Автономные файлы - превосходная защита от потери конфиденциальных данных при захвате мобильного компьютера. Указанная функция поддерживает шифрование и расшифровку всей автономной базы данных. Для конфигурирования порядка шифрования автономных файлов нужны административные привилегии. Чтобы зашифровать автономные файлы, откройте папку Мой компьютер (My Computer) и в меню Сервис (Tools) выберите команду Свойства папки (Folder Options), в открывшемся окне свойств на вкладке Автономные файлы (Offline Files) установите флажок Шифровать автономные файлы для защиты данных (Encrypt Offline Files To Secure Data) .
Удаленные операции EFS на общих файлах и Web-папках
Можно шифровать и расшифровывать файлы, расположенные в Web-папках Web Distributed Authoring and Versioning (распределенная система хранения файлов с доступом через Web), или WebDAV. У Web-папок много преимуществ по сравнению с общими файлами, и Microsoft рекомендует максимально широко применять их для удаленного хранения шифрованных файлов. Web-папки требуют меньше внимания от администраторов и безопаснее, чем общие файлы. Web-папки также обеспечивают безопасное хранение и доставку шифрованных файлов через Интернет средствами стандартного протокола HTTP. Чтобы использовать общие файлы для удаленных операций EFS, требуется доменная среда Windows 2000 или более поздних версия Windows, так как при шифровании и расшифровке пользовательских файлов EFS работает от имени пользователя посредством протокола делегирования полномочий в Kerberos. Основное отличие удаленных операций EFS с общими файлами и файлами в Web-папках - то, в каком месте эти операции выполняются. Если файлы хранятся в общих файлах, все операции EFS выполняются на компьютере, где расположен файл. Так, если вы подключились к общему сетевому файлу и пытаетесь открыть ранее зашифрованный файл, он расшифровывается на компьютере, где хранится, а затем передается открытым текстом по сети на ваш компьютер. При хранении файла на Web-папках все операции EFS выполняются на локальном компьютере. Скажем, при подключении к Web-папке и попытке открыть зашифрованный файл последний пересылается по сети в зашифрованном виде на локальный компьютер и уже там расшифровывается системой EFS. Входящий и исходящий трафик Web-папок - это необработанные данные, которые, даже перехваченные атакующим, остаются зашифрованными и совершенно для него бесполезны. Такое различие в выполнении операций EFS объясняет, почему общие файлы требуют больших усилий со стороны администраторов, чем Web-папки. EFS с Web-папками устраняет необходимость в специализированном ПО для безопасного совместного использования зашифрованных файлов пользователями и организациями. Файл может храниться в свободном доступе на файловых серверах в интрасети или в Интернете и при этом оставаться надежно защищенным средствами EFS.
6. Службы сертификации
Службы сертификации - это компонент базовой ОС, позволяющий ей выполнять функции центра сертификации (certification authority, CA), или ЦС, в том числе выпускать цифровые сертификаты и управлять ими. Windows XP Professional поддерживает многоуровневые иерархии ЦС и сети ЦС с перекрестными доверительными отношениями, а также изолированные и интерактивные ЦС.
Хранилища сертификатов с открытыми ключами
Windows XP Professional хранит сертификаты с открытыми ключами в личном (Personal) хранилище сертификатов. Они хранятся открытым текстом, так как это общедоступная информация. Сертификаты имеют цифровую подпись ЦС для предотвращения изменения. Сертификаты пользователя расположены в папке Documents and Settings<имя_пользователя>ApplicationDataMicrosoft SystemCertificatesMyCertificates профиля пользователя. Эти сертификаты записываются в локальном реестре при каждом входе в систему компьютера. Для перемещаемых профилей сертификаты обычно хранятся в определенном месте (не на компьютере) и "следуют" за пользователем при его входе в систему любого компьютера в домене.
Хранение закрытых ключей
Поставщики услуг криптографии (cryptographic service provider, CSP) - как Base CSP, так и Enhanced CSP, хранят закрытые ключи в профиле пользователя в папке %SystemRoot%Documents and Settings<имя_пользователя> Application DataMicrosoftCryptoRSA. В перемещаемых профилях пользователей закрытый ключ располагается в папке RSA на контроллере домена и загружается на компьютер только на время его работы. Поскольку закрытые ключи надо защищать, все файлы в папке RSA автоматически шифруются случайным симметричным ключом - основным ключом пользователя (user's master key). Ключ длиной в 64 символа создается надежным генератором случайных чисел. На базе основного ключа создаются ключи 3DES, используемые для шифрования закрытых ключей. Основной ключ автоматически генерируется и периодически возобновляется. При хранении на диске основной ключ защищается по алгоритму Triple DES с применением ключа, созданного на основе вашего пароля. Основной ключ применяется для автоматического шифрования всех файлов в папке RSA по мере их создания.
Автоматический запрос сертификата пользователя
В Windows 2000 имелась функция автоматического запроса сертификата пользователя. Автоматический запрос сертификата компьютера и контроллера домена поддерживается и групповой политикой Microsoft Active Directory. Автоматический запрос сертификата компьютера чрезвычайно полезен для упрощения подключений по IPSec или L2TP/IPSec VPN к серверам с Windows XP со службой Routing и Remote Access и другим серверам. Эта функция снижает совокупную стоимость владения и упрощает управление жизненным циклом сертификатов для пользователей и администраторов. Автоматический запрос сертификата смарт-карты и ЦС с самоподписанными сертификатами обеспечивают дополнительную защиту пользователям предприятий, где требуется усиленная безопасность.
Запросы в ожидании и обновление сертификатов
Автоматический запрос сертификата пользователя в Windows XP Professional обеспечивает также запросы в ожидании и обновление сертификатов. После запроса сертификата вручную или автоматически на сервере сертификации Windows .NET Server CA ожидается разрешение администратора на выпуск сертификата или завершение процесса верификации. После одобрения и выпуска сертификата механизм автоматического запроса автоматически установит сертификат. В процессе обновления сертификатов пользователя с истекшим сроком действия также применяется механизм автоматического запроса. Сертификаты автоматически обновляются от имени пользователя, причем процедура определяется параметрами шаблонов сертификатов в Active Directory. По умолчанию сертификаты и ключи защищены. Для дополнительной защиты вы вправе применить дополнительные меры безопасности, в том числе выполнять экспорт закрытых ключей и хранить их в защищенном месте.
7. Управление реквизитами
Управление реквизитами в Windows XP состоит из трех компонентов: интерфейс пользователя для ввода реквизитов, хранилище имен и паролей пользователя и связка ключей (keyring).
Интерфейс пользователя для ввода реквизитов
Приложение отображает интерфейс пользователя для ввода реквизитов, если компонент аутентификации возвратил ошибку проверки подлинности. (Это касается только приложений, в которых такой интерфейс реализован.) Вам предлагается ввести имя пользователя и пароль в соответствующем диалоговом окна или выбрать сертификат X.509 из хранилища My Store. Приложение также может предусматривать флажок Remember my password (Запомнить пароль), при установке которого реквизиты запоминаются. Сохранение реквизитов поддерживают только интегрированные с Windows XP компоненты проверки подлинности (например, Kerberos, NTLM, SSL). Для базовой проверки подлинности отображается интерфейс пользователя для ввода реквизитов, но возможности сохранения реквизитов нет.
Хранилище реквизитов пользователя
Реквизиты перемещаемых профилей хранятся в защищенном хранилище Stored User Names and Passwords (Сохраненные имя и пароль пользователя). Порядок доступа к реквизитам определяют параметры локальной защиты (Local Security Settings). Реквизиты хранятся на основе целевой информации, возвращенной ресурсом. Когда установлен флажок Remember my password в интерфейсе запроса реквизитов, реквизиты сохраняются в наиболее общей форме. Скажем, после обращения к определенному серверу в домене реквизиты сохраняются в форме *.domain.com. При сохранении разных реквизитов для разных серверов в этом домене указанная запись не перезаписывается, а создаются более конкретные записи о целевой информации. При обращении к ресурсу с применением интегрированного компонента проверки подлинности последний выберет среди сохраненных реквизитов пользователей наиболее близко соответствующие целевой информации, возвращенной ресурсом. Найдя нужные реквизиты, компонент ничего не будет спрашивать у пользователя. В случае неудачи поиска реквизитов приложению, которое пыталось обращаться к ресурсу, возвращается ошибка аутентификации. Приложение, обращающееся к ресурсу, не обязательно должно реализовывать интерфейс пользователя для ввода реквизитов. Если оно взаимодействует с интегрированным компонентом проверки подлинности, последний и выполняет поиск реквизитов. В действительности сохраненные реквизиты сможет получить только компонент проверки подлинности. Для Windows XP Professional в составе домена используется классический интерфейс пользователя для ввода реквизитов, а в Windows XP Home Edition и Windows XP Professional в рабочей группе - новый дружественный интерфейс пользователя.
Связка ключей
Связка ключей (keyring) позволяет вручную управлять сохраненными реквизитами. Для работы с ней служит элемент User Accounts Панели управления. В связке ключей отображается список сохраненных реквизитов. При выделении реквизита в поле описания в нижней части окна отображается его краткое описание. Можно добавлять новые реквизиты, редактировать и удалять существующие. При добавлении реквизитов система представит диалоговое окно, похожее на интерфейс пользователя для ввода реквизитов, и попросит указать целевую информацию. В целевой информации разрешается использовать символы подстановки в виде звездочки (*). Редактирование реквизитов позволяет самостоятельно изменить целевую информацию или сами реквизиты. Здесь можно изменить имя пользователя и пароль на сервере. Не разрешается применять интерфейс пользователя для ввода реквизитов и редактирования реквизитов, созданных конкретным приложением. Например, не удастся отредактировать реквизиты паспорта. Но вы вправе удалять любые реквизиты. Возможность сохранять реквизиты обычно определяется в групповой политике. Чтобы разработчики могли использовать механизм сохранения реквизитов, API запроса реквизитов и другие базовые API описаны в соответствующем комплекте Platform Software Development Kit (SDK).
8. Быстрое переключение пользователей
Быстрое переключение пользователей в Windows XP Professional доступно, только когда компьютер работает в составе рабочей группы или изолированно. Если компьютер присоединен к домену, параметры входа в систему компьютера определяются политикой, заданной администратором. На компьютерах с Windows XP Professional, которые не работают в составе домена, разрешается переключаться между сессиями разных пользователей без выхода из системы и закрытия приложений. Названные возможности обеспечивает технология поддержки и хранения пользовательских сессий, аналогичная той, что применяется в терминальной службе Microsoft Windows 2000 Terminal Services. Смена пользователя выполняется буквально в мгновение ока "горячими клавишами" я+L или через меню выключения компьютера. В результате не будет закрыто ни одно приложение, а значит, не нужно ломать голову над тем, сохранять ли файлы другого пользователя - вся рабочая обстановка будет сохранена такой, какая она есть. Очередному пользователю Windows выведет окно приглашения, которое, кстати, легко настроить и оформить картинками по своему вкусу.
Разумеется, на сохранение каждого рабочего сеанса потребуется столько оперативной памяти, сколько нужно для хранения приложений, выполняемых в сеансах, плюс еще дополнительно 2 Мбайт на каждый сеанс. Поэтому для надежной поддержки нескольких пользователей рекомендуется компьютер с объемом ОЗУ не менее 128 Мбайт. Приложения, сохраняемые в фоновых сессиях, продолжают работать - скажем, почтовая программа другого пользователя будет продолжать принимать почту! Если система настроена на переход в "спящий" режим (hibernation mode) после приостановки работы, то все сеансы будут сохранены на жестком диске и восстановятся после включения компьютера. Быстрое переключение пользователей разрешено для версий Windows XP Home Edition или Windows XP Professional на изолированном компьютере или компьютере в составе рабочей группы. При присоединении компьютера под управлением Windows XP Professional к домену эта функция отключается.
[pagebreak]
9. Личная конфиденциальность
Возможности обеспечения личной конфиденциальности в Windows XP Professional такие же, как и в Windows XP Home Edition. Они различаются при работе в домене или в составе рабочей группы и в изолированном режиме. В домене применяется назначенная администратором политика.
10. Доступ к Интернету - Internet Connection Firewall
Межсетевой экран Internet Connection Firewall в Windows XP Professional обеспечивает защиту настольных и переносных компьютеров при подключении к Интернету - особенно в случае постоянных подключений, таких как кабельные модемы и DSL.
Групповая политика в ICF
Характерная функция ICF в Windows XP Professional - зависящая от места групповая политика. Это удобно для мобильных пользователей, желающих обеспечить безопасность при работе на переносных компьютерах в местах общественного подключения к Интернету: в гостиницах, аэропортах и т. п. Когда компьютер с Windows XP Professional работает в составе домена, администратор домена обычно создает групповую политику, запрещающую поддержку ICF в корпоративной сети. Это облегчает работу как пользователя, так и администратора. Когда пользователь вернется домой или подключится к Интернету в общественном месте, межсетевой экран ICF снова заработает, так как указанная политика в той сети не действует.
Как работает межсетевой экран
Такую технологию, как фильтры пакетов на основании полной информации о пакете, межсетевой экран ICF использует совместно с компонентом ICS. Хотя ICF обычно и применяется только в изолированном режиме работы компьютера, его иногда используют для защиты общего адаптера и обеспечения безопасности домашней сети. По умолчанию фильтры пакетов межсетевого экрана ICF блокируют все незапрошенные пакеты из открытого сетевого интерфейса. Для этого ICF обращается к таблице трафика в Network Address Translation (NAT) и проверяет весь входящий трафик на соответствие своим правилам. Входные потоки данных пропускаются только при наличии соответствующей записи в таблице трафика NAT, созданной межсетевым экраном или другими средствами из внутренней защищенной сети. Иначе говоря, если источник сетевого сообщения находится вне защищенной сети, входящие данные отбрасываются. Межсетевой экран ICF в Windows XP Professional дает уверенность, что хакеры не смогут просканировать вашу систему или подключиться к ее ресурсам. Однако здесь имеется определенный компромисс: межсетевой экран затрудняет конфигурирование системы для работы в качестве сервера в Интернете. Межсетевой экран ICF в Windows XP Professional доступен, только когда компьютер включен в рабочую группу или в изолированную конфигурацию. В домене параметры ICF определяются политиками, назначенными администратором.
Параметры групповой политики, относящиеся к безопасности
С Windows XP поставляются шаблоны защиты, представляющие собой заранее сконфигурированные наборы политик безопасности, которые разрешается применять для обеспечения определенного уровня защиты пользовательских компьютеров. Шаблоны предусматривают несколько уровней защиты: низкий (low), средний (medium) и высокий (high). Существуют также определенные политики управления паролями: определение минимальной длины пароля; настройка интервала между обязательной сменой пароля; управление доступом к ресурсам и данным.
9. Политика ограничения используемых приложений
Эта политика предоставляет администраторам механизм определения и управления ПО, работающим в домене. Она позволяет ограничить круг приложений только разрешенным к выполнению ПО и запрещает р
Наряду с мета-тегами, которые повышают рейтинг веб-страниц и дают дополнительную информацию браузеру и поисковым системам, существуют и бесполезные мета-теги, их роль сводится только к тому, чтобы занимать лишнее место. Ниже рассмотрены некоторые такие мета-теги.
Тег, управляющий временем индексации сайта
<META NAME="revisit-after" content=<... days">
Тег говорит поисковому роботу посетить ваш сайт снова через заданное количество дней. Сегодня тег не работает потому, что крупнейшие поисковики официально объявили, что их роботы больше не слушаются этого тега. Это вполне логично, представим, что каждый сайт поставит время индексации один день, поисковики просто не справятся с такой огромной нагрузкой.
Тег для поисковых машин, управляющий индексацией страниц
<META NAME="robots" content="...">
Не имеет смысла, т.к. намного удобнее задать все команды для поисковика в одном текстовом файле с именем robots, а затем вносить в него изменения по мере необходимости, а не ворошить все страницы и вставлять этот тег в каждую из них.
Тег, определяющий тему
<META NAME="subject" content="...">
Прописывать тему страницы в мета-тегах просто нелепо, для этого существуют заголовки, названия. Поисковики не обращают на этот тег внимания. Если в теме будет написано одно, а сайт совершенно другой тематики, то результат будет тем более нулевым.
Тег, определяющий заголовок страницы
<META NAME="title" content="...">
Для заголовка страницы существуют специальные теги <title> и </title>. Поэтому, прописывание загловка в мета-тегах не имеет смысла хотя бы потому, что эта конструкция будет слишком громоздкой.
Тег, определяющий создателя сайта
<META NAME="site-created" content="...">
Т.к. очень малое количество пользователей сети ищут сайты по имени их создателя (чаще всего он вообще неизвестен), то и целесообразность этого тега можно поставить под сомнение. Такой тег уместен лишь для «культовых личностей», имя и фамилию котрых пользователи сами вводят в строку поиска.
Тег, определяющий язык, на котором написана страница
<META NAME="Content-Language" content="...">
Язык посковики и сами хорошо умеют определять, поэтому в подсказках не нуждаются, следовательно, тег лишний.
Тег, определяющий принадлежность авторских прав
<META NAME="Copyright" content="...">
Такое впечатление, что этот тег был придуман специально для российских разработчиков, потому что только в нашей стране уж очень любят лепить копирайты везде, где попало, и побольше. Прежде всего, тег излишен тем, что владельца авторских прав никто, кроме поисковых машин не увидит. Одно это делает тег почти бесполезным, уж лучше копирайт внизу страницы поставить. Ну а для тех, кто захочет код страницы посмотреть, послание можно и в комментариях оставить.
Тег, определяющий автора содержания страницы
<META NAME="Author" content="...">
В общем и целом, данный тег аналогичен предыдущему, т.к. обычно автор сайта является и владельцем авторских прав. А если имя автора ввести в строку поиска, то поисковик выдаст на первых местах те страницы, на которых имя (или ФИО) есть в тексте самой страницы и уже только потом в мета-тегах.
Тег, определяющий адрес страницы
<META NAME="Address" content="...">
Если честно, то этот тег вызывает у меня смех. Зачем указывать адрес страницы в мета-тегах, если его можно набрать в адресной строке. Или его придумали в те времена, когда поисковые машины находились на зачаточной стадии развития?
Тег, определяющий домашнюю страницу
<META NAME="home_url" content="...">
Сложно судить о смысле этого тега, но каков бы он ни был, использовать данный тег всё равно нецелесообразно. Причина проста — мета-теги не видны обычным посетителям страницы, их видят только поисковики!
Этот прием поможет значительнее, чем любой другой из наших советов, ускорить работу Windows.
В ходе начальной загрузки Windows обращается к различным папкам в поисках программ, которые нужно запустить немедленно после завершения этой процедуры.
Часть таких программ выполняется в приоритетном режиме, но большинство незаметно функционирует в фоновом режиме, потребляя системные ресурсы. В Windows 98 SE и последующих версиях ОС есть утилита System Configuration Utility. Введите в диалоговом окне Run или панели Address команду msconfig, чтобы вызвать утилиту System Configuration Utility и перейдите к закладке Startup.
Здесь можно отключить ненужные, на ваш взгляд, элементы, например запуск медиа-проигрывателей. В результате отключения только несущественных программ ускорится лишь загрузка ОС.
Поскольку эти программы не удаляются из процесса начальной загрузки, а просто блокируются, их легко активизировать позднее. Еще один простой прием, позволяющий избавиться от нежелательных элементов начальной загрузки, - воспользоваться утилитой Startup Cop лаборатории PCMagazine, которую можно бесплатно загрузить с узла www.pcmag.com/utilities.
Конечно, необходимо заглянуть также в группу Startup (в меню Start) и удалить все программы, автоматический запуск которых в процессе начальной загрузки компьютера не требуется.
Если у вас нет полной уверенности в том, какие программы действительно необходимо запускать при начальной загрузке, откройте редактор Regedit и перейдите в раздел HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run. Там вы найдете информацию об остальных программах, запускаемых при загрузке Windows.
Чтобы сделать панель задач Windows более полезной, стоит дополнить ее инструментальными линейками.
Щелкнув правой клавишей мыши на Панели задач и выбрав пункт Toolbars, вы увидите меню с несколькими имеющимися в ОС панелями инструментов, в том числе Address, Desktop («рабочий стол») и Quick Launch («быстрый запуск»).
Но, вероятно, самая интересная функция — New Tollbar (создать панель инструментов), с помощью которой можно построить инструментальную линейку для быстрого доступа к любой папке, файлу или URL. Помимо других преимуществ, персональная панель инструментов обеспечивает мгновенный доступ к группе файлов.
Например, в ходе работы над долгосрочным проектом вы хотите обращаться ко всем файлам и подпапкам в каталоге проекта одним щелчком мыши.
Этот документ показывает как создавать и конфигурировать VLANы на свитчах серий Catalyst 2900XL, 3500XL, 2950, 2970, и 2940.
Создание VLAN и портов
Выполняйте нижеследуюшие шаги для того, чтобы создать VLAN.
1. Решите, нужно ли вам использование VTP. C VTP вы можете выполнять конфигурационные изменения централизированно на одном свитче, далее эти изменения автоматически распространятся на все остальные свитчи в вашей сети. По умолчнию свитчи серий Catalyst 2900XL, 3500XL, 2950, 2970, и 2940 находятся в режиме "сервер". Команда show vtp status показывает состояние VTP.
3524XL#show vtp status
VTP Version : 2
Configuration Revision : 0
Maximum VLANs supported locally : 254
Number of existing VLANs : 5
VTP Operating Mode : Server
!- Это режим по умолчанию
VTP Domain Name :
VTP Pruning Mode : Disabled
VTP V2 Mode : Disabled
VTP Traps Generation : Disabled
MD5 digest : 0xBF 0x86 0x94 0x45 0xFC 0xDF 0xB5 0x70
Configuration last modified by 0.0.0.0 at 0-0-00 00:00:00
2. После того как вы установили и проверили VTP домен, создаем VLAN на свитче. По умолчению все порты находятся в одном единственном VLAN, называемом default и имееющим номер 1. Вы не можете переименовать или удалить VLAN 1. Команда show vlan покажет информацию о VLANах на этом свитче.
Для того, чтобы создать VLAN используете следующие команды:
3524XL# vlan database
!- Вы должны войти в базу данных VLAN чтобы сконфигурировать VLAN.
3524XL(vlan)# vtp server
Device mode already VTP SERVER.
!- Вы можете опустить последнюю команду, если свитч уже находится в режиме "сервер" и
!- вы хотите, чтобы свитч оставлся в этом режиме.
Внимание! Свитч может создавать VLAN только если он находиться в режиме VTP - "сервер" или VTP - "прозрачный".
3524XL(vlan)# vlan 2 name cisco_vlan_2
VLAN 2 added:
Name: cisco_vlan_2
3524XL(vlan)# exit
!- Вы должны выйти из базыданный VLAN для того, чтобы изменения были приняты.
APPLY completed.
Exiting....
3524XL#
3. Проверяем созданный VLAN
3524XL# show vlan
VLAN Name Status Ports
-
1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/4,
Fa0/5, Fa0/6, Fa0/7, Fa0/8,
Fa0/9, Fa0/10, Fa0/11, Fa0/12,
Fa0/13, Fa0/14, Fa0/15, Fa0/16,
Fa0/17, Fa0/18, Fa0/19, Fa0/20,
Fa0/21, Fa0/22, Fa0/23, Fa0/24,
Gi0/1, Gi0/2
2 cisco_vlan_2 active
Вы можете добавить порты в созданный VLAN. Вы должны перейти в режим конфигурации интерфейса для каждого порта, кторый вы хотите добавить в VLAN.
3524XL#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
!- Эти команды назначат интерфейсFast Ethernet 0/2 в VLAN 2.
3524XL(config)#interface fastethernet 0/2
3524XL(config-if)#switchport access vlan 2
3524XL(config-if)#exit
!- Эти команды назначат интерфейсFast Ethernet 0/3 в VLAN 2.
3524XL(config)#interface fastethernet 0/3
3524XL(config-if)#switchport access vlan 2
3524XL(config-if)#end
3524XL#
00:55:26: %SYS-5-CONFIG_I: Configured console by console
!- Сохраняем конфигурацию
3524XL#write memory
Building configuration...
3524XL# show vlan
VLAN Name Status Ports
-
1 default active Fa0/1, Fa0/4, Fa0/5, Fa0/6,
Fa0/7, Fa0/8, Fa0/9, Fa0/10,
Fa0/11, Fa0/12, Fa0/13, Fa0/14,
Fa0/15, Fa0/16, Fa0/17, Fa0/18,
Fa0/19, Fa0/20, Fa0/21, Fa0/22,
Fa0/23, Fa0/24, Gi0/1, Gi0/2
2 cisco_vlan_2 active Fa0/2, Fa0/3
Вы можете назначать порты свитчей уровня L2 серии Catalyst XL в несколько VLANов, но свитч поддерживает только один активный интерфейс управления VLAN и другие SVI не поднимутся в сотсояние up/up из-за L2 функциональности. Поэтому такой свитч поддерживает только один активны управляющий L3 адрес.
[pagebreak]
На свитчах серии Catalyst XL вы можете выполнить команду management в конфигурационном режиме SVI интерфейса, для того, чтобы автоматически погасить VLAN 1 и перетащить IP адрес в новый VLAN.
Interface IP-Address OK? Method Status Protocol
VLAN1 10.0.0.2 YES manual up down
VLAN2 20.0.0.2 YES manual up up
FastEthernet0/1 unassigned YES unset up up
FastEthernet0/2 unassigned YES unset up up
Удаление порта из VLAN
Для того, чтобы удалить порт из VLAN используйте команду no switchport access vlan vlan_number в конфигурации интерфейса. После того, как порт удаляется из VLANа, он автоматически помещается в default VLAN. Например, если мы удаляем интерфейс fa0/2 из VLAN 2, выполним команды:
3524XL#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
!- Эти две команды удалят интерфейсFast Ethernet 0/2 из VLAN 2.
3524XL(config)#interface fastethernet 0/2
3524XL(config-if)#no switchport access vlan 2
3524XL(config-if)#end
3524XL# show vlan
VLAN Name Status Ports
- -
1 default active Fa0/1, Fa0/2, Fa0/4, Fa0/5,
!- Заметим: Fast Ethernet 0/2 обратно добавлен в default VLAN.
Для того, чтобы удалить VLAN используем команду no vlan vlan_number в режиме базы данных VLAN. Интерфейс в этом VLAN остается частью такого VLAN и деактивируется, поскольку он не принадлежит никакому VLANу. Например:
Заметим, что порт fa0/3 не отображается в выводе команды show vlan. Удаление VLAN 2 деактивировало этот порт и до тех порт пока вы его не добавите обратно в какой-нибудь VLAN, этот порт не будет отображаться и не будет функционировать.
IP Deny Manager (IP бан) позволяет заблокировать доступ к вашему веб-сайту для определенных адресов IP. Это может пригодиться, чтобы избавиться от досаждающих любителей использовать большое количество трафика или чтобы предупредить hotlinking к вашему сайту (больше информации о hotlinking смотрите в разделе HotLink Prevention (Хотлинк защита)).
Чтобы добавить адрес IP к IP Deny Manager (IP бан):
1. Нажимаете на кнопку IP Deny Manager (IP бан), расположенную на главной странице.
2. В поле IP Address (Добавить адрес для блокирования) введите тот адрес IP, который Вы хотите заблокировать.
3. Кликните на кнопку Add (Добавить).
Удалите заблокированный адрес IP, когда Вам больше не нужно, чтобы доступ с этого адреса был заблокирован.
Чтобы удалить адрес IP из Менеджера отказов IP:
1. Нажимаете на кнопку IP Deny Manager (IP бан), расположенную на главной странице.
2. Кликните на необходимый адрес IP, выбрав его из выпадающего списка Remove an IP Deny (Удалить блок IP-адреса).
3. Кликните на кнопку Remove (Удалить).