Добро пожаловать,
|
|
|
|
|
|
Поиск
|
Avira AntiVir Personal 8.2.0.337 - Антивирусная программа. Определяет и удаляет вирусы и трояны, в том числе и еще неизвестные макровирусы, есть возможность постоянного мониторинга системы.
AntiVir Personal бесплатна для "домашнего", т.е. индивидуального и некоммерческого, использования.
Программа может работать как на 32-, так и на 64-битных системах.
Ссылка "скачать" - версия с английским интерфейсом (с оф.сайта можно скачать вариант с интерфейсом на немецком языке).
В качестве расплаты за бесплатность при каждом обновлении базы данных показывается во весь экран монитора рекламное окно, призывающее купить платную версию этой программы.
|
|
|
Dr.Web 5.0.0.12300 - Доктор Веб - одна из самых известных и популярных отечественных антивирусных программ. Имеет эвристический анализатор, позволяющий с большой долей вероятности обнаруживать неизвестные вирусы. Программа допускает автоматическую загрузку из Интернета новых баз данных вирусов и автообновление самой программы, что позволяет оперативно реагировать на появление новых вирусов.
Без регистрации: все желающие могут получить временный (на 30 дней) персональный лицензионный ключевой файл, позволяющий полностью оценить все возможности Dr.Web.
Системные требования: 32-битная система.
|
|
|
7-Zip (32-bit) 4.64 - архиватор с поддержкой 256-бит AES шифрования, открытым исходным кодом, интеграцией в оболочку Windows и поддержкой ZIP, RAR (включая RAR 3), CAB, 7z (собственный очень эффективный по степени сжатия формат), GZIP, BZIP2 и TAR архивов. Согласно тестам, степень сжатия для ZIP-формата на 2-10% выше, чем у PKZip/WinZip.
Интерфейс - многоязычный.
|
|
|
Книга, которую вы сейчас держите в руках, открывает двери в удивительный
мир защитных механизмов, рассказывая о том,как создаются и вскрываются защиты. Она адресована всем, кто любит захватывающие дух головоломки. Всем, кто проводит свободное (и несвободное) время за копанием в недрах программ и операционной системы. Наконец, всем, кто по роду своей деятельности занимается (постоянно и/или эпизодически) написанием защит и хочет узнать как грамотно и гарантированно противостоять вездесущим хакерам. Настоящий том посвященбазовым основам хакерства – технике работы с отладчиком и дизассемблером. Подробно описаны приемы идентификации и реконструкции ключевых структур исходного языка – функций (в т.ч. виртуальных), локальных и глобальных переменных, ветвлений, циклов, объектов и
их иерархий, математических операторов и т.д.
|
|
|
Дата: 03.02.2025
Модуль:
Категория: Delphi
Наверно каждый из нас несколько лет назад, с языком на перевес играл в Dendy, признавайтесь было такое ? Так вот помните там такую игру battle tank. Смысл игры простой как 2 копейки, убивай вражеские танки и защищай от них свою базу. Так вот о чем это я... в общем теперь battle tank доступен для вас в исходнике на delphi. Конечно немного глючная ... но если у кого есть желание доделайте и исправьте глюки.
Да и это еще не все в архиве так же есть исходник редактора карт. Поэтому вы можете создать собственню арену для битвы и мочить, мочить, мочить вражеские танки :)
|
|
|
Дата: 03.02.2025
Модуль:
Категория: Perl
Книга «Perl: изучаем глубже» - продолжение мирового бестселлера «Learning Perl» («Изучаем Perl»), известного под названием «Лама». Издание поможет вам перешагнуть грань, отделяющую любителя от профессионала, и научит писать на Perl настоящие программы, а не разрозненные сценарии. Материал изложен компактно и в занимательной форме, главы завершаются упражнениями, призванными помочь закрепить полученные знания. Рассмотрены пакеты и пространства имен, ссылки и области видимости, создание и использование модулей. Вы научитесь с помощью ссылок управлять структурами данных произвольной сложности, узнаете, как обеспечить совместимость программного кода, написанного разными программистами. Уделено внимание и ООП, которое поможет повторно использовать части кода. Обсуждаются создание дистрибутивов, аспекты тестирования и передача собственных модулей в CPAN.
Книга адресована широкому кругу программистов, знакомых с основами Perl и стремящихся повысить свою квалификацию как в написании сценариев, так и в ООП, и призвана помочь им научиться писать эффективные, надежные и изящные программы.
|
|
|
Истории, рассказанные в этой книге, демонстрируют, как небезопасны все компьютерные системы, и как мы уязвимы перед подобными атаками. Урок этих историй заключается в том, что хакеры находят новые и новые уязвимости каждый день. Читая эту книгу, думайте не о том, как изучить конкретные уязвимости тех или иных устройств, а о том, как изменить ваш подход к проблеме безопасности и приобрести новый опыт.
Если вы профессионал в области информационных технологий или обеспечения безопасности, каждая из историй станет для вас своеобразным уроком того, как повысить уровень безопасности в вашей компании. Если же вы не имеете отношения к технике и просто любите детективы, истории о рисковых и мужественных парнях - вы найдете их на страницах этой книги.
Искусство вторжения. Хакерство
Митник К.Д., Саймон В.Л.
Издательство: ДМК пресс, Компания АйТи
Год издания: 2005
Страниц: 280
ISBN: 5-98453-020-1
Язык: русский
Формат: PDF
|
|
|
В этой книге предпринимается попытка проследить пути компьютерного андеграунда и воссоздать, основываясь на реальных фактах, квртану киберпанк-культуры. Это причудливая смесь современнейших технических знаний с моралью изгоев. Как правило, в книгах о киберпанках рассказывается о талантливых компьютерщиках-бунтарях, отказывающихся повиноватьсяустановленному порядку, причем события обычно разворачиваются на фоне некоего смутно обрисованного будущего, в мире, где царствуют высокие технологии, а гигантские города перенаселены и приходят в упадок. В этом мире всё решает безграничная мощь компьютеров. Обширные компьютерные сети образуют новую вселенную, в неизведанных пространствах которой обитают электронные демоны. По лабиринтам этих сетей рыщут перехватчики информации. Многие из них живут тем, что скупают, перепродают или просто воруют информацию - валюту электронного будущего. Таким киберпанком считался, например, телевизионный персонаж Макс Хэдрум, который будто бы обитал в дебрях информационных сетей масс-медиа и время от временило собственной воле появлялся оттуда на экранах компьютеров и телевизоров. Таким был снятый в 1982 году фильм "Бегущий по лезвию бритвы", где показан мрачный и жутковатый мир будущего, в котором техника одержала полную и окончательную победу над человеком.
Первые замыслы к созданию этой книги появились у нас, когда мы стали замечать, что люди пользуются компьютерами уже не так, как в прежние годы. Обнаружились предвестники киберпанк-поколения-молодые парни, одержимые компьютерами и компьютерными сетями, причем эта их одержимость уже начала переходить пределы того, что компьютерщики-профессиоиалы считали допустимым с точки зрения морали, а юристы - с точки зрения закона. Этих парней стали называть хакерами. И обществу стало казаться, что от них исходит какая-то не совсем понятная опасность. Вот мы и попытались рассказать в этой книге, кто такие хакеры и что движет их поступками.
В книге три повести. Кевин Митник полностью соответствовал представлениям о "классическом" хакере. Говорили, что он способен прослушивать телефоны, подтасовывать данные о платежеспособности на случай проверок и контролировать работу компьютеров на большом расстоянии. Сам себя он считал одаренным энтузиастом, покинувшим сообщество своих бывших собратьев-компьютерщиков. Кевин причинил немало неприятностей одной очень известной компьютерной фирме. Однако в конце концов он пал жертвой собственного высокомерия и заносчивости.
В 80-е годы компьютерщики создали свою особую культуру, такую же универсальную, какой была молодежная культура 60-х. Юному берлинцу, называвшему себя Пенго, мир компьютерных чудес открылся уже в подростковом возрасте. Его родители ничего не смыслили в вычислительной технике, и поэтому никакие опасения не приходили им в голову, когда они видели сына, часами просиживающего перед монитором. Чтобы воплотить свои недозволенные фантазии, Пенго примкнул к группировке, которая стала не без выгоды продавать результаты его авантюр в международных компьютерных сетях советской разведке.
|
|
|
В данной книге сделана попытка собрать информацию о таком виде компьютерного зла, как троянские кони. Известно, что в Древней Греции пользвы от троянского коня для защитников Трои было немного, а вот вреда более чем достаточно. С тех времен смысл названия изменился незначительно. Только поле битвы переместилось с полей Древней Греции в компьютерные сети.
В книге приводится некоторая классификация программ, отнесенных к троянским коням, показываются из основные отличия от вирусов, принципы функционирования, а также рекомендации по защите и борьбе с вредоносными приложениями. Приведены примеры троянских коней и программы по защите от них.
|
|
|
Графы — сети линий, соединяющих заданные точки, — широко используются в разных разделах математики и в приложениях.
Автором книги «Графы и их применение» является видный норвежский алгебраист Ойстин Оре. Для понимания книги вполне достаточны минимальные предварительные знания, практически не превышающие курса математики 7—8 классов средней школы. Как при изучении любой книги по математике, овладение новыми понятиями, конечно, потребует от читателя некоторых усилий и известной настойчивости. Однако это лишь доставит удовольствие истинному любителю математики.
|
|
|
Книга `Настройка производительности UNIX-систем` отвечает на два важнейших вопроса: как добиться максимального эффекта без покупки дополнительного оборудования, и в каких случаях его все же стоит приобрести (больше памяти, более быстрые диски, процессоры и сетевые интерфейсы). Вложение денежных средств - не панацея. Адекватно оценить необходимость обновления и добиться максимальной производительности можно, только хорошо представляя работу компьютеров и сетей и понимая распределение нагрузки на системные ресурсы. Авторы книги оказали неоценимую помощь администраторам, подробно и аргументировано рассказав обо всех тонкостях искусства настройки систем. Полностью обновленное издание ориентировано на Solaris и Linux, но обсуждаемые принципы применимы к любым системам. В книге рассматриваются настройка параметров, управление рабочим процессом, методы измерения производительности, выявление перегруженных и неработоспособных участков сети, добавлен новый материал о дисковых массивах, микропроцессорах и оптимизации программного кода.
|
|
|
Дата: 03.02.2025
Модуль:
Категория: Flash MX
В данном самоучителе содержится весь необходимый для работы с Macromedia Flash 5 материал, изложенный по принципу "от простого к сложному". В книге содержится множество примеров, сопровождаемых подробным описанием и иллюстрациями. Книга сделает изучение Macromedia Flash 5 легким и приятным, позволит с легкостью усвоить весь материал, а также набить руку для дальнейшей работы с Macromedia Flash 5.
|
|
|
Дата: 03.02.2025
Модуль:
Категория: SSI
У всех, кто когда-либо начинал более или менее серьёзно заниматься созданием вебстраниц, обязательно возникала мысль - а как неплохо бы было, если бы повторяющиеся фрагменты HTML-кода можно было бы писать только по одному разу - чтобы затем они вставлялись бы в нужные места страниц автоматически. Самые продвинутые пытались воспользоваться Java-скриптами, чтобы добиться этого - но тогда страницы начинали растекаться жиром на десятки килобайт, а браузеры посетителей захлёбывались в сложном и обьёмном коде скриптов.
Между тем решение проблемы давно уже было - правда клиентам бесплатных хостингов оно не было доступно. На Webservis.ru оно есть и зовут его "SSI" - "Server Side Includes". Перевести это можно, в принципе, как «сборкой страниц занимается вебсервер».
|
|
|
Дата: 03.02.2025
Модуль:
Категория: Хостинг
Чтобы упростить ориентирование во все более разрастающемся Интернете, была разработана система DNS (Domain Name System - система именования доменов сети). Дело в том, что каждому компьютеру или компьютерной сети, подключенной к Интернету, назначается уникальная последовательность цифр, называемая IP-адресом.
IP-адрес состоит из четырех чисел, от 0 до 255 каждое, например 198.105.232.001. Зная IP-адрес, пользователь одного компьютера с легкостью находит другой компьютер в Интернете, и может к нему подключиться, если у него есть на это соответствующие права. Все просто, когда вам нужно получать доступ к одному-двум компьютерам, но если их количество переваливает за десяток или даже за сотню, а, тем более, если вам необходимо сообщать определенный IP-адрес многим людям, ситуация становится поистине кошмарной.
Избавиться от подобных проблем помогает система имен DNS. Она позволяет заменять цифровые IP-адреса на благозвучные буквенные, например: «microsoft.com» или «yandex.ru». Как же работает DNS? Все Интернет-пространство можно разделить на несколько групп, называемых «доменными зонами». Эти зоны называются доменами первого уровня. Разделение по зонам может проводиться как по географическому, так и по тематическому признаку. Географическая доменная зона определяет расположение компьютера в том или ином государстве. Вот несколько примеров географических доменов первого уровня: ru - Россия, fr - Франция, uk - Великобритания, jp - Япония, su - бывший Советский Союз. Тематические доменные зоны группируют компьютеры по информации, содержащейся на них, либо по типу организаций, ими владеющих, вне зависимости от их географического расположения.
Два компьютера, зарегистрированные в одной тематической доменной зоне, могут находиться в противоположных концах земного шара. Вот примеры тематических доменных зон: com - коммерческое предприятие, net - что-то связанное с сетевыми технологиями, edu - образовательное учреждение, info - информационный проект, gov - государственное учреждение, biz - бизнес-проект, mil - военная организация. Несмотря на обилие доменных зон, далеко не все из них пользуются большой популярностью. Основная часть компьютеров в Интернете зарегистрирована в доменных зонах com и net. Некоторые доменные зоны используются и вовсе не по прямому назначению. Например, островное государство Тувалу стало обладателем географической доменной зоны tv, которую сейчас облюбовали организации, так или иначе связанные с телевидением: телеканалы, производители бытовой техники, киноделы, рекламщики и прочие...
Каждая доменная зона делится на поддомены, или домены второго уровня, и каждому из этих поддоменов присваивается свое имя, например совпадающее с названием организации, владеющей доменом. Это имя приписывается к имени домена верхнего уровня слева, в виде суффикса, и отделяется точкой. Например, в имени microsoft.com строка com означает доменную зону, а суффикс microsoft - имя домена второго уровня. Как нетрудно догадаться, по этому адресу находится сеть, принадлежащая корпорации Microsoft. Однако сеть корпорации Microsoft весьма велика, поэтому каждый домен второго уровня, в свою очередь, может делиться еще на несколько подподдоменов, или доменов третьего уровня. Это записывается так - mail.microsoft.com. В этом примере mail - это суффикс домена третьего уровня. Такое деление может продолжаться до бесконечности, но обычно ограничивается доменами третьего-четвертого уровня.
Общее руководство и контроль над доменными зонами, осуществляет организация ICANN (The Internet Corporation for Assigned Names and Number - Интернет-ассоциация по выдаче имен и чисел). Она передает полномочия на выдачу адресов в той или иной доменной зоне другим организациям и следит за соблюдением основных правил. Организации, уполномоченные выдавать доменные адреса в той или иной доменной зоне, торгуют доменными адресами второго уровня. То есть, если кто-то хочет, чтобы у его компьютера в Интернет был адрес vasya-pupkin.com, он должен обратиться к организации, выдающей доменные имена в зоне com. Затем попросить зарегистрировать в ней домен второго уровня vasya-pupkin, предоставить IP-адрес своего компьютера в Сети и, разумеется, уплатить некоторую сумму денег. В результате, компьютер Васи в Интернете можно будет отыскать не только по малопонятному набору цифр IP-адреса, но и по звучному текстовому адресу.
При желании, одному IP-адресу можно сопоставить даже несколько доменных имен, например vasya-pupkin.com и vasiliy.ru. Адреса в Российской доменной зоне выдает организации РосНИИРОС, Российский НИИ развития общественных сетей.
Современный Интернет представляет собой сложнейшую систему из тысяч компьютерных сетей, объединенных между собой. Состоит эта система из двух основных элементов: узлов сети Интернет и соединяющих их информационных магистралей. Узлом Интернета называют любое устройство, имеющее свой IP-адрес и подключенное к Сети. Несмотря на кажущуюся мешанину межкомпыотерных соединений и отсутствие централизованного руководства, Интернет имеет определенную иерархическую структуру.
В самом низу иерархии находится многочисленная армия конечных пользователей. Часто не имеющие даже постоянного IP-адреса подключаются к Интернету по низкоскоростным каналам. Тем не менее, пользователи являются одними из основных потребителей услуг Сети и главными «спонсорами» коммерческой части Интернета. Причем на одного «физического» пользователя, т. е. реального человека, пользующегося услугами Сети, может приходиться несколько пользователей «логических», т. е. различных подключений к Интернету.
Так, кроме компьютера, возможность подключения к Интернету может иметь мобильный телефон, карманный компьютер, бытовая техника, автомобиль и даже кондиционер. Конечные пользователи подключаются к компьютерам Интернет-провайдера, или, как их еще называют, ISP (Internet Service Provider - провайдер Интернет). ISP - это организация, основная деятельность которой связана с предоставлением услуг Интернета пользователям.
У провайдера есть своя компьютерная сеть, размеры которой могут варьироваться от сотен десятков узлов в нескольких городах до многих тысяч, раскиданных по целому континенту. Эта сеть называется магистральной сетью, или бэкбоном (от слова backbone - стержень, магистраль). Сети отдельных провайдеров соединяются между собой и другими сетями. Среди ISP есть «монстры», которые обеспечивают соединение между собой сетей различных стран и континентов, являясь своего рода «провайдерами для провайдеров». Весь этот конгломерат компьютерных сетей и образует то, что называется Интернетом.
Особняком стоят DNS-серверы - компьютеры, отвечающие за функционирование системы DNS. Для подключения конечных пользователей к ISP служат так называемые «точки доступа» - компьютеры или специальные устройства, содержащие оборудование для подключения «извне».
Подключившись к точке доступа провайдера, пользователь становится частью магистральной сети провайдера и, соответственно, получает доступ к ее ресурсам, а также к ресурсам сетей, соединенных с бэкбоном провайдера, т. е. ко всему Интернету. Кроме конечных пользователей, к сети провайдеров подключаются различного рода серверы, или «хосты» (от слова host - хозяин). Это узлы сети, на которых работает программное обеспечение, обеспечивающее практически все услуги, предоставляемые сетью Интернет.
|
|
|
Прежде всего, микроконтроллер это процессор со всеми его "атрибутами", плюс встроенная, энергонезависимая память (программ и данных), что позволяет отказаться от внешней памяти программ и поместить программу в его энергонезависимую память.
Это позволяет создавать очень простые (в схемотехническом отношении) и компактные устройства, выполняющие, тем не менее, достаточно сложные функции. Иногда даже диву даешься: эта маленькая "штучка" заменяет целую "груду старого железа" Любой микроконтроллер, по своим возможностям, конечно же, уступает процессору компьютера, но тем не менее, существует весьма обширный класс устройств, которые преимущественно реализуются именно на микроконтроллерах. И в самом деле, компьютер в карман не положишь и от батареек его не запитаешь. Поэтому, во многих случаях, микроконтроллерам просто нет альтернативы. "Сердцем" микроконтроллера является арифметико - логическое устройство (АЛУ).
Проще всего его представить в виде банального калькулятора, кнопками которого управляет программа, написанная на языке ассемблер (то есть, программист). Если вдуматься, то ничего особо сложного, в механизме управления такого рода калькулятором, нет. И в самом деле, если нужно, например, сложить числа А и В, то в тексте программы сначала задаются константы А и В, а затем дается команда "сложить". Программисту вовсе не обязательно знать, что происходит с нулями и единицами (разве только только для общего развития), ведь калькулятор он на то и калькулятор, чтобы избавить пользователя от "возни" с машинными кодами и прочими "неудобоваримостями".
Когда Вы работаете с компьютером, Вам и не нужно детально знать, что происходит в дебрях операционной системы.
Если Вы туда "полезете", то "с ума сойдете", а микроконтроллер, по своей сути, есть тот же самый компьютер, но только простой. Программисту только нужно детально знать, каким именно образом "приказать железяке" сделать то, что необходимо для достижения задуманного. Микроконтроллер можно представить себе как некий универсальный "набор" многофункциональных модулей (блоков), "рычаги управления" которыми находятся в руках программиста. Этих "рычагов" достаточно большое количество, и естественно, их нужно освоить и точно знать, что именно произойдет, если "дернуть" (дать команду на языке ассемблер) за тот или иной "рычаг". Вот здесь-то уже нужно знать, как "отче наше", каждую деталь и не жалеть на это "узнавание" времени. Только таким образом пустую "болванку" (незапрограммированый ПИК) можно "заставить"
выполнять какие-то "осмысленные" действия, результат большей части которых можно проверить в симуляторе MPLAB (об этом - позднее), даже не записывая программу в ПИК.
Итак, необходим переход к "модульному" мышлению. Любой микроконтроллер можно уподобить детскому конструктору, в состав которого входит множество всяких предметов, манипулируя с которыми, можно получить тот или иной конечный "продукт". Давайте с ними разберемся и "разложим все по полочкам". В качестве примера я буду использовать один из самых распространенных PIC контроллеров PIC16F84A. Он является как бы "проматерью" более сложных ПИКов, содержит минимальный "набор" модулей и как нельзя лучше подходит для первичного "въезда в м/контроллеры".
Энергонезависимая память.
Начнем с энергонезависимой памяти (память программ и память данных).
Информация, заложенная в энергонезависимую память, сохраняется при выключении питания, и поэтому именно в нее записывается программа.
То "место" энергонезависимой памяти, куда записывается программа, называется памятью программ. Объем памяти программ может быть различен. Для PIC16F84A, он составляет 1024 слова. Это означает, что он предназначен для работы с программами, объем которых не превышает 111024 слов.
Слово памяти программ не равно одному байту (8 бит), а больше его (14 бит). Отдельная команда, которую ПИК будет в дальнейшем выполнять, занимает одно слово в памяти программ. В зависимости от названия этой команды в ассемблере, слово принимает то или иное числовое значение в машинном коде. После записи в ПИК "прошивки" программы, слова памяти программ (машинные коды) как бы "превращаются" в команды, которые располагаются, в памяти программ, в том же порядке, в котором они следуют в исходном тексте программы, написанном на языке ассемблер, и в том же порядке им присваиваются адреса, при обращении к которым, та или иная команда "извлекается" из памяти программ для ее выполнения. Последовательность же их выполнения определяется логикой программы. Это означает то, что выполнение команд может происходить не в порядке последовательного возрастания их адресов, с шагом в одну позицию (так называемый инкремент), а "скачком". Дело в том, что только уж самые простейшие программы, в пределах одного их полного цикла, обходятся без этих "скачков", называемых переходами, и выполняются строго последовательно. В остальных же случаях, так называемая (мной) "рабочая точка программы" "мечется по тексту программы как угорелая" (как раз благодаря этим самым переходам).
Термин "рабочая точка программы" - моя "самодеятельность". В свое время, я был очень сильно удивлен отсутствием чего-то подобного в информации, связанной с объяснением работы программ. Казалось бы, чего проще, по аналогии, например, с рабочей точкой транзистора, сделать более комфортным "въезд в механику" работы программ? Так нет же, как будто специально, придумываются такие "головокружительные заменители", причем, в различных случаях, разные, что запутаться в этом очень просто. Итак, рабочую точку программы можно представить себе в виде некоего "шарика от пинг-понга", который "скачет" по командам текста программы в соответствии с алгоритмом (логикой) исполнения программы. На какую команду "шарик скакнул", та команда и исполняется. После этого он "перескакивает" на другую команду, она исполняется, и т.д. Эти "скачки" происходят непрерывно и в течение всего времени включения питания устройства (исполнения программы).
Любая более-менее сложная программа разбивается на части, которые выполняют отдельные функции (своего рода программки в программе) и которые называются подпрограммами. Атрибут любой подпрограммы - функциональная законченность производимых в ней действий.
По сути своей, эта "выдумка" введена в программирование для удобства реализации принципа "разделяй и властвуй": "врага" ведь гораздо легче "разгромить по частям, чем в общей массе". Да и порядка больше.
Безусловные переходы (переходы без условия) между подпрограммами (если они последовательно не переходят одна в другую), осуществляются при помощи команд безусловных переходов, в которых обязательно указывается адрес команды в памяти программ (косвенно - в виде названия подпрограммы или метки), на которую нужно перейти. Существуют также переходы с условием (условные переходы), то есть, с задействованием так называемого стека. Более подробно о переходах я расскажу позднее. Адреса команд определяются счетчиком команд (он называется PC). То есть, каждому состоянию счетчика команд соответствует одна из команд программы. Если команда простая, то счетчик просто инкрементируется (последовательно выполняется следующая команда), а если команда сложная (например, команда перехода или возврата), то счетчик команд изменяет свое состояние "скачком", активируя соответствующую команду.
Примечание: инкремент - увеличение на единицу величины числа, с которым производится эта операция, а декремент - уменьшение на единицу (так называемые комплиментарные операции). В простейшем случае, то есть в случае отсутствия в программе переходов, счетчик команд PC, начиная с команды "старта" (нулевой адрес), многократно инкрементируется, 12 последовательно активизируя все команды в памяти программ. Это означает, что в большинстве случаев, за каждый так называемый машинный цикл (такт работы программы: для ПИКов он равен четырем периодам тактового генератора) работы ПИКа, происходит исполнение одной команды. Есть и команды исполнение которых происходит за 2 машинных цикла (м.ц.), но их меньше. Команд, которые исполняются за 3 м.ц. и более нет. Таким вот образом, на большинстве участков программы (я их называю "линейными участками"), последовательно и перебираются адреса в памяти программ (команды последовательно исполняются).
В более сложных программах, с большим количеством условных и безусловных переходов, работу счетчика команд PC можно охарактеризовать фразой "Фигаро здесь, Фигаро там". 1 машинный цикл (м.ц.) равен 4-м периодам тактового генератора ПИКа. Следовательно, при использовании кварца на 4 Мгц., 1 м.ц.=1 мкс. Выполнение программы, в рабочем режиме (кроме работы в режиме пониженного энергопотребления SLEEP), никогда не останавливается, то есть, за каждый машинный цикл (или за 2, если команда исполняется за 2 м.ц.) должно выполняться какое-либо действие (команда). Тактовый генератор, формирующий машинные циклы, работает постоянно. Если его работу прервать, то исполнение программы прекратится.
Может сложиться ложное представление о том, что работу программы можно на какое-то время остановить, используя одну или несколько команд – "пустышек", не производящих полезных действий (есть такая команда NOP). Это представление не верно, так как в этом случае, речь идет только о задержке выполнения следующих команд, а не об остановке исполнения программы. Программа исполняется и в этом случае, так как "пустышка" есть та же самая команда программы, только не производящая никаких действий (короткая задержка). Если же нужно задержать выполнение каких-либо последующих команд на относительно длительное время, то применяются специальные, циклические подпрограммы задержек, о которых я расскажу позднее. Даже тогда, когда программа "зависает" ("глюк"), она исполняется, просто только не так, как нужно. Остановить (в буквальном смысле этого слова) исполнение программы можно только прекратив работу тактового генератора. Это происходит при переходе в режим пониженного энергопотребления (SLEEP), который используется в работе достаточно специфических устройств. Например, пультов дистанционного управления (и т.д.).
Отсюда следует вывод: программы, не использующие режим SLEEP (а таких - большинство), для обеспечения непрерывного выполнения команд программы, обязательно должны быть циклическими, то есть, иметь так называемый полный цикл программы, причем, многократно повторяющийся в течение всего времени включения питания. Проще говоря, рабочая точка программы должна непрерывно (не останавливаясь) "мотать кольца" полного цикла программы (непрерывно переходить с одного "кольца" на другое).
Общие выводы:
1. Команды программы "лежат" в памяти программ в порядке расположения команд в тексте программы.
2. Адреса этих команд находятся в счетчике команд PC и каждому адресу соответствует одна из команд программы.
3. Команда активируется (исполняется), если в счетчике команд находится ее адрес.
4. Активация команд происходит либо последовательно (на "линейном" участке программы), либо с переходом ("скачком") на другую команду (при выполнении команд переходов), с которой может начинаться как подпрограмма (переход на исполнение подпрограммы), так и группа команд, выделенная меткой (переход на исполнение группы команд, которой не присвоен "статус" подпрограммы).
5. Выполнение команд программы никогда не останавливается (за исключением режима SLEEP), и поэтому программа должна быть циклической.
Кроме памяти программ, PIC16F84A имеет энергонезависимую память данных (EEPROM память данных). Она предназначена для сохранения данных, имеющих место быть на момент выключения питания устройства, в целях их использования в дальнейшем (после следующего включения питания). Так же, как и память программ, память данных состоит из ячеек, в которых "лежат" слова. Слово памяти данных равно одному байту (8 бит). В PIC16F84A, объем памяти данных составляет 64 байта. Байты, хранящиеся в памяти данных, предназначены для их считывания в стандартные 8-битные регистры, речь о которых пойдет далее. Данные из этих регистров могут быть записаны в EEPROM память данных, то есть, может быть организован обмен данными между памятью данных и регистрами. Например, именно EEPROM память данных я использовал в своем частотомере для сохранения последних, перед выключением питания, настроек. Она же используется и для установки значений промежуточной частоты. Во многих программах, память данных вообще не используется, но это "вещь" исключительно полезная, и далее я расскажу о ней подробнее.
|
|
Всего 130 на 9 страницах по 15 на каждой странице<< 1 2 3 4 5 6 7 8 9 >>
Внимание! Если у вас не получилось найти нужную информацию, используйте рубрикатор или воспользуйтесь поиском
.
книги по программированию исходники компоненты шаблоны сайтов C++ PHP Delphi скачать
|
|